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Abstract. Parabolic trigonometric functions (PTF) have been recently defined as functions of an
area lying on a parabolic circle. In this paper, we begin with an investigation into PTF’s prop-
erties as these functions still need to be sufficiently understood. We find a precise formulation
of Wilker’s inequality together with Fink-Mortici’s type inequality for PTF. Furthermore, we
conjecture the proper form of Cusa-Huygens’ inequality for PTF and find both upper and lower
bounds on this inequality.

1. Introduction

In recent years, several generalisations of classical trigonometric functions using
various methods have been created. These methods include power series as well as
tools of integral and differential calculus. We mention, for example, the integral∫ x

0
(1− tq)−

1
p dt

through which the definition of a generalized arcsinp,q x is given. These generalised
functions have been examined from a number of angles, and some of their properties
have been found. Usually, they create a direct or indirect counterpart to the properties
of the classical trigonometric functions. A number of recent results can be found in the
papers [3, 5, 6, 9, 15, 16,21].

Much attention is paid to deriving inequalities that involve the mentioned gener-
alised trigonometric functions. Among studied inequalities belongs Wilker’s inequality,
which origin lies in the question posed in [24]. The proposed question was answered
in [25], and Wilker’s inequality has been studied ever since. For certain generalised
trigonometric functions are Wilker’s inequality and its variations are proved in [14,18].
However, the mentioned inequalities continue to be studied with respect to the classical
trigonometric functions as illustrate articles [2,4,26,27]. Another extension of Wilker’s
inequality, this time related to Bessel functions, appears in [1].
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Another well-known inequality for trigonometric functions is Cusa-Huygens’ in-
equality which origin goes back (according to [19], see also [14, 17]) to 15th century
where Nicolaus de Cusa proved that

3sinx
2+ cosx

< x. (1)

Another proof of (1) is due to Christian Huygens’ from the 17th century. Consequently,
inequality (1) is called Cusa-Huygens’ in the literature. For certain generalised trigono-
metric functions is Cusa-Huygens’ type inequality proved in [13, 22], see also [11].
Moreover, Fink-Mortici’s type inequalities are investigated for generalised trigonomet-
ric functions in [8, 23, 28].

A recent article [7] (see also [12, 20]) introduced, as far as we know, a new gen-
eralisation of trigonometric functions through their link to an area of a generalised
(parabolic) circle

x2 + |y| = 1.

Due to their relation to the parabolic circle, they have been named parabolic trigono-
metric functions (abbreviated PTF). Throughout the article, we denote these functions
as sinp x and cosp x .

The article is organised as follows. In the second section, we summarise known
definitions and facts about PTF and establish properties that

(tanp x)′ =
1

cos2p x
, and sinp x < x for x > 0.

In the third section, we examine Wilker’s inequality for PTF and prove that

(
sinp x

x

)2

+
tanp x

x
> 2, x ∈

(
0,
p

2

)
. (2)

Here p denotes a parabolic Pi, which definition will be given in a subsequent section.
Furthermore, we derive other properties of parabolic trigonometric functions based on
Wilker’s inequality. In the fourth section, we conjecture a version of Cusa-Huygens’
inequality for PTF and find upper and lower bounds for the conjectured inequality. In
the fifth section, we prove a version of Fink-Mortici’s type inequality for PTF that is

12x

11+
√

1− x2
< arcsinp x <

2x

1+
√

1− x2
, x ∈ (0,1). (3)

In the final section, we compare graphically obtained inequalities.

Most of our proofs are conducted in the spirit of Paul Erdős as we use simple
methods to obtain substantial results.
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2. Preliminaries

In literature, there are different proposed generalizations of trigonometric func-
tions. Article [7] proposes one based on areas where parabolic sine sinp x and cosine
cosp x satisfy two conditions. First condition specifies that the functions lie on a gener-
alized unit parabola

cos2
p x+ |sinp x| = 1, x ∈ R. (4)

The second condition links the area x under the parabola with sinp x , cosp x through
the equation

cosp xsinp x
2

+
∫ 1

cosp x
1− t2dt =

x
2
, x ∈

[
0,

8
3

]
. (5)

Conditions (4), (5) define a pair of functions given on
[
0, 8

3

]
that are called parabolic

trigonometric functions. Parabolic tangent is then defined in a natural way as

tanp x :=
sinp x
cosp x

.

Using conditions (4), (5) allows deriving properties of parabolic trigonometric
functions. The derivatives are given as

(cosp x)′ = − 1
1+ cos2p x

, (6)

(sinp x)′ =
2cosp x

1+ cos2p x
(7)

for x ∈ (0, 8
3

)
. System of equations (4), (5) is solvable and it yields that

cosp x = −2sinh

(
1
3

arcsinh
3x−4

2

)
,

sinp x = 3−2cosh

(
2
3

arcsinh
3x−4

2

)

for x ∈ [0, 8
3

]
. Another consequence of (4), (5) is the following identity

cosp xsinp x−4cosp x = 3x−4.

It is a natural fact that trigonometric functions are connected to the number  . For PTF
we define parabolic p as the area under parabola y = 1− x2 over the interval [−1,1] ,
which is therefore

p =
8
3
.

As a consequence, PTF behave in the similar manner to classical trigonometric func-
tions as we see in Table 1.

Furthermore, Eq. (4) bounds both functions, i.e. 0 � sinp x � 1, −1 � cosp x � 1
for x ∈ [0,p] . The functions are displayed in Figure 1.
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x 0
(
0,

p
2

) p

2

(p
2 ,p

)
p

sinp x 0 > 0 1 > 0 0
cosp x 1 > 0 0 < 0 −1

Table 1: Table of function values and signs for PTF.

Figure 1: Parabolic trigonometric functions on the interval [0,p]

Let us emphasize, that condition (5) defines parabolic trigonometric functions
solely over the interval [0,p] . Nevertheless, we can extend cosp x as an even func-
tion over [−p,p] and sinp x as an odd function similarly. In this article, we will
focus mainly on the interval

[
0,

p
2

]
, where sinp x is strictly increasing and cosp x is

strictly decreasing.

LEMMA 1. It holds

lim
x→0+

sinp x
x

= 1.

Proof. As an application of L’hopital’s rule we get

lim
x→0+

sinp x
x

= lim
x→0+

2cosp x
1+ cos2p x

=
2
2

= 1. �

LEMMA 2. It holds

(tanp x)′ =
1

cos2
p x

and tanp x > x

for x ∈ (0, 4
3

)
.
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Proof. Directly from the quotient rule

(tanp x)′ =

2cos2p x

1+cos2p x
+ sinp x

1+cos2p x

cos2
p x

=
cos2

p x+

=1︷ ︸︸ ︷
cos2p x+ sinp x

cos2
p x(1+ cos2p x)

=
1

cos2
p x

.

Additionally,

tanp x =
∫ x

0

1
cos2p t

dt >

∫ x

0
1dt = x. �

LEMMA 3. It holds
sinp x < x, x > 0.

Proof. It is enough to prove the inequality for x∈ (0,
p
2

)
because sinp x � 1 <

p
2 .

Furthermore, using inverse function rule together with 4 and 7 we get

(arcsinp x)′ =
2− x

2
√

1− x
, (8)

where arcsinp x denotes an inverse function to sinp x . We also conclude that for x ∈
(0,1) is

2− x

2
√

1− x
> 1.

Indeed, that is true because(
2− x

2
√

1− x

)′
=

−2(1− x)+ (2− x)
8(1− x)

√
1− x

=
x

8(1− x)
√

1− x

is a positive function. Hence, arcsinp x increases faster than x and thus we know that
arcsinp x > x . Function sinp x is increasing for x ∈ (0,

p
2

)
and x = sinp arcsinp x >

sinp x . �
We stress that from (8) we can conclude that

arcsinp x =
∫ t

0

2− t

2
√

1− t
dt =

4+
√

1− x(x−4)
3

, x ∈ [0,1].

The following lemma is a special version of L’Hopital’s rule and appears, for example,
in book [10, Theorem 1.25] (see also [2, 13, 22, 23] and many others).

LEMMA 4. For − < a < b <  let functions f ,g : [a,b] → R be continuous

on [a,b] , differentiable on (a,b) and let g′(x) �= 0 on (a,b) . If f ′(x)
g′(x) is increasing

(decreasing) on (a,b) then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)
g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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LEMMA 5. Let there be nonnegative functions f (x) , g(x) such that f (x) , g(x)
are increasing (decreasing) on [a,b] . Then the following holds

1. f (x)+g(x) is also increasing (decreasing) on [a,b] .

2. f (x)g(x) is increasing (decreasing) on [a,b] .

If f (x) , g(x) are strictly monotone, then the monotonicity in the conclusion is also
strict.

3. Wilker’s inequality

In this section, we prove the version of Wilker’s inequality appropriate for PTF.

LEMMA 6. It holds

2sinp x+ tanp x > 3x, x ∈
(
0,
p

2

)
.

Proof. Since function

f (x) = 2sinp x+ tanp x−3x

satisfies that f (0) = 0, it is enough to show that f (x) is increasing for x∈ (0,
p
2

)
. The

derivative is

f ′(x) =
4cosp x

1+ cos2p x
+

1
cos2

p x
−3 =

4cos3
p x+1+ cos2p x−3cos2p x−3cos4p x

(1+ cos2p x)cos2
p x

.

If we substitute y = cosp x we get that

f ′(y) =
−3y4 +4y3−2y2 +1

(1+ y2)y2 =
(1− y)(3y3− y2 + y+1)

(1+ y2)y2 .

But f ′(y) > 0 for all y ∈ (0,1) , which is true if and only if 3y3− y2 + y+1 > 0 for all
y ∈ (0,1) . We bound

3y3− y2 + y+1 > 3y3− y2 + y = y(3y2− y+1)

where 3y2− y+1 has solely complex roots and moreover we see that it is positive. As
a consequence, f (x) is increasing for x ∈ (0,

p
2

)
and the statement is true. �

THEOREM 1. It holds(
sinp x

x

)2

+
tanp x

x
> 2, x ∈

(
0,
p

2

)
.
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Proof. First of all, if tanp x
x > 3 then the statement holds trivially. Let us consider

the cases where tanp x
x � 3. From Lemma 6 yields

2sinp x+ tanp x > 3x

sinp x
x

>
3
2
− tanp x

2x
sinp x

x
> 1+

1
2

(
1− tanp x

x

)
(

sinp x

x

)2

> 1+
(

1− tanp x

x

)
+

1
4

(
1− tanp x

x

)2

> 1+
(

1− tanp x

x

)
(

sinp x
x

)2

+
tanp x

x
> 2. �

COROLLARY 1. Let there be real parameters  ,  , r , s such that  > 0 ,  > 0

and r � 2s
 . Then for s � max

{

 ,1
}

holds


+

(
sinp x

x

)r

+


 +

(
tanp x

x

)s

> 1, x ∈
(
0,
p

2

)
.

Proof. We first consider the case where tanp x
x � 2. We see that


 +

(
sinp x

x

)r

+


 +

(
tanp x

x

)s

Lemma 3
� 

 +

(
sinp x

x

) 2s


+


 +

(
tanp x

x

)s

Theorem 1
>


 +

(
2− tanp x

x

) s


+


 +

(
tanp x

x

)s

. (9)

Now (9) becomes a function

f (y) =


 +
(2− y)

s
 +


+

ys

via a substitution y = tanp x
x . Lemma 2 together with the assumption give that 2 � y > 1.

Applying the derivative permits

f ′(y) =
 s

 +

(
ys−1− (2− y)

s
 −1

)
,
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and therefore we see that

ys−1 > 1 > (2− y)
s
 −1 � 0.

Hence, f (y) is increasing for all 2 � y > 1 and thus f (y) > f (1) = 1. The statement
is true for tanp x

x � 2.

In the next part, let us consider the case where tanp x
x > 2. We assert that


 +

(
tanp x

x

)s

>


+
2s =

1
1+ 


2s � 1

1+ s
2s. (10)

Combining (10) with the fact that

2s

1+ s
� 1 (11)

for s � 1 finishes the proof. Inequality (11) follows naturally from the derivative, that
is

2s

(1+ s)2 ((
�2︷︸︸︷

1+ s)

> 1
2︷︸︸︷

ln2 −1) > 0. �

COROLLARY 2. For all s � 1 it holds

(
sinp x

x

)s

>
4coss

p x

1+
√

1+8cos2s
p x

, x ∈
(
0,
p

2

)
.

Proof. Considering the choice r = 2s ,  =  = 1 in Corollary 1 yields

(
sinp x

x

)2s

+
(

tanp x
x

)s

> 2(
sinp x

x

)2s

+
1

coss
p x

(
sinp x

x

)s

−2 > 0

⎛
⎝( sinp x

x

)s

+
cos−s

p x+
√

cos−2s
p x+8

2

⎞
⎠

×
⎛
⎝( sinp x

x

)s

+
cos−s

p x−
√

cos−2s
p x+8

2

⎞
⎠> 0.
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Hence, we conclude that

(
sinp x

x

)2s

+
cos−s

p x−
√

cos−2s
p x+8

2
> 0

(
sinp x

x

)2s

>

√
cos−2s

p x+8− cos−s
p x

2(
sinp x

x

)2s

>
8

2

(√
cos−2s

p x+8+ cos−s
p x

)
(

sinp x

x

)2s

>
8cossp x

2
(√

1+8cos2s
p x+1

) . �

COROLLARY 3. It holds(
sinp x

x

)s

>
coss

p x

1+ cossp x
, x ∈

(
0,
p

2

)
.

Proof. As a modification of Corollary 2 we get(
sinp x

x

)s

>
4cossp x

1+
√

1+8cos2s
p x

>
4cossp x

2+
√

8cossp x
>

4cossp x

4+4cossp x
. �

4. Bounds on Cusa-Huygens’ type inequality for
parabolic trigonometric functions

We conjecture (see the final section) that the Cusa-Huygens’ inequality for parabolic
trigonometric functions has the form

cosp x+ x
2 +2

3
>

sinp x
x

, x ∈
(
0,
p

2

)
.

In this section, we prove a bound on the conjectured inequality in the form

tanp x

x

cosp x+2
3

> max

{
cosp x+ x

2 +2

3
,
sinp x

x

}

> min

{
cosp x+ x

2 +2

3
,
sinp x

x

}
>

cosp x− 3
4x+2

3
, x ∈

(
0,
p

2

)
.

LEMMA 7. It holds

cosp x > 1− x, x ∈
(
0,
p

2

)
.
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Proof. Function f (x) = cosp x−1+ x satisfies f (0) = 0 and its derivative is pos-
itive because

f ′(x) = − 1
1+ cos2p x

+1 =
cos2p x

1+ cos2p x
> 0.

The function f (x) is increasing, therefore positive. �

THEOREM 2. It holds

min

{
cosp x+ x

2 +2

3
,
sinp x

x

}
>

cosp x− 3
4x+2

3
, x ∈

(
0,
p

2

)
.

Proof. First of all, auxiliary function f (x) = 3sinp x−xcosp x+ 3
4x2−2x satisfies

that f (0) = 0 and its derivative is

f ′(x) =
6cosp x

1+ cos2p x
− cosp x+

x
1+ cos2p x

+
3
2
x−2

1+cos2p x<2
>

6cosp x
2

− cosp x+
x
2

+
3
2
x−2 = 2cosp x+2x−2

Lemma 7
> 2(1− x)+2x−2= 0.

The function f (x) is positive and thus

3sinp x > xcosp x− 3
4
x2 +2x

sinp x

x
>

cosp x− 3
4x+2

3
.

The second part is obvious as

cosp x+ x
2 +2

3
>

cosp x− 3
4x+2

3

for x > 0. �

LEMMA 8. It holds

tanp x
x

−1 > 1− cosp x >
x

2cosp x+4
, x ∈

(
0,
p

2

)
.

Proof. Considering function f (x) = 4−2cosp x−2cos2p x−x that satisfies f (0) =
0 yields that

f ′(x) =
2

1+ cos2p x
+

4cosp x

1+ cos2p x
−1 =

2
1+ cos2p x

(1+2cosp x)−1

>
2
2
(1+2cosp x)−1 = 2cosp x > 0.
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Furthermore, it holds

(1− cosp x)(2cosp x+4) = 4−2cosp x−2cos2p x = f (x)+ x > x.

For the second part, we proceed with a function g(x) = tanp x + xcosp x− 2x which
satisfies g(0) = 0. Moreover, its derivative is

g′(x) =
1

cos2p x
+ cosp x− x

1+ cos2p x
−2

(1+ cos2p x)g′(x) =
1

cos2p x
+ cosp x+ cos3p x−2cos2p x− x−1.

Function h(x) = (1+ cos2p x)g′(x) then also satisfies that h(0) = 2g′(0) = 0 and addi-
tionally

h′(x) =
2

cos3
p x(1+ cos2p x)

+
4cosp x−3cos2p x−1

(1+ cos2p x)
−1.

Substituting y = cosp x gives for 0 < y < 1 that

h′(y) =
2

y3(1+ y2)
+

4y−4y2−2
1+ y2 =

2
(1+ y2)

⎛
⎜⎜⎝

>0︷ ︸︸ ︷
1
y3 −1+

>0︷ ︸︸ ︷
4y(1− y)

⎞
⎟⎟⎠> 0.

Therefore, h′(x) > 0 and both functions g′(x) , g(x) are increasing, therefore posi-
tive. �

THEOREM 3. It holds

tanp x

x

cosp x+2
3

> max

{
cosp x+ x

2 +2

3
,
sinp x

x

}
, x ∈

(
0,
p

2

)
.

Proof. From Lemma 8 follows that

tanp x

x
−1 >

x
2

cosp x+2

tanp x
x

>
cosp x+ x

2 +2

cosp x+2

tanp x

x

cosp x+2
3

>
cosp x+ x

2 +2

3
.

Furthermore, it is straightforward that

tanp x

x

cosp x+2
3

>
sinp x

xcosp x

3cosp x

3
>

sinp x

x
. �
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5. Fink-Mortici’s inequality

In this section, we prove a version of Fink-Mortici’s inequality for parabolic trigono-
metric functions

12x

11+
√

1− x2
< arcsinp x <

2x

1+
√

1− x2
, x ∈ (0,1).

Proof. First of all, let us start with the upper bound

arcsinp x <
2x

1+
√

1− x2
.

Calculating

lim
x→0+

arcsinp x
2x

1+
√

1−x2

8= lim
x→0+

2−x
2
√

1−x
2

(1+
√

1−x2)
√

1−x2

= lim
x→0+

(2− x)(1+
√

1− x2)
√

1+ x
4

= 1.

In the next part, we show that the function

(2− x)(1+
√

1− x2)
√

1+ x = (2− x)
√

1+ x+(2− x)(1+ x)
√

1− x

is strictly decreasing on (0,1) . By Lemma 5 it is sufficient to show that both (2−
x)
√

1+ x and (2− x)(1+ x)
√

1− x are strictly decreasing. However, we have(
(2− x)

√
1+ x

)′
= − 3x

2
√

1+ x
, (12)

(
(2− x)(1+ x)

√
1− x

)′
=

x(5x−7)
2
√

1− x
, (13)

where both derivatives (12), (13) are clearly negative for x ∈ (0,1) . As a consequence,
we know via Lemma 4 that

arcsinp x
2x

1+
√

1−x2

< 1

arcsinp x <
2x

1+
√

1− x2
.

In the next part, we show the lower bound

12x

11+
√

1− x2
< arcsinp x.

For the second part, we calculate

lim
x→0+

arcsinp x
12x

1+
√

11−x2

8= lim
x→0+

(2− x)(11+
√

1− x2)2
√

1+ x

24+264
√

1− x2
= 1.
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Additionally, the function

(2− x)(11+
√

1− x2)2
√

1+ x

24+264
√

1− x2

is increasing. Indeed its derivative is(
(2− x)(11+

√
1− x2)2

√
1+ x

24+264
√

1− x2

)′

=
12x(11+

√
1− x2)

(
128x2 +238x+110+(55x2−22x−110)

√
1− x2

)
(1+ x)

√
1− x

(
24+264

√
1− x2

)2

>
12x(11+

√
1− x2)(128x2 +238x+110+55x2−22x−110)

(1+ x)
√

1− x
(
24+264

√
1− x2

)2

=
12x2(11+

√
1− x2)(183x+216)

(1+ x)
√

1− x
(
24+264

√
1− x2

)2 > 0

for x ∈ (0,1) . Hence, Lemma 4 shows that

arcsinp x
12x

1+
√

11−x2

> 1

arcsinp x >
12x

1+
√

11− x2
. �

6. Conclusion and final remarks

We conjecture that Cusa-Huygens’ type inequality for parabolic functions has the
following form.

CONJECTURE 1. It holds

sinp x
x

<
cosp x+ x

2 +2

3
, x ∈

(
0,
p

2

)
.

In Figure 2 part (b) we see, that the inequality in Conjecture 1 seems to hold and
it is quite tight. As a consequence, we could bound the integral

∫ x

0

sinp t
t

dt <
1
3

∫ x

0
cosp t dt +

x2

12
+

2x
3

, (14)

where the right-hand side integral in (14) seems easier to solve. Moreover, the bound
in Figure 2 part (b) seems quite tight and we could use the right-hand side of (14) as
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(a) Wilker’s inequality (b) Cusa-Huygens’ bounds (c) Fink-Mortici’s inequality

Figure 2: Representation of studied inequalities. Based on (b) we hypothesize that Conjecture 1
is indeed true. In (c) we see that the bounds in Fink-Mortici’s type inequality are quite tight.

an approximation. Nevertheless, the proof of Conjecture 1 is yet missing and we do not
know what is the solution of ∫ x

0
cosp t dt.

Furthermore, let us highlight that PTF are not the only functions that satisfy Eq. (4).
Functions sin2,1 x , cos2,1 x (see [12] or the definition in [9,15,16]) also satisfy Eq. (4). It
remains to show what is the relationship between PTF and sin2,1 x , cos2,1 x and whether
this connection can be used to derive further properties.
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