
Journal of
Mathematical

Inequalities

Volume 19, Number 1 (2025), 119–134 doi:10.7153/jmi-2025-19-08

RATES OF CONVERGENCE FOR ITERATES
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(Communicated by L. Mihoković)

Abstract. We are concerned with positive linear operators defined on C(X) , where X is a sim-
plex or a hypercube. We assume that the operators preserve the affine functions. After identifying
an eigenvalue a ∈ [0,1) of such an operator L , we show that the sequence (Lk f )k�1 has a limit
V f , f ∈C(X) and |Lk f (x)−V f (x)| is dominated by ak multiplied by a factor depending on L ,
f and x . These general results are applied to several classical or recently introduced operators
acting on simplices and hypercubes.

1. Introduction

Positive linear operators are important tools in Approximation Theory. Their prop-
erties are investigated from various points of view and with various methods, corre-
sponding to the applications where they are required. A rich literature was devoted to
the study of the iterates of such operators, see, e.g., [4], [5], [6], [7], [8], [11], [12],
[13], [14], [17], [19], [21], [24], [25], and the references therein. Given a positive linear
operator L , the sequences of its iterates (Lk)k�1 is an object of study in Approxima-
tion Theory, Ergodic Theory, Linear Algebra, Functional Analysis and other areas of
research. In particular, the limit lim

k→
Lk was intensively investigated. Qualitative re-

sults were obtained, as well as rates of convergence of the sequence (Lk)k�1 toward the
limit. We mention here the important results involving rates of convergence obtained in
[10], [13], [14], [24], [25]; see also the references therein. In these papers the degree of
approximation is estimated in terms of moduli of continuity, K -functionals and other
suitable tools.

In this paper we are concerned with positive linear operators defined on C(X) ,
where X is a simplex or a hypercube. We assume that the operators preserve the affine
functions. After identifying an eigenvalue a ∈ [0,1) of such an operator L , we show
that the sequence (Lk f )k�1 has a limit V f , f ∈ C(X) and |Lk f (x)−V f (x)| is dom-
inated by ak multiplied by a factor depending on L , f and x . These general results
are applied to several classical or recently introduced operators acting on simplices and
hypercubes (Bernstein, Beta-type, genuine Bernstein-Durrmeyer, U

n operators).
Rates of convergence for operators which preserve only the constant functions, not

all the affine functions, can be found in [3], [20] and the references therein.

Mathematics subject classification (2020): 41A36.
Keywords and phrases: Positive linear operators, simplex, hypercube, iterates, rates of convergence.

c© � � , Zagreb
Paper JMI-19-08

119

http://dx.doi.org/10.7153/jmi-2025-19-08


120 G. MOTRONEA, A. PEPENAR AND F. SOFONEA

2. Main results

In this section we consider a positive linear operator L : C[0,1] → C[0,1] which
preserves the functions 1, x and transforms x2 into a polynomial of degree 2. We
show that it has an eigenvalue a ∈ [0,1) corresponding to the eigenpolynomial x− x2 .
For each f ∈ C[0,1] the sequence (Lk f )k�1 has a limit V f . Theorem 2.2 shows that
|Lk f (x)−V f (x)| is dominated by ak multiplied by a factor depending on f and x .
This general result will be illustrated by specific examples and will be extended to
multivariate operators.

LEMMA 2.1. Let x ∈ [0,1] .

(i) If f ∈C1[0,1] , then

| f (x)− (1− x) f (0)− x f (1)|� 2x(1− x)‖ f ′‖. (2.1)

(ii) If f ∈C2[0,1] , then

| f (x)− (1− x) f (0)− x f (1)|� 1
2
x(1− x)‖ f ′′‖. (2.2)

Proof. (i) Let f ∈C1[0,1] . We have

| f (x)− (1− x) f (0)− x f (1)|= (1− x)( f (x)− f (0))+ x( f (x)− f (1))
� (1− x)x‖ f ′‖+ x(1− x)‖ f ′‖,

and this leads to (2.1).
(ii) For each f ∈C[0,1] the Lagrange interpolation formula gives us

f (x)− (1− x) f (0)− x f (1) = x(x−1)[0,x,1; f ], (2.3)

where [0,x,1; f ] is the divided difference of f on the nodes 0,x,1. If f ∈C2[0,1] , then

[0,x,1; f ] =
1
2

f ′′(t)

for a suitable t ∈ [0,1] . Therefore, |[0,x,1; f ]| � 1
2
‖ f ′′‖ , and this, combined with

(2.3), leads to (2.2). �

We use the notation ek(x) = xk , x ∈ [0,1] , k = 0,1, . . .
Let I be the identity operator.

THEOREM 2.1. Let L : C[0,1] → C[0,1] be a positive linear operator, L �= I ,
Le0 = e0 , Le1 = e1 , Le2 is a polynomial of degree 2. Then e1− e2 is an eigenpolyno-
mial of L , associated with an eigenvalue a ∈ [0,1) .
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Proof. It is well known that from Le0 = e0 and Le1 = e1 it follows that L f � f
for each convex function f ∈C[0,1] . In particular, e2 � Le2 . We have e2 � e1 , hence
e2 � Le2 � Le1 = e1 .

Let Le2(x) = ax2 +bx+ c , x ∈ [0,1] . We deduce that

x2 � ax2 +bx+ c � x, x ∈ [0,1].

For x = 0, this implies c = 0, so that

x2 � ax2 +bx � x, x ∈ [0,1].

For x = 1 we get a+b = 1, i.e.,

x2 � ax2 +(1−a)x � x.

Therefore, x � ax + 1 − a � 1. Setting x = 0, one sees that a � 0. Moreover,
(1−a)(1− x) � 0 leads to a � 1.

So, Le2 = ae2+(1−a)e1 . If a = 1, then Le2 = e2 and Korovkin’s Theorem shows
that L = I . It follows that a ∈ [0,1) and L(e1 − e2) = a(e1 − e2) . This concludes the
proof. �

Let L be an operator as in Theorem 2.1 and a ∈ [0,1) the corresponding eigen-
value. Consider also the operator

V : C[0,1] →C[0,1], V f (x) := (1− x) f (0)+ x f (1).

THEOREM 2.2. (i) If f ∈C1[0,1] , then

|Lk f (x)−V f (x)| � 2x(1− x)ak‖ f ′‖, x ∈ [0,1], k ∈ N. (2.4)

(ii) If f ∈C2[0,1] , then

|Lk f (x)−V f (x)| � 1
2
x(1− x)ak‖ f ′′‖, x ∈ [0,1], k ∈ N. (2.5)

(iii) If f ∈C[0,1] and L f ∈C1[0,1] , then

|Lk+1 f (x)−V f (x)| � 2x(1− x)ak‖(L f )′‖, x ∈ [0,1], k ∈ N. (2.6)

(iv) If f ∈C[0,1] and L f ∈C2[0,1] , then

|Lk+1 f (x)−V f (x)| � 1
2
x(1− x)ak‖(L f )′′‖, x ∈ [0,1], k ∈ N. (2.7)

Proof. (i) Since L satisfies the hypotheses of Theorem2.1, we have L f (0) = f (0) ,
L f (1) = f (1) , and so

LV = V = VL, (2.8)

Lk(e1− e2) = ak(e1− e2). (2.9)

Moreover, according to (2.1),

| f −V f | � 2(e1− e2)‖ f ′‖. (2.10)

Combining (2.8)–(2.10) we get (2.4). The proof of (ii) is similar. Finally, (iii) follows
from (i), and (iv) from (ii), observing that VL = V . �
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3. Applications I

3.1. Bernstein operators

The Bernstein operators are given by

Bn : C[0,1] →C[0,1], Bn( f ;x) =
n


k=0

f

(
k
n

)
pn,k(x), where

pn,k(x) =
(

n
k

)
xk(1− x)n−k, x ∈ [0,1].

It is well known that

Bne0 = e0, Bne1 = e1, Bn(e1− e2) =
n−1

n
(e1 − e2). (3.1)

Moreover, for f ∈C[0,1] ,

(Bn f )′(x) = n
n−1


j=0

pn−1, j(x)
(

f

(
j +1
n

)
− f

(
j
n

))
, (3.2)

(Bn f )′′(x) = n(n−1)
n−2


j=0

pn−2, j(x)
(

f

(
j +2
n

)
−2 f

(
j +1
n

)
+ f

(
j
n

))
. (3.3)

Therefore, from (3.2) and (3.3),

‖(Bn f )′‖ � n max
j=0,···,n−1

∣∣∣∣ f
(

j +1
n

)
− f

(
j
n

)∣∣∣∣ , (3.4)

‖(Bn f )′′‖ � n(n−1) max
j=0,···,n−2

∣∣∣∣ f
(

j +2
n

)
−2 f

(
j +1
n

)
+ f

(
j
n

)∣∣∣∣ . (3.5)

Using (3.1), (3.4), (3.5) and Theorem 2.2 we get

COROLLARY 3.1. (i) If f ∈C1[0,1] and x ∈ [0,1] , then

|Bk
n f (x)−V f (x)| � 2x(1− x)

(
n−1

n

)k

‖ f ′‖.

(ii) If f ∈C2[0,1] and x ∈ [0,1] , then

|Bk
n f (x)−V f (x)| � 1

2
x(1− x)

(
n−1

n

)k

‖ f ′′‖.

(iii) If f ∈C[0,1] and x ∈ [0,1] , then

|Bk+1
n f (x)−V f (x)| � 2x(1− x)

(
n−1

n

)k

n max
j=0,···,n−1

∣∣∣∣ f
(

j +1
n

)
− f

(
j
n

)∣∣∣∣ ,
|Bk+1

n f (x)−V f (x)| � 1
2
x(1− x)

(
n−1

n

)k

n(n−1)

· max
j=0,···,n−2

∣∣∣∣ f
(

j +2
n

)
−2 f

(
j +1
n

)
+ f

(
j
n

)∣∣∣∣ .
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3.2. Beta-type operators

The Beta-type operators Bn were introduced by A. Lupaş in his German thesis
[22]. For n = 1,2,3, . . . and f ∈C[0,1] they are given by

Bn( f ;x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (0), x = 0,

1
B(nx,n−nx)

∫ 1

0
tnx−1(1− t)n−1−nx f (t)dt, 0 < x < 1,

f (1), x = 1,

where B(·, ·) is the Euler’s Beta function.

It is well known that Bn(e0;x) = e0 , Bn(e1;x) = e1 , Bn(e2;x) =
nx(nx+1)
n(n+1)

.

Therefore,

Bn(e1 − e2;x) = x(1− x)
n

n+1
,

and applying Theorem 2.2 with a =
n

n+1
, we get

COROLLARY 3.2. (i) If f ∈C1[0,1] and x ∈ [0,1] , then

|Bk
n f (x)−V f (x)| � 2x(1− x)

(
n

n+1

)k

‖ f ′‖.

(ii) If f ∈C2[0,1] and x ∈ [0,1] , then

|Bk
n f (x)−V f (x)| � 1

2
x(1− x)

(
n

n+1

)k

‖ f ′′‖.

3.3. Genuine Bernstein-Durrmeyer operators

The genuine Bernstein-Durrmeyer operators are introduced as a composition of
Bernstein operators and Beta operators, namely Un = Bn ◦Bn (see [9], [18]). These are
given in explicit form by

Un( f ;x) = (1− x)n f (0)+ xn f (1)

+(n−1)
n−1


k=1

(∫ 1

0
f (t)pn−2,k−1(t)dt

)
pn,k(x), f ∈C[0,1].

These operators are defined as Bernstein operators at the end points and have a Durrme-
yer-like construction inside of [0,1] .

It is well known that

Un(e0;x) = e0, Un(e1;x) = e1, Un(e2;x) = x2 +
2x(1− x)

n+1
.
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Therefore,

Un(e1 − e2;x) = x(1− x)
n−1
n+1

,

and applying Theorem 2.2 with a =
n−1
n+1

, we get

COROLLARY 3.3. (i) If f ∈C1[0,1] and x ∈ [0,1] , then

|Uk
n f (x)−V f (x)| � 2x(1− x)

(
n−1
n+1

)k

‖ f ′‖.

(ii) If f ∈C2[0,1] and x ∈ [0,1] , then

|Uk
n f (x)−V f (x)| � 1

2
x(1− x)

(
n−1
n+1

)k

‖ f ′′‖.

3.4. The operator U
n

Let us consider the class of operators U
n introduced in [23] by Păltănea and fur-

ther investigated by Păltănea and Gonska in [16] and [15].
Let  > 0 and n ∈ N . The operators U

n : C[0,1]→n are defined by

U
n ( f ;x) :=

n


k=0

F
k ( f )pn,k(x)

:=
n−1


k=1

(∫ 1

0

tk−1(1−t)(n−k)−1

B(k ,(n−k))
f (t)dt

)
pn,k(x)+ f (0)(1−x)n + f (1)xn,

for f ∈C[0,1] , x ∈ [0,1] .
It is well known that

U
n (e0;x) = e0, U

n (e1;x) = e1, U
n (e2;x) = x2 +

x(1− x)(+1)
n +1

.

Therefore,

U
n (e1− e2;x) = x(1− x)

(n−1)
n +1

,

and applying Theorem 2.2 with a =
(n−1)
n+1

, we get

COROLLARY 3.4. (i) If f ∈C1[0,1] and x ∈ [0,1] , then

|(U
n )k f (x)−V f (x)| � 2x(1− x)

(
(n−1)
n +1

)k

‖ f ′‖.
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(ii) If f ∈C2[0,1] and x ∈ [0,1] , then

|(U
n )k f (x)−V f (x)| � 1

2
x(1− x)

(
(n−1)
n+1

)k

‖ f ′′‖.

(iii) If f ∈C[0,1] , then

|(U
n )k+1 f (x)−V f (x)| � 2x(1− x)

(
(n−1)
n+1

)k

‖(U
n f )′‖, x ∈ [0,1], k ∈ N,

|(U
n )k+1 f (x)−V f (x)| � 1

2
x(1− x)

(
(n−1)
n +1

)k

‖(U
n f )′′‖, x ∈ [0,1], k ∈ N.

The derivatives of the polynomial U
n f are investigated in [16].

4. Operators on simplices

For the sake simplicity we consider only the bidimensional simplex

S :=
{
(x,y) ∈ R

2| x � 0, y � 0, x+ y � 1
}

,

but the results can be easily extended to arbitrary dimensional simplices.
Let C1(S) be the space of all functions f ∈C(S) having continuous partial deriva-

tives of first order on the interior of S , which can be continuously extended to S . For
f ∈C1(S) denote

M( f ) := max

{∥∥∥∥ f
x

∥∥∥∥


,

∥∥∥∥ f
y

∥∥∥∥


}
.

Consider the operator U : C(S) →C(S) ,

U f (x,y) = (1− x− y) f (0,0)+ x f (1,0)+ y f (0,1).

Let (x,y) ∈ S and f ∈C1(S) . Then

| f (x,y)−U f (x,y)|
= |(1− x− y)( f (x,y)− f (0,0))+ x( f (x,y)− f (1,0)+ y( f (x,y)− f (0,1))|
� ((1− x− y)(x+ y)+ x(1− x+ y)+ y(x+1− y))M( f ).

Therefore,
| f (x,y)−U f (x,y)| � 2(x− x2 + y− y2)M( f ). (4.1)

Let L : C(S) → C(S) be a positive linear operator, L �= I . Suppose that L preserves
the affine functions. Consider the functions p,q ∈ C(S) , p(x,y) = x2 , q(x,y) = y2 ,
(x,y) ∈ S . Suppose that there exist real numbers a,b,c such that

Lp(x,y) = ax2 +bx+ c, Lq(x,y) = ay2 +by+ c, (x,y) ∈ S.

Denote u(x,y) = x− x2 , v(x,y) = y− y2 , (x,y) ∈ S .
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THEOREM 4.1. With the above notation, a ∈ [0,1) and Lu = au, Lv = av.

Proof. Let f ∈C[0,1] . Consider the function f̃ ∈C(S) , f̃ (x,y) = f (x) , (x,y)∈ S ,
and the operator L̃ : C[0,1]→C[0,1] defined as

L̃ f (x) := L f̃ (x,0), f ∈C[0,1], x ∈ [0,1].

Then L̃ is a positive linear operator which preserves the affine functions. We have
L̃e2(x) = Lẽ2(x,0) = Lp(x,0) = ax2 +bx+ c . As in the proof of Theorem 2.1, we see
that c = 0, b = 1− a , a ∈ [0,1] . Now Lp(x,y) = ax2 + (1− a)x , hence Lu(x,y) =
x− ax2 − (1− a)x = a(x− x2) = au(x,y). Similarly, Lv(x,y) = av(x,y) . If a = 1,
then L preserves the functions p and q ; according to Korovkin’s theory, L = I , a
contradiction. So, a ∈ [0,1) and the proof is finished. �

THEOREM 4.2. Let L : C(S) →C(S) be an operator as in Theorem 4.1.
(i) If f ∈C1(S) , then

|Lk f (x,y)−U f (x,y)| � 2ak(x+ y− x2− y2)M( f ), k ∈ N.

(ii) If f ∈C(S) and L f ∈C1(S) , then

|Lk+1 f (x,y)−U f (x,y)| � 2ak(x+ y− x2− y2)M(L f ), k ∈ N.

Proof. It suffices to apply Theorem 4.1 in conjunction with (4.1), observing that
UL = U = LU . �

5. Operators on hypercubes

Again we consider, for the sake of simplicity, only the bidimensional case, i.e.,
H = [0,1]× [0,1] . As before, for f ∈C1(H) let

M( f ) := max

{∥∥∥∥ f
x

∥∥∥∥


,

∥∥∥∥ f
y

∥∥∥∥


}
.

Consider the operator W : C(H) →C(H) ,

W f (x,y) = (1− x)(1− y) f (0,0)+ x(1− y) f (1,0)+ y(1− x) f (0,1)+ xy f (1,1).

We have

| f (x,y)−W f (x,y)| = |(1−x)(1−y)( f (x,y)− f (0,0))+x(1−y)( f (x,y)− f (1,0))
+ y(1− x)( f (x,y)− f (0,1))+ xy( f (x,y)− f (1,1))|

� M( f )((1− x)(1− y)(x+ y)+ x(1− y)(1− x+ y)
+ y(1− x)(x+1− y)+ xy(2− x− y)),
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for all f ∈C1(H) and (x,y) ∈ H . Consequently,

| f (x,y)−W f (x,y)| � 2(x− x2 + y− y2)M( f ). (5.1)

Let now L : C(H) →C be a positive linear operator, L �= I , such that L preserves the
affine functions. Let p(x,y) = x2 , q(x,y) = y2 , (x,y) ∈ H . Suppose that there exist
a,b,c ∈ R such that

Lp(x,y) = ax2 +bx+ c, Lq(x,y) = ax2 +bx+ c, (x,y) ∈ H.

Set u(x,y) = x− x2 , v(x,y) = y− y2 , (x,y) ∈ H .

THEOREM 5.1. For the above operator L one has a ∈ [0,1) and Lu = au, Lv =
av.

Proof. The proof is similar to that of Theorem 4.1 and we omit the details. �

THEOREM 5.2. Let L : C(H) →C(H) satisfying the hypotheses of Theorem 5.1.
Suppose that, in addition, L preserves the function (x,y) ∈ H → xy.

(i) If f ∈C1(H) , then

|Lk f (x,y)−W f (x,y)| � 2ak(x− x2 + y− y2)M( f ), k ∈ N.

(ii) If f ∈C(H) and L f ∈C1(H) , then

|Lk+1 f (x,y)−W f (x,y)| � 2ak(x− x2 + y− y2)M(L f ), k ∈ N.

Proof. To prove (i) it suffices to combine Theorem 5.1 with (5.1), observing that
LW = W . Now (i) implies (ii) since WL = W . �

6. Applications II

6.1. Bernstein operators on the simplex S

Let (x,y) ∈ S , i.e., x � 0, y � 0, x+ y � 1. For n ∈ N and i, j ∈ N0 , i+ j � n ,
let

pn,i, j(x,y) =
n!

i! j!(n− i− j)!
xiy j(1− x− y)n−i− j.

The Bernstein operators Bn : C(S) →C(S) are defined by

Bn f (x,y) := 
i+ j�n

pn,i, j(x,y) f

(
i
n
,

j
n

)
.

They are positive linear operators preserving the affine functions. Let

u(x,y) = x− x2, v(x,y) = y− y2, (x,y) ∈ S.
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Then

Bnu(x,y) =
n−1

n
(x− x2), Bnv(x,y) =

n−1
n

(y− y2).

Moreover,


x

Bn f (x,y) = n 
i+ j�n−1

pn−1,i, j(x,y)
[

f

(
i+1

n
,

j
n

)
− f

(
i
n
,

j
n

)]

and a similar formula for

y

Bn f (x,y) . Consequently,

M(Bn f )=n max
i+ j�n−1

{∣∣∣∣ f
(

i+1
n

,
j
n

)
− f

(
i
n
,

j
n

)∣∣∣∣ ,
∣∣∣∣ f
(

i
n
,

j +1
n

)
− f

(
i
n
,

j
n

)∣∣∣∣
}

.

So, we can apply Theorem 4.2 with a =
n−1

n
and the above expression of M(Bn f ) .

Consequently, we get

COROLLARY 6.1. (i) If f ∈C1(S) , then

|Bk
n f (x,y)−U f (x,y)| � 2

(
n−1

n

)k

(x+ y− x2− y2)M( f ), k ∈ N.

(ii) If f ∈C(S) , then

|Bk+1
n f (x,y)−U f (x,y)| � 2

(
n−1

n

)k

(x+ y− x2− y2)M(Bn f ), k ∈ N.

6.2. Genuine Bernstein-Durrmeyer operators on the simplex S

For f ∈C (S) , the bivariate form of genuine Bernstein-Durrmeyer operators were
considered in [1] as follows,

Un ( f ) (x,y) = f (0,0)(1− x− y)n + f (1,0)xn + f (0,1)yn

+
n−1


l=1

pn,0,l (x,y) (n−1)
1∫

0

pn−2,l−1 (t) f (0,t)dt

+
n−1


k=1

pn,k,0 (x,y) (n−1)
1∫

0

pn−2,k−1 (s) f (s,0)ds

+
n−1


k=1

pn,k,n−k (x,y) (n−1)
1∫

0

pn−2,k−1 (t) f (t,1− t)dt

+ 
k+ l � n−1
k � 1, l � 1

pn,k,l (x,y)(n−1)(n−2)
1∫

0

1−t∫
0

pn−3,k−1,l−1 (s, t) f (s,t)ds dt
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where

pn,k,l (x,y) :=
n!

k!l!(n− k− l)!
xkyl (1− x− y)n−k−l

with k, l = 0, . . . ,n , k+ l � n , (x,y) ∈ S .
These operators satisfy Un ( f ) (x,y) = f (x,y) at the vertices of S .
For u(x,y) = x− x2 , v(x,y) = y− y2 we get

Unu(x,y) = x(1− x)
n−1
n+1

, Unv(x,y) = y(1− y)
n−1
n+1

.

From Theorem 4.2 with a =
n−1
n+1

we obtain

COROLLARY 6.2. (i) If f ∈C1(S) , then

|Uk
n f (x,y)−U f (x,y)| � 2

(
n−1
n+1

)k

(x+ y− x2− y2)M( f ), k ∈ N.

(ii) If f ∈C(S) , then

|Uk+1
n f (x,y)−U f (x,y)| � 2

(
n−1
n+1

)k

(x+ y− x2− y2)M(Un f ), k ∈ N.

6.3. The operators U
n on the simplex S

For f ∈C (S) ,  > 0, the bivariate form of the operators U
n were considered in

[1] as follows,

U
n f (x,y) = f (0,0)(1− x− y)n + f (1,0)xn + f (0,1)yn

+
n−1


l=1

F
n,0,l( f )pn,0,l(x,y)+

n−1


k=1

F
n,k,0( f )pn,k,0(x,y)

+
n−1


k=1

F
n,k,n−k( f )pn,k,n−k(x,y)+ 

k�1, l�1
k+l�n−1,

F
n,k,l( f )pn,k,l(x,y),

where

F
n,0,l( f ) :=

∫ 1
0 tl−1(1− t)(n−l)−1 f (0,t)dt

B(l ,(n− l))
,

F
n,k,0( f ) :=

∫ 1
0 sk−1(1− s)(n−k)−1 f (s,0)ds

B(k ,(n− k))
,

F
n,k,n−k( f ) :=

∫ 1
0 tk−1(1− t)(n−k)−1 f (t,1− t)dt

B(k ,(n− k))
,

F
n,k,l( f ) :=

∫∫
S sk−1tl−1(1− s− t)(n−k−l)−1 f (s,t)dsdt∫∫

S sk−1tl−1(1− s− t)(n−k−l)−1dsdt
.
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It can be easily seen that, for  = 1, we obtain the genuine Bernstein-Durrmeyer
operators Un .

For u(x,y) = x− x2 , v(x,y) = y− y2 we get

U
n u(x,y) = x(1− x)

(n−1)
n+1

, U
n v(x,y) = y(1− y)

(n−1)
n+1

.

From Theorem 4.2 with a =
(n−1)
n +1

we obtain

COROLLARY 6.3. (i) If f ∈C1(S) , then

|(U
n )k f (x,y)−U f (x,y)| � 2

(
(n−1)
n+1

)k

(x+ y− x2− y2)M( f ), k ∈ N.

(ii) If f ∈C(S) , then

|(U
n )k+1 f (x,y)−U f (x,y)| � 2

(
(n−1)
n+1

)k

(x+ y− x2− y2)M(U
n f ), k ∈ N.

6.4. Beta operators on the simplex S

For  ∈ (0,) , f ∈C(S) and (x,y) ∈ S , the Beta operators on the simplex S were
introduced in [1] as follows,

B ( f ) (x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x,y), (x,y) ∈ {(0,0),(1,0),(0,1)} ,∫ 1
0 sx−1(1− s)(1−x)−1 f (s,0)ds

B(x,(1− x))
, x ∈ (0,1), y = 0,

∫ 1
0 ty−1(1− t)(1−y)−1 f (0,t)dt

B(y,(1− y))
, x = 0, y ∈ (0,1),

∫ 1
0 ux−1(1−u)(1−x)−1 f (u,1−u)du

B(x,(1− x))
, y = 1− x, x ∈ (0,1),

∫∫
S sx−1ty−1(1− s− t)−x−y−1 f (s,t)dsdt∫∫

S sx−1ty−1(1− s− t)−x−y−1dsdt
, (x,y) ∈ int(S).

For u(x,y) = x− x2 , v(x,y) = y− y2 we get

Bu(x,y) = x(1− x)


+1
, Bv(x,y) = y(1− y)


+1

.

From Theorem 4.2 with a =


 +1
we obtain
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COROLLARY 6.4. (i) If f ∈C1(S) , then

|(B )k f (x,y)−U f (x,y)| � 2

(


 +1

)k

(x+ y− x2− y2)M( f ), k ∈ N.

(ii) If f ∈C(S) and B f ∈C1(S) then

|(B )k+1 f (x,y)−U f (x,y)| � 2

(


 +1

)k

(x+ y− x2− y2)M(B f ), k ∈ N.

REMARK 6.1. We the above notations it can be verified that U
n = Bn ◦Bn on

C(S) .

6.5. Bernstein operators on H = [0,1]2

Let (x,y)∈H , f ∈C(H) . The Bernstein operators Bn :C(H)→C(H) are defined
by

Bn f (x,y) :=
n


i=0

n


j=0

bn,i(x)bn, j(y) f

(
i
n
,

j
n

)
.

They are positive linear operators preserving the affine functions. Then,

Bnu(x,y) =
n−1

n
(x− x2), Bnv(x,y) =

n−1
n

(y− y2).

Moreover,


x

Bn f (x,y) = n
n−1


i=0

n


j=0

bn−1,i(x)bn, j(y)
[

f

(
i+1

n
,

j
n

)
− f

(
i
n
,

j
n

)]
,

and a similar formula for

y

Bn f (x,y) . It follows that

M(Bn f )=n max
i, j=0,1,...,n

{∣∣∣∣ f
(

i+1
n

,
j
n

)
− f

(
i
n
,

j
n

)∣∣∣∣ ,
∣∣∣∣ f
(

i
n
,
j+1
n

)
− f

(
i
n
,

j
n

)∣∣∣∣
}

.

Since Bn preserves the function (x,y) ∈ H → xy , we can apply Theorem 5.2 with

a =
n−1

n
and the above M(Bn f ) .

6.6. Genuine Bernstein-Durrmeyer operators on H = [0,1]2

Let (x,y) ∈ H , f ∈ C(H) . The genuine Bernstein-Durrmeyer operators Un :
C(H) →C(H) are defined by

Un f (x,y) = f (0,0)bn,0(x)bn,0(y)+ f (1,0)bn,n(x)bn,0(y)+ f (0,1)bn,0(x)bn,n(y)

+ f (1,1)bn,n(x)bn,n(y)+ (n−1)2
n−1


i=1

n−1


j=1

bn,i(x)bn, j(y)

×
∫ 1

0

∫ 1

0
bn−2,i−1(s)bn−2, j−1(t) f (s,t)dsdt.
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They are positive linear operators preserving the affine functions. Then

Unu(x,y) =
n−1
n+1

(x− x2), Unv(x,y) =
n−1
n+1

(y− y2).

Since Un preserves the function (x,y) ∈ H → xy , we can apply Theorem 5.2 with

a =
n−1
n+1

.

6.7. The operators U
n on H = [0,1]2

Let (x,y) ∈ H , f ∈C(H) ,  > 0. The operators U
n : C(H) →C(H) are defined

by

U
n f (x,y) = f (0,0)bn,0(x)bn,0(y)+ f (1,0)bn,n(x)bn,0(y)+ f (0,1)bn,0(x)bn,n(y)

+ f (1,1)bn,n(x)bn,n(y)+
n−1


i=1

n−1


j=1

bn,i(x)bn, j(y)

×
∫ 1
0

∫ 1
0 si−1(1− s)(n−i)−1t j−1(1− t)(n− j)−1 f (s,t)dsdt∫ 1
0

∫ 1
0 si−1(1− s)(n−i)−1t j−1(1− t)(n− j)−1dsdt

.

They are positive linear operators preserving the affine functions. Then

U
n u(x,y) =

(n−1)
n+1

(x− x2), U
n v(x,y) =

(n−1)
n +1

(y− y2).

Since U
n preserves the function (x,y) ∈ H → xy , we can apply Theorem 5.2 with

a =
(n−1)
n+1

.

6.8. Beta operators on H = [0,1]2

Let (x,y) ∈ H , f ∈ C(H) ,  > 0. The Beta operators B : C(H) → C(H) are
defined by

B f (x,y) =
∫ 1
0

∫ 1
0 sx−1(1− s)(1−x)−1ty−1(1− t)(1−y)−1 f (s, t)dsdt∫ 1
0

∫ 1
0 sx−1(1− s)(1−x)−1ty−1(1− t)(1−y)−1dsdt

.

They are positive linear operators preserving the affine functions. Then

Bu(x,y) =


 +1
(x− x2), Bv(x,y) =


 +1

(y− y2).

Since B preserves the function (x,y) ∈H → xy , we can apply Theorem 5.2 with

a =


 +1
.

REMARK 6.2. With the above notations it can be verified that U
n = Bn ◦Bn on

C(H) .
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