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A WEIGHTED WELCH INEQUALITY

LAURA MANOLESCU

(Communicated by S. Furuichi)

Abstract. In this paper, we give a generalization of the Welch inequality, a weighted version in
the presence of a normal matrix as a weight. Also, we obtain connections with tight frames and
we give some examples.

1. Introduction

In 1974, L. R. Welch [14] proved the following inequality

N N2
X fill > — (1)
i,j=1

for fi,f2,..., v unit vectors in C"; N > n. Here and in the following, (-,-) denotes
the inner product in C" i.e,

n
w) = ziw;, forz,we C".
i=1
The unit vectors for which we have equality in the above inequality are called
Welch Bound Equality sequences (in short, WBE sequences). They were used for
Code-Division Multiple-Acces Systems (CDMA systems) [10]. From the above in-
equality, L. R. Welch gave a lower bound on the maximal cross corelation:

@)

rgg}Kﬁ,fm >

The Welch’s inequalities were used also in compressed sensing [5], in connection
to potential energy [ 1] and informationally complete quantum measurements [11, 12].

A generalization of (1) to a finite number of vectors which need not to have unit
norm was given in 2003 by S. Waldron [13]:

N
S WP = <2ﬁ||2) 3)

i,j=1
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It is proven that we have equality in (3) if and only if the family {f,...,fv} is
a tight frame. In [7], P. Gédvruta gave an extension of Waldron’s result to an infinite
family of elements, which is a Bessel sequence, with a different proof.

Frames were introduced by R. J. Duffin and A. C. Schaffer [6] in 1952, while work-
ing on some problems concerning nonharmonic Fourier series. For many years frames
were not paid attention to until the fundamental paper of 1. Daubechies, A. Grossman
and Y. Meyer [3] in 1986, where they were brought to life and their importance to signal
processing was shown.

In the following we recall the definition of a frame. Let F* (F =R, C) be an
n-dimensional space, with inner product.

DEFINITION 1.1. A finite sequence of vectors {f;}Y_, in F", with N >n, is a
frame if there exists a,b strictly positive constants such that, for all x € F,

N
2 2 2
allx| < Y} 16 fi) |2 < bl
k=1

a and b called the lower, respectively, upper frame bound and they are not unique.
If a = b, we say that the frame is a-tight and a Parseval frame if a =b = 1.
A useful characterization for tight frames is the following.

PROPOSITION 1.1. [8] Let M =[f1 f» ... fn] bean nx N matrix with f;
being the column vectors of M. Then {fi, fa,...,fn} is a tight frame for C" if and
only if the set of row vectors of M is a pairwise orthogonal collection of vectors all
having the same norm.

Tight frames can be obtained in C" by projecting the discrete Fourier transform
basis in any CV, N > n, onto C":

PROPOSITION 1.2. [2] Let N > n and define the vectors {fj}]}/:1 in C" by

1
1 6271'1'% '
=75 : =L

. i—1
e2m(n71)1—

Jj=1

Then {f;}_, is a tight frame for C" with frame bound equal to 1 and ||f;|| = | ]%,
forall j.

From this Proposition, we have the following Corollary.

COROLLARY 1.1. [2] Forany N > n, there exists a tight frame in C" consisting
of N normalized vectors.



A WEIGHTED WELCH INEQUALITY 167

In the following, we give a pedagogical proof of the Welch inequality and, with the
same technique, we give a weighted version of the Welch inequality in the presence of
a normal matrix as a weight. Also, we give an operatorial proof for the weighted Welch
inequality when the weight is a positive matrix. Some examples and connections with
tight frames are also given.

2. A pedagogical proof of the Welch inequality

Let # ={fi1,/2,...,/n} be N > n vectors in R"(or C"). In the following, we
give another proof of (3), different from the ones in [7] and [13].

Let be
fi1
fi
i=1 .| <IN
Jin
Proof. We consider the associated matrix
fir f1 - fn
fi2 fa2 oo w2
fln f2n an

Let f7 be the row vector of this matrix, from the position p, i.e.

fP = (f1p7f2p7~”7pr)7 1 g )4 <n
Next, we show that

2 [(fis fi))? 2 (P, FI)2 (4)

i,j=1 Pg=1
For a fixed i, 1 <i <N, we have

=

N
2 flafj :2<fl7f/><fhfj>
j=1 J=1

N

5 (305) )

- 2 flpfzq ijqup

Pg=1 Jj=1

= 2 ﬁpE<fqafp>
Pg=1

and by summation after i we obtain (4).
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We use the following elementary inequality for positive numbers
n n 2
(59)> (30’
p=1 p=1

with equality if and only if o) =0 = ... = .
We also have

N
S = 22|fm|2 and ZHf”||2 ZZ\f,pF
j=1

Jj=1p= p=1j=
hence

N n
SUAI1P =Y (171
j=1

Using the above equality and relations (4) and (5), we have

S (Z ||f,2)

i,j=1

S N (2 f”2)

p.q=1
a3 I - (2 ff’||2) S 20
p=1 p=1 p#q

With equality iff || f7||? = ||f9||%, forall p,q,1 < p,q<nand fP L f9, p #q. Next,
we apply Proposition 1.1 to obtain the conclusion. [

3. A weighted Welch inequality with a normal matrix weight

Next, we prove the following Theorem, which is a generalization of the Welch
inequality.

In the following, we denote by RA the real part of A, where A is an arbitrary
complex number.

THEOREM 3.1. Let be % ={f1,f>,...,fn} C C", with N > n a sequence of
vectors and A be a normal n x n matrix, A # 0, with eigenvalues {Ay,...,A,}. We
suppose that R\ A >0, (V) k,l =1,...,n. Then

N 2
. (Slas?)
3 (Af)f > A
3 a4

k=1

If RauA >0, (V) k1 =1,....n, we have equality in relation (6) if and only if .F
is a tight frame.

(6)
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Proof. From the Spectral Theorem, there exists
&={ey,...,en}
an orthonormal basis of C" which consists from the eigenvalues of A
Aey = Aey, k=1,...,n.

We can write
fi= ij(k)ek, j=12,...,N.
k=1

Then
Afj= Zf/ Aek—ij (k) Axer.

Let x =) x(k)ey be an arbitrary vector from C". We also have

&
(x,Af}) = Zx (k) £ (k) A
So
[ Af = <x,ilfj><x7Af,> n
- kglxoc)f,(k)xk)(lzzlxmf,(ml)
=kJEH;,IX(k)X(l)fj(k)f,(l)/l_m
Thus

M=
=
D>
\i
"
M=
N

~.
I
—_
~
I
—_

~
M= TMM=
—_
~.
Il
—

N
X(k)x(1) Ax s Z,lfj(k)f,(l)

~

L
Il

—_

Let be the matrix

(7



170 L. MANOLESCU

and
A= AK), (k). fnk), k=1,....n

Then

N _—

=Y £ fi k)

j=1

‘We obtain N
> AL Z A (k)x(T) (1, %) (8)

1 k=1

J
In equation (8) we take x = f;, i € {1,2,...N} and sum after i to get

=

22|ﬁ,Af, = zmlﬁ(k>m<fl,fk>

i=1j= i=1kl=1

I
>’I

Ml 1) Zﬁ

=~
—

>’I

(PO,

™M= ThM=

=~
—

Thus, we obtain

2 (i AL 2 T R aN Y 9)

i,j=1 k=1

We use the following Lagrange identity for complex numbers
n n n 2
(Zlak) (Em?)-|Eaom
k=1 k=1 k=1

In the above equality, we take

a=h, we=a{f Y, k=1,..n

= Y lawm—zml
1<k<i<n

and we obtain
n n n 2
(2 mz) (2 xk|2|<fk,fk>|2) S et
k=1 k=1 k=1

= X PP - (7L P

1<k<i<n

(10)

Above we saw that

Afi= th (k) Arex.

This implies that

AL = Y 1 fi(k)[* A

k=1
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On the other hand,
N
[FREEAVAG]E
i=1

and

N n N
Y AP = Z Z )P = X D AP A
i=1 k=1i=1

i=1k=
= 2L =X 1P ).
k=1 k=1

Also, from equation (9), we have that

Z (i Af))? Zlkflz (FL

i,j=1 k=1
ZlM P+ Y Tl (5 )
=1 Kl kAl
Thus, from (10), we obtain
(2 W)( S 1AL 2) (ZAﬁII2>
k=1 i,j=1
n n n 2
=<27Lk|2><2|/1k2<fk,fk>|2+ S Tl |2) (zwf“)
k=1 k=1 k1=1,k#l k=1
-y I/lk”ﬂ<fk7f">—<f’7f’>2+<2lk|2>< 3 x_kxl|<fk7fl>|2).
I<k<l<n =1 kl=1 k£l
So
(z W)( S (AF) 2) (zAmF)
i,j=1
— Y AR = 11
1<k<I<n
+2(2m2)( y m_kx,|<fk,fl>|2).
k=1 1<k<i<n

The conclusion follows from Proposition 1.1. [l

COROLLARY 3.1. Let A be a unitary matrix with RgA; > 0, M k,l=1,2,...,n.
Then it takes place the following inequality

S Af)P > (2||ﬁ||2)

i,j=1
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and the equality occurs if and only if F is a tight frame.

In the case when A is identity matrix, we have exactly Welch’s result.

REMARK 3.1. The condition RAA; > 0 in Theorem 3.1 is essential for (6) to
take place.

Indeed, for the matrix

the eigenvalues are A} = —1, A, =3 so R4 A, <O0.
In this case, the inequality (6), for a single vector is

2 1Ax]* X1
> =
[(x,Ax)|” > FREERpRES where x X

which is equivalent with

(5x% + 8x1x2 + 5x3)?

(x%+4x1x2 —l—)c%)2 > 10

This can not take place for x, =0 and x; arbitrary.
In the previous example, the matrix A is self-adjoint. We can give an example of
an unitary matrix. Indeed, the matrix

1 1
V2 2
A:
11
V2 V2

is unitary and its eigenvaluesare A; = —1, A, =1 so Rt =—1<0.
In this case the inequality (6) for a single vector is equivalent with

4
|<.XI,A.XI>|2 > HAZXH

i.e. with

X
V2| =i+ 2x1x — 33| > xjxg,  for x= <x1> .
2

This it can not take place if x, = (v/2 — 1)x;.
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4. An operatorial proof for the weighted Welch inequality
when the weight is a positive definite matrix

An operatorial proof of the Welch inequality (3) was given in [9]. In the following
we give an operatorial proof for the weighted Welch inequality when the weight is a
positive definite matrix A. This result follows immediately from Theorem 3.1.

THEOREM 4.1. Let {f;}Y | be a collection of N vectors in C" and A be a posi-
tive definite matrix. Then it takes place the following inequality

N 2
. (Slasr?)
X AR >
i,j=1 2 )Lkz
k=1
The equality holds if and only if F is a tight frame.

An operatorial proof of Theorem 4.1. We consider the Hilbert space of all n x n
complex matrices equipped with the inner product

(B,C) :=Tr(B*C)

Here, B* is the standard adjoint (conjugate transpose) of B and for an arbitrary n x n
matrix D, Tr(D) is the trace of the matrix. Let F be the n x N matrix that has f; as its
™ column (i.e., the matrix (7))

For a n x n positive definite matrix A, the cycle property of the trace gives

|AF||> = (AF,AF) = Tr[(AF)* (AF)]
— Te(F*AAF) = TrlA(A* FF*A%)),

i.e.,
|AF|]? = (A, AZFF*A?).

By the Cauchy-Schwarz inequality, we have
JAFIP = (4,42 FF"A%) < |A]||A2FF A% .
We have equality if and only if A is a scalar multiple of A SFFAZ, namely iff {f;}Y
is a tight frame. This inequality is a restatement of the result of Theorem 3.1. To
elaborate, squaring both sides gives
|AF[[* < AP |AZFF*A%|?

Here, AF is the n x N matrix whose i’ column is Af;, meaning

IAF|* = 2 1A
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Meanwhile, letting {A;}7_, be the eigenvalues of A gives
|A|I* = Tr(A?) = Z)Lk

Finally, since F*AF is N x N matrix whose (i,7)" entry is (f;,Af;),
|AZFF*A?|| = TrA2 FF*AZ AT FF*A?
=Ti[(F*AF)*] = ||F*AF||?

N
= 3 [maf)f

=1

Putting all of this together, the inequality ||AF|[* < ||A||2[A2FF*Az || becomes

N 2 n N
(2Aﬁ-||2) < (m)( S 1 UAS) 2) O
i=1 k=1 i,j=1

COROLLARY 4.1. Let be {fJ ", C C so that {Afj} Y| is a a—tight frame for
A positive definite matrix. Then

175017

a=  ———

1
_2

i

Proof. 1f {Af;}}_, is a a—tight frame and A is positive definite, then
AFF*A = (AF)(AF)* = al
and so FF* = aA~? implying

N n
Z Ifil? =Te(F*f) = Te(FF*) = Tr(aA *) =a ¥ A 2. O
-1 k=1

OPEN PROBLEM. The inequality (1) was generalized in the following form

N - N2
;Kﬁ:fz” = m
k

for the unit vectors { f,} ', in C" and k > 1 integer. The problem is to generalize (6)
for all k > 1 to incorporate (11).

(11)
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