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Abstract. Spectral height and determinant are not invariant under operator or metric deforma-
tions. The variations of spectral height and determinant of Laplacian under conformal change of
metric in two dimensional Riemannian manifolds are computed explicitly using Polyakov for-
mula. However, in dimensions higher than two, there are no such formula for computing the
conformal or other such variations. In this work, we extend the Polyakov formula to study some
generic and conformal variations of the height and determinant functions on closed Riemannian
manifolds in higher dimensions and found their spectral inequality bounds.

1. Introduction

The concepts of the spectral height and spectral determinant functions are spec-
tral invariants usually defined through the zeta function of differential operators, see
e.g. [9, 12] and [25]. Bounds have been developed for such spectral functions using
some specialised inequalities, see e.g. [8, 23] and [18]. For example, [13] showed the
spectral zeta function is closely bounded by automorphic forms and the Riemann zeta
function. Also, [5] constructed a rational approximation of the Riemann zeta function
and its derivatives valid on every vertical line in the right half-planes. Recently, [8]
proved Oppenheim type inequalities for normalised determinant of positive invertible
operators on a Hilbert space and discussed Hadamard type inequalities for positive def-
inite matrices.

Let (M,g) be a compact smooth Riemannian manifold and  the Laplace-Beltrami
operator (also called “Laplacian” for short). The Laplacian is given by

 : C(M) →C(M)

where in local coordinates and for f ∈C(M) compactly supported,

 f = − 1√
det(gi j)


i j
 j

√
det(gi j)gi ji f (1)
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with  j = 
x j , i = 

xi and xi,x j ∈ R; c.f [25]. Let 0 = 0 � 1 � 2 � · · · ↗ be the
eigenvalues of M with respect to the Laplacian. The regularised spectral zeta function
of the Laplacian is defined by

Z(s) = 
 j �=0

1
 s

j
; (s) >

n
2

(2)

where n is the dimension of M. Then, the height of the manifold is

h(g) = Z′(0) (3)

while the spectral determinant is given by

det′= 
 j �=0

 j = e−Z′(0). (4)

See e.g. [17, 24].
The spectral height and determinant are not invariant under change of metrics. To

see this, consider a scaling of the metric of a Riemannian manifold M by a constant
c > 0, i.e (M,cg). It follows from (1) and (2) that  �→ 1

c and

Zc(s) =



k=1

cs

 s
k

= csZ(s).

So, the spectral functions change as

hc(g) = Z′
c(0) = lnc

(
Z(0)+Z′(0)

)
;  j �= 0

and
det′c= c

(
Z(0)+Z′(0)

)
;  j �= 0

where the spectral zeta function, Z, can be meromorphically continued to the whole
s-complex plane, see e.g. [16].

Consequently, one would ask “how does the spectral height and determinant vary
under a more general deformation such as the conformal perturbation of the operator
and metric of Riemannian manifold? Can one find inequality bounds for the spectral
height and determinant under conformal perturbation of the operator and metric of the
Riemannian manifold?”

In this study, we attempt these questions and construct spectral inequality bounds
for deformed spectral height and determinant functions on closed Riemannian mani-
folds.

2. Inequality bounds for the Riemann zeta function

Following [24], we defined Riemann zeta function by

 (s) :=



n=1

1
ns =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1−2−s




n=1

1
(2n−1)s ; (s) > 1,

1
1−21−s




n=1

(−1)n−1

ns ; (s) > 0.

(5)
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A Dirichlet polynomial of the Riemann zeta function enables one find a bound for
the spectral height and determinant on Riemannian manifold. We have the following
technical lemma.

LEMMA 1. On the upper half-plane, the Dirichlet polynomial of the Riemann zeta
function is finite and

(s) :=  (s)+  ′(s) 	 k ln |t| (6)

for C 
 s =  + it; t > 2 and k � 1 is an integer.

Proof. We begin by showing that the Dirichlet polynomial of the Riemann zeta
function is

 (s) =
N


n=1

1
ns +

N1−s

s−1
+ N(s) (7)

where

N(s) = −s
∫ 

N

ũ
us+1 du

with ũ = u− [u], for all (s) > 0, s �= 1 and all integers N � 1. Here, [·] is the greatest
integer value function.

To see this, write


1�n�N

1
ns = 

1�n�N

( 1
Ns −

( 1
Ns −

1
ns

))
=

N
Ns + 

1�n�N

∫ N

n

s
us+1 du

for N � 1.
Now by Fubini-Tonelli theorem, (see e.g. [16]), one can interchange sum and in-

tegral to have


1�n�N

1
ns =

N
Ns + s

∫ N

1


1�n�N

1
us+1 du =

N
Ns + s

∫ N

1

[u]
us+1 du.

So,


1�n�N

1
ns =

N
Ns − s

∫ N

1

ũ
us+1 du.

This leads to the following majorisation∣∣∣ ũ
us+1

∣∣∣ � 1

u(s)+1
� 1

uk for some constant k � 1.

Therefore, by Lebesgue dominated convergence theorem [16], we interchange limit and
integral, and let N →  in

s
∫ N

1

ũ
us+1 du

to see that it is holomorphic and hence, the integral converges.
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Consequently,


1�n�N

1
ns = 1+

1
s−1

+
N1−s

1− s
− s

∫ N

1

ũ
us+1 du

so that for (s) > 0,

 (s) = 1+
1

s+1
− s

∫ 

1

ũ
us+1 du. (8)

Thus, the Riemannian zeta function defined by (8) is holomorphic for (s) > 1 in the
half-plane except a simple pole at s = 1 with residue 1. This is a well-known result,
see e.g. [24, 26] and [17].

Moreover, the remainder term N(s) satisfies

|N(s)| � |s|
∫ 

N

1
u+1 du =

|s|
N

since ∣∣∣∫ 

1

ũ
us+1 du

∣∣∣ �
∫ 

1

1
u+1

where  = (s).
We can now prove the bound for (s). That is, for  � 1

2 and t � 2, we want to
show that

|(s)| � ek ln(t); for k � 1.

Choose N = [t] such that N � t < N +1, then

∣∣∣ N


n=1

1
ns

∣∣∣ � ek
N


n=1

1
n

(9)

since t � 2. Also,

|N(s)| � | + it|
N � k1e

k ln |t|

since  � 1
2 ; for N � 2 and k1 � 1.

Similarly,

−
N


n=1

lnn
ns = − 1

(1− s)2 +
−(1− s)N1−s lnN +N1−s

(1−S)2

−
∫ N

1

ũ
us+1 du+ s

∫ N

1
ũ

lnu
us+1 du.

Thus, as N → , we have the Dirichlet series

 ′(s) = −



n=1

lnn
ns − N1−s lnN

1−S
− N1−s lnN

(1−S)2

−
∫ 

N

ũ
us+1 du+ s

∫ 

N
ũ

lnu
us+1 du � k2e

k ln |t|. (10)
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Combining (9) and (10) gives the bound for (s). �

In fact, Srivastava, Mehrez and Tomovski in [23] on constructing a Turán-type
inequality on Mathieu series proved that for s � 1, the following inequalities hold:

 (2s) �
√

3
2

(s+1)
(s+ 1

2 )
(11)

and
[ (2s+1)]

3
2

[ (2s)]2 (2s+3)
� (s+1)

((s+ 1
2 )

(s+1)

)2
. (12)

COROLLARY 1. For (s) > 0,

 (s) �
√

3
2

( s+2
2 )

( s+1
2 )

(13)

and

 ′(s) � 1
2

√
3
2

( s+2
2 )

( s+1
2 )

[


(s+1
2

)
+

(s+2
2

)]
(14)

where (s) := ′(s)
(s) is the so-called digamma function.

Proof. Let 2s �→ s in (12) and then differentiate in s. The results follow as a
consequence of Lemma 1 for (s) > 0. �

3. Analysis of deformed operators

We consider a simple example of the Schrödinger-type operator

Hc := + c, (15)

where c a constant potential, on the unit circle S1 with spectrum of the form k =
k2 + c; k,c ∈ R. The associated spectral zeta function of the operator is then

Zc(s) = 
k∈Z

1
(k2 + c)s ; (s) � 0.

LEMMA 2. The spectral zeta function Zc(s) is meromorphic in the whole of
s-complex plane via the expansion

f (t) = 
k∈Z

e−(k2+c)t ; as t ↘ 0.
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Proof. For an arbitrary c, by Mellin transformation we write

Zc(s) =
1

(s)

∫ 

0

k∈Z

e−k2t e−ct ts−1dt,

where sum and integrals can be interchanged following Fubini-Tonelli theorem, [16].

Separating zero modes of 
k∈Z

e−k2t from the non-zero modes, we have

Zc(s) =
1

(s)

∫ 

0

[
2 

k∈Z|k �=0

e−k2t + 
k∈Z|k=0

e−k2t
]
e−ct ts−1dt

which gives

Zc(s) =
[ (2m+1)−s

2 ]
( s

2 )
 (− s)+M2 + c−s

where

M2 =
2

(s)

∫ 

1
w(t)




m=1

(−1)m(ct)m

m!
ts−1dt; with w(t) =




k=1

e−k2t

is holomorphic except at the points s =−;  = 1,3,5, · · · , which are all simple poles.
The residues are (−1)mcm

m! , with m = 0,1,2, · · · . �
We have the following result.

THEOREM 1. Let Hc be as defined (15) above, then,

det(Hc) = c · exp[−2



m=0

(−1)mcm(m)
m!

 (2m)]

and for 0 < c 	 1, h(S1) < ln2.

Proof. From the definition of spectral zeta function (2), we have

Zc(s) =
2

(s)




k=1

∫ 

0
e−k2t e−ctts−1dt + c−s

=
2

(s)




k=1

∫ 

0
e−k2t




m=0

(−1)m(ct)m

m!
ts−1dt + c−s

= 2 (2s)+
2

(s)




m=1

(−1)mcm (2m+2s)
m!

(s+m)+ c−s

which simplifies

Zc(s) =
2

(s)




m=0

(−1)mcm (2m+2s)(s+m)
m!

+ c−s.
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Notice that at c = 0, we get back Z(s) = 2 (2s) as in the previous case.
Similarly,

Z′
c(s) = 2




m=0

(−1)mcm (2m+2s)(s+m)
m!

− c−s log(c)

so that

Z′
c(0) = 2




m=0

(−1)mcm (2m)(m)
m!

− log(c).

Therefore,

−logdetHc
(0) = 2




m=0

(−1)mcm (2m)(m)
m!

− log(c).

Thus,

h(S′) = 2



m=0

(−1)mcm (2m)(m)
m!

− log(c) �



m=0

(−1)mcm (2m)(m)
m!

< ln2

since

lim
m→

((−1)m (2m)(m)
m!

)
= ln2.

This completes the proof of the theorem. �

Next, consider a more general Schrödinger-type operator

H = + V,

where H0 =  is the unperturbed Laplacian, V is a smooth potential and 0 <  	 1 a
perturbation parameter acting on functions on the n -torus

T
n = S1×S1×·· ·×S1︸ ︷︷ ︸

n-times

.

We obtain the next result.

THEOREM 2. The height of the flat n-torus is bounded by 2 (2) where  is the
Fourier coefficient of V on Tn.

That is,
h(Tn) � 2 (2). (16)

Proof. Let the associated spectral zeta function of H on Tn be

Z(s) = 
k∈Z

1
 s

k
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where k are the eigenvalues of H on Tn. So,

Z(s) =
1

(s)

∫ 

0

k∈Z

e−kt ts−1dt =
1

(s)

∫ 

0
Tr(e−(+V)t)ts−1

by Mellin transform.
Observe that if V = 0 then,

Z (s) =
1

(s)

∫ 

0

k∈Z

e−kt ts−1dt =
1

(s)

∫ 

0
Tr(e−t)ts−1 = 2 (2s)

on S1 as before.

To see (16), let FH(s) :=



ZH(s)|=0. Then,

FH(s) = − 1
(s)

∫ 

0
t ·Tr(Ve−t)ts−1.

Now, using that

Tr(Ve−t) =  
k∈Z

e−k2t , where  =
1
2

∫
Tn

eikxV (x)eikxdx,

we have
FH(s) = − 

(s)

∫ 

0
t ·

k∈Z

e−k2t ts−1dt.

Again, we remove the zero mode for FH to be defined to have

FH(s) = − 2
(s)




k=1

∫ 

0
t · e−k2t ts−1dt. (17)

So,

FH(s) = − 2
(s)

 (2s+2)(s+1)

and then
F ′

H(s) = −2 (2s+2)(s+1)⇒ F ′
H(0) = −2 (2).

This leads to write

logdetS1(H) = 2 (2) =
3

3
.

Now let k : Tn → C defined by

k(x) = (2)−n
n


j=1

eik jx j ; k j ∈ Z
n

constitute an orthonormal basis in the Sobolev space Hp(Tn). Then,

〈k,l〉 = (2)−n
∫

Tn
ei(k j−l j)x j dx j =

{
1; k j = l j

0; k j �= l j.
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It follows that

Tr(Ve−t) =  
k j∈Zn

e−k2
j t , where  =

1
(2)n

∫
Tn
kVk.

Therefore,

logdetTn(H) = 
()3

3
.

So, using the bounds for  (s) given in (11) and (12); the definition of h(g) in (3), and
the fact that




[logdetTn(H)|=0] =
2

3
,

we conclude that the inequality (16) on the flat n -torus is valid. �

4. Conformal metric deformation

We further consider a conformal transformation of the Laplacian and ask how the
height and determinant function vary. Afterwards, we find their spectral inequality
bounds.

DEFINITION 1. [11]. Let (M,g) and (N,h) be two Riemannian manifolds and
let f : M →N be a diffeomorphism. The diffeomorphism f is called conformal if there
exists a positive function  : M → R such that g = g where  is a real-valued smooth
function.

LEMMA 3. Let  be the Laplacian defined locally by (1) above. Then, a confor-
mally defined Laplacian is given by

h = −1g +(1−n/2)−2g(), (18)

where n is the dimension of M and g() is the gradient vector field of the function
 .

Proof. A straightforward computation shows that det(hi j) = n/2 det(gi j). So, one
has for f ∈C(M) that

h f =
1

n/2


x1

(
n/2 1


 f
x1

)
+ · · ·+ 1

n/2


xn

(
n/2 1


 f
xn

)
= −n/2

[n−2
2


n−4
2 x1

 f
x1

+ · · ·+ n−2
2


n−4
2 xn

 f
xn

+
n−2
2
 2 f
x2
n

]
. �

COROLLARY 2. If in Theorem (3) above,  = e2 and f , ∈C(M); then,

h f = e−2 [g f − (n−2)kk f ]; k = 1,2, · · · ,n. (19)
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Proof. Replace  with e2 in the proof of Lemma (3) to get the expression. �
Now to compute the conformal variation of the spectral zeta function, we consider

the heat kernel, K(t,x,y) : (0,)×M ×M → R, which is a continuous function on
(0,)×M×M. Let {k}k=0 be orthonormal basis of eigenfunctions of  with corre-
sponding eigenvalues {k} listed with multiplicities, [7, 19] and [14]. Then {k}k=0
are also eigenfunctions of the heat operator with corresponding eigenvalues {e−kt}. In
terms of these eigenfunctions, the Mercer’s theorem [22] implies that e−t is trace-class
for all t > 0 and one can write the heat kernel as

K(t,x,y) =



k=0

e−ktk(x)k(y).

The convergence for all t > 0 is uniform on M×M. In particular, the trace of the heat
operator

Tr(e−gt) =



k=0

e−kt |k(x)|2 =



k=0

e−kt =
∫

M
K(t,x,x)dVg(x) < ; (20)

see e.g. [12].
In dimension two, there is an explicit formula for computing the variation of

logdet under conformal change of metric. It is the Polyakov-Ray-Singer (Polyakov)
variation formula given below. However, in dimensions higher than two, there are no
such formula for computing the variation of the determinant of the Laplacian under
conformal or any other variations of the metric, c.f: [15]. Hence, the less study in this
area.

THEOREM 3. (Polyakov formula) Suppose (M,g) is a compact 2-dimensional
closed surface and h = e2g is the metric conformal to g with vol(M,h) = vol(M,g).
Then,

g(s)−h(s) =
1

(s)

∫ 

0
[Tr(e−gt)−Tr(e−ht)]ts−1dt =− 1

12

∫
M

(2kg+ | |2)dAg

(21)
where Ag is the area of (M,g), dAg its volume form and kg is the Gaussian curvature.
The notations Ah,dAh and kh are similarly defined for (M,h).

For proof, one can see [6] and [20].
To extend the Polyakov’s variation formula to n -dimensional compact Riemannian

manifold, we begin with variation of the spectral zeta function. Let

 : M× (−c,c)→ R

be a smooth family of functions  := (·,) on M with 0 = 0, and define the corre-
sponding family of conformal metrics g given by {g = eg}, with the condition that

g(1)
 = 

 (g)|=0 = ̇0g, ̇0 ∈C(M); where ̇ = 


(


)
. Then, the corresponding

family of Laplacians  are defined as

 = e− +
(
1− n

2

)
e−2div(e ) .
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It can be seen that  varies in  as follows:




(


)
=




(
e− +

(
1− n

2

)
e−2div(e)

)
= −̇e− −

(
1− n

2

)
̇e−div()

+
(
1− n

2

)
e−div(̇) .

THEOREM 4. Let (M,g) be smooth, compact and connected Riemannian mani-
fold and  the Laplacian on it with eigenvalues {k} listed according to their multi-
plicities. Let

{g = eg}
be a family of volume-preserving conformal metrics. Then the spectral zeta function of
 , given by

g (s) =



k=1

1(
k()

)s (22)

varies as

 (1)
g (s) = s

∫
M
̇0(x)g(s,x,x)dVg +

1
2

(n
2
−1

)
s
∫

M
(̇0(x)) (s+1,x,x)dVg. (23)

We denote this variation evaluated at  = 0 by  (1)
g (s) .

Proof. Since

g (s) =
1

(s)

∫ 

0
(Tr(e−t )−1)ts−1dt,

it follows that

 (1)
g (s) =




g (s)|=0 =



∣∣∣
=0

( 1
(s)

∫ 

0
(Tr(e−t )−1)ts−1dt

)
.

In line with Ray and Singer in [20], one gets

 (1)
g (s) = − 1

(s)

∫ 

0
Tr

(
(1)
 e−t)

tsdt

= − 1
(s)

∫ 

0
Tr

([
− ̇0+

(
1− n

2

)
div

](
̇0(e−t)

))
tsdt

where we have used the variation of  in (18). So,

 (1)
g (s) =

1
(s)

∫ 

0
Tr

(
̇0e−t)tsdt−

(
1− n

2

) 1
(s)

∫ 

0
Tr

(
div(̇0e−t))tsdt

= − 1
(s)

∫ 

0


 t

Tr
(
̇0e

−t)tsdt +
(n

2
−1

) 1
(s)

∫ 

0
Tr

(
div(̇0e−t))tsdt.
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Integrating by parts in the first term, gives

 (1)
g (s) =

s
(s)

∫ 

0
Tr

(
̇0

(
e−t− 1

V

))
ts−1dt

+
(n

2
−1

) 1
(s)

∫ 

0
Tr

(
div

(
̇0

(
e−t− 1

V

)))
tsdt

where 1
V denotes f �→ 1

V

∫
M f dV and V is the volume of (M,g).

So the variation of the zeta function is

 (1)
g (s) =

s
(s)

∫ 

0

∫
M
̇0(x)

(
K(t,x,x)− 1

V

)
dVgt

s−1dt

+
1
2

(n
2
−1

) 1
(s)

∫ 

0

∫
M

div(̇0)
(
K(t,x,x)− 1

V

)
dVgt

sdt.

Since ∫
M

(
̇0(x)K(t,x,x)− 1

V

)
dVg(x) → 0

decays exponentially fast as t → . Also, recognizing that 1
(s) = s

(s+1) , we have

 (1)
g (s) = s

∫
M
̇0(x)

{
1

(s)

∫ 

0

(
K(t,x,x)− 1

V

)
ts−1dt

}
dVg

+
1
2

(n
2
−1

)
s
∫

M
div(̇0)

{
1

(s+1)

∫ 

0

(
K(t,x,x)− 1

V

)
tsdt

}
dVg.

Therefore,

 (1)
g (s) = s

∫
M
̇0(x)g(s,x,x)dVg +

1
2

(n
2
−1

)
s
∫

M
div(̇0g) (s+1,x,x)dVg.

By Green’s formula, we have

 (1)
g (s) = s

∫
M
̇0(x)g(s,x,x)dVg +

1
2

(n
2
−1

)
s
∫

M
(̇0(x))g(s+1,x,x)dVg

which completes the proof. �

Again, note that the first-order variation  (1)
g (s) given by the formula (23) is true

for large s. The right-hand-side of equation (23) is meromorphic in s with simple poles.
Let us define the Finite Part function FP for the varied spectral zeta function by

FP[ (1)
g (s)]

∣∣
s0

= −1
2

∫
M
̇0(x)FP[g(s,x,x)]

∣∣
s0

dVg

−1
4

(n
2
−1

)∫
M

(̇0(x))FP[g(s+1,x,x)]
∣∣
s0

dVg (24)

for an arbitrary point s = s0.
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DEFINITION 2. The metric g is called a critical point of a point s = s0 with re-

spect to all variations {g = eg}, if the variation  (1)
g (s0) vanishes for all g .

Another result of this work is the following.

THEOREM 5. Let  be the Laplacian on (M,g) with zeta kernel g(s,x,y).
Then, g is a critical point of the height function h(g) for all constant-volume confor-

mal variations of the metric if FP
[
 (1)

g (s,x,x)
∣∣∣
s=0

]
is constant in x.

Moreover,

1− 1
det′ 

� h(g) �
′

det

−1. (25)

Proof. By the definition of critical point above and the variation of the spectral
zeta function (24), consider the function

Ḟ0
(x) :=

(
− 1

2
̇0(x)FP[g(s,x,x)]− 1

4

(n
2
−1

)
(̇0)FP[g(s+1,x,x)]

)∣∣
s=0

where of course,

g(s,x,x)
∣∣
s=0 =

1
(s)

∫ 

0

[
K(t,x,x)− 1

V

]
ts−1dt

∣∣
s=0.

We have a critical point if∫
M

Ḟ0
(x)dVx = 0 ∀ ̇0 ∈C(M) such that

∫
M
̇0(x)dVx = 0.

Now, suppose FP
[
g(s,x,x)

∣∣∣
s=0

]
is constant. Then, one gets

∫
M

Ḟ0
dVx = −1

2
FP[g(s,x,x)

∣∣∣
s=0

]
∫

M
̇0(x)dVx

−1
4

(n
2
−1

)∫
M

(̇0(x))FP[g(s,x,x)
∣∣∣
s=0

]dVx

= −1
4

(n
2
−1

)∫
M

(̇0(x))FP[g(s,x,x)
∣∣∣
s=0

]dVx

since
∫
M ̇0(x)dVx = 0. Now by the self-adjointness of , we have

∫
M

Ḟ0
(x)dVx = −1

4

(n
2
−1

)∫
M
̇0(x)FP[g(s,x,x)

∣∣∣
s=0

]dVx = 0

since the Laplacian of a constant function is zero.
Moreover, the inequality (25) follows from that fact

z−1
z

� lnz =
∫ z

1

1
t
dt �

∫ z

1
dz � z−1 ∀z > 0.
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Furthermore, let g(s)−h(s) be the Polyakov’s conformal variation difference of
the spectral zeta functions of (M,g) and (M,h) in equation (21). It is not difficult to
see that

FP
[
|g(s)− h(s)|

∣∣∣
s=0

]
� FP

[∫ h(s)

g(s)

1
t
dt

]∣∣∣
s=0

� h(s)− g(s)
g(s)

∣∣∣
s=0

→ 0, as g(s)|s=0 → h(s)|s=0.

Thus, the spectral inequality bound (25) on the height function is justified. �
We now illustrate the conformal variation results on the n -sphere. Let the Lapla-

cian restricted to the n -sphere be given by

nu =
1
rn


 r

(
rn u
 r

)
+

1
r2nu

where u(r;x) is a harmonic polynomial. Let Pk be the space of homogeneous poly-
nomials of degree k. It is well-known, (see e.g. [22] and [17]), that the eigenvalues of
the operator −n is given by

k = k(k+n−1), k = 0,1,2, · · · ,

with multiplicities equal to the dimension of Pk given by

dk =
(

k+n
n

)
−

(
k+n−2

n

)
.

So,

Zn(s) =



k=1

dk

[k(k+n−1)]s
.

The determinant of the Laplacian on n -sphere is expressible in terms of the Multiple
Gamma Function (n)n�0 of Barnes. According to [2], the Multiple Gamma Function
is defined uniquely as the positive real-valued n -times differentiable function on R+

with the property (−1)n+1 dn

dxn logn(x) is increasing and satisfies

n(x+1) =
n(x)
n−1(x)

; n(1) = 1;

[2] and [4]. At n = 1, 1 is the usual gamma function. Double Gamma Function, (also
called the Barnes G-function), 2 is defined by

2(x+1) = G(x+1) = (x)G(x) where G(1) = 1, G(x) = (x−2)!(x−3)! · · ·1!.

In general, for x = 2k+1,

G(
1
2
(2k+1)) = ckA

−3/2−(2k−3)/4e1/821/242−[(k−1)(k−2)]/2;
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where A = exp( 1
12 −  ′(−1)) is the so-called Glaisher or Kinkelin constant,

ck =
k−2


i=1

2i(1/2+ i)√


; k > 1.

This is the generalization of the classical formula ( 1
2 ) =

√
. Thus, one can easily

read off the height and determinant functions from the ZSn(s) using the Finite Part
scheme (24). Note, of course that

Ress= n
2− jZSn(s) = lim

s→ n
2− j

ZSn(s) ·
(
s− n

2
+ j

)
;

c.f: [4] and [3]. Vardi [25] computed the determinant of the n -sphere to be

detn = cne
An

n


l=1

l(
1
2
)An,l

for certain computable rational numbers An, An,l and some algebraic number cn. See
also [10] and [21] for similar results. For example, using that




k=1

1
(2k−1)s = (1−2−s) (s); (s) > 1,

where  (s) is the Riemann zeta function defined by (5), we readily have that

Z1(s) =



k=1

2
k2s = 2 (2s) ⇒ FP[−Z1(s)]

∣∣∣
s=0

= −1−2ln2 and

Z2(s) =



k=1

2k+1
(k2 + k)s =




k=1

2k+1
[(2k+1)2−4−1]s

= (22s−2) (2s−1)−4s ⇒ FP[−Z2(s)]
∣∣∣
s=0

= −11
12

.

Also,

Z3(s) =



k=1

(k+1)2

(k2 +2k)s =



k=1

(k+1)2

[(k+1)2−1]s
=  (2s−2)−1

⇒ FP[−Z3(s)]
∣∣∣
s=0

= −1.0609.

Furthermore,

ZS4(s) =
1
6




k=1

(k+1)(k+2)(2k+3)
(k+ 3

2 )2s

=
1
3
(22s−3−1)R(2s−3)− 1

3

(
22s−3− 1

4

)
R(2s−1)

−1
3

(2
3

)2s−3
+

1
8

(2
3

)2s ⇒ FP[−Z4(s)]
∣∣∣
s=0

= −2897
2880

; and so on.
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Furthermore,

det1 = 4
[

(1

2

)]4
= 13.8174,

det2 = 21/9e1/2−2/32

(1
2

)8/3
= 3.19531149 · · · ,

det3 = 8/73

(3
2

)16/7
= 3.33885121 · · · ;

where

n

( k
2

)
=

n[(k−2)/2]
n−1[(k−2)/2]

=
n( 1

2 )

n−1[(k−2)/2]n−1[(k−4)/2] · · · n−1

(
1
2

) .

Thus from the relation (4) and the spectral inequality bound (25), we have that the
spectral height values for the n -sphere satisfies

h(Sn) � ln
(
n(

k
2
)
)
; n � 1.

5. Conclusion

We have discussed different variations of the spectral height and determinant func-
tions on closed Riemannian manifolds. Specifically we found that for a simple Schrödin-
ger-type operator Hc := +c, where c a constant potential that the height and determi-
nant functions can be computed explicitly and that for 0 < c 	 1, the height function
h(g) < ln2.

Furthermore, for conformally deformed Laplacian, h, we found Polyakov’s vari-
ation type formulas for the height and determinant functions on n -dimensional compact
Riemannian manifolds and spectral inequality bounds on them. We illustrated our re-
sults with the circle, n -dimensional torus and spheres. These results are generalisations
of the classical Polyakov-Ray-Singer variation formula for spectral determinants on
compact Riemannian manifolds.
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