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A WEIGHTED WELCH INEQUALITY

LAURA MANOLESCU

(Communicated by S. Furuichi)

Abstract. In this paper, we give a generalization of the Welch inequality, a weighted version in
the presence of a normal matrix as a weight. Also, we obtain connections with tight frames and
we give some examples.

1. Introduction

In 1974, L. R. Welch [14] proved the following inequality

N


i, j=1

|〈 fi, f j〉|2 � N2

n
, (1)

for f1, f2, . . . , fN unit vectors in Cn, N � n. Here and in the following, 〈·, ·〉 denotes
the inner product in Cn i.e,

〈z,w〉 =
n


i=1

ziwi, for z,w ∈ C
n.

The unit vectors for which we have equality in the above inequality are called
Welch Bound Equality sequences (in short, WBE sequences). They were used for
Code-Division Multiple-Acces Systems (CDMA systems) [10]. From the above in-
equality, L. R. Welch gave a lower bound on the maximal cross corelation:

max
i�= j

|〈 fi, f j〉| �
√

N−n
n(N−1)

. (2)

The Welch’s inequalities were used also in compressed sensing [5], in connection
to potential energy [1] and informationally complete quantum measurements [11, 12].

A generalization of (1) to a finite number of vectors which need not to have unit
norm was given in 2003 by S. Waldron [13]:

N


i, j=1

|〈 fi, f j〉|2 � 1
n

( N


i=1

‖ fi‖2
)2

. (3)
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It is proven that we have equality in (3) if and only if the family { f1, . . . , fN} is
a tight frame. In [7], P. Găvruţa gave an extension of Waldron’s result to an infinite
family of elements, which is a Bessel sequence, with a different proof.

Frames were introduced by R. J. Duffin and A. C. Schaffer [6] in 1952, while work-
ing on some problems concerning nonharmonic Fourier series. For many years frames
were not paid attention to until the fundamental paper of I. Daubechies, A. Grossman
and Y. Meyer [3] in 1986, where they were brought to life and their importance to signal
processing was shown.

In the following we recall the definition of a frame. Let F
n (F = R, C) be an

n -dimensional space, with inner product.

DEFINITION 1.1. A finite sequence of vectors { fk}N
k=1 in Fn, with N � n, is a

frame if there exists a,b strictly positive constants such that, for all x ∈ F,

a‖x‖2 �
N


k=1

|〈x, fk〉|2 � b‖x‖2.

a and b called the lower, respectively, upper frame bound and they are not unique.
If a = b, we say that the frame is a-tight and a Parseval frame if a = b = 1.

A useful characterization for tight frames is the following.

PROPOSITION 1.1. [8] Let M = [ f1 f2 . . . fN ] be an n×N matrix with fi
being the column vectors of M. Then { f1, f2, . . . , fN} is a tight frame for Cn if and
only if the set of row vectors of M is a pairwise orthogonal collection of vectors all
having the same norm.

Tight frames can be obtained in C
n by projecting the discrete Fourier transform

basis in any CN , N > n, onto Cn :

PROPOSITION 1.2. [2] Let N > n and define the vectors { f j}N
j=1 in Cn by

f j =
1√
N

⎛
⎜⎜⎜⎜⎝

1

e2 i j−1
N

...

e2 i(n−1) j−1
N

⎞
⎟⎟⎟⎟⎠ , j = 1, . . .N.

Then { f j}N
j=1 is a tight frame for Cn with frame bound equal to 1 and ‖ f j‖ =

√
n
N

,

for all j .

From this Proposition, we have the following Corollary.

COROLLARY 1.1. [2] For any N � n, there exists a tight frame in Cn consisting
of N normalized vectors.
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In the following, we give a pedagogical proof of the Welch inequality and, with the
same technique, we give a weighted version of the Welch inequality in the presence of
a normal matrix as a weight. Also, we give an operatorial proof for the weighted Welch
inequality when the weight is a positive matrix. Some examples and connections with
tight frames are also given.

2. A pedagogical proof of the Welch inequality

Let F = { f1, f2, . . . , fN} be N � n vectors in Rn(or Cn). In the following, we
give another proof of (3), different from the ones in [7] and [13].

Let be

fi =

⎛
⎜⎜⎜⎝

fi1
fi2
...
fin

⎞
⎟⎟⎟⎠ , 1 � i � N.

Proof. We consider the associated matrix⎛
⎜⎜⎜⎝

f11 f21 . . . fN1

f12 f22 . . . fN2
...

...
. . .

...
f1n f2n . . . fNn

⎞
⎟⎟⎟⎠

Let f p be the row vector of this matrix, from the position p , i.e.

f p = ( f1p, f2p, . . . , fNp), 1 � p � n.

Next, we show that
N


i, j=1

|〈 fi, f j〉|2 =
n


p,q=1

|〈 f p, f q〉|2. (4)

For a fixed i , 1 � i � N , we have

N


j=1

|〈 fi, f j〉|2 =
N


j=1

〈 fi, f j〉〈 fi, f j〉

=
N


j=1

( n


p=1

fip f jp

)( n


q=1

fiq f jq

)

=
n


p,q=1

fip fiq
N


j=1

f jq f jp

=
n


p,q=1

fip fiq〈 f q, f p〉

and by summation after i we obtain (4).
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We use the following elementary inequality for positive numbers

n

( n


p=1

2
p

)
�

( n


p=1

p

)2

, (5)

with equality if and only if 1 = 2 = . . . = n.
We also have

N


j=1

‖ f j‖2 =
N


j=1

n


p=1

| f jp|2 and
n


p=1

‖ f p‖2 =
n


p=1

N


j=1

| f jp|2

hence
N


j=1

‖ f j‖2 =
n


p=1

‖ f p‖2.

Using the above equality and relations (4) and (5), we have

n
N


i, j=1

|〈 fi, f j〉|2−
( n


j=1

‖ f j‖2
)2

= n
n


p,q=1

|〈 f p, f q〉|2−
( n


p=1

‖ f p‖2
)2

= n
n


p=1

‖ f p‖4−
( n


p=1

‖ f p‖2
)2

+n 
p �=q

|〈 f p, f q〉|2 � 0

With equality iff ‖ f p‖2 = ‖ f q‖2, for all p,q,1 � p,q � n and f p ⊥ f q, p �= q. Next,
we apply Proposition 1.1 to obtain the conclusion. �

3. A weighted Welch inequality with a normal matrix weight

Next, we prove the following Theorem, which is a generalization of the Welch
inequality.

In the following, we denote by  the real part of  , where  is an arbitrary
complex number.

THEOREM 3.1. Let be F = { f1, f2, . . . , fN} ⊂ Cn , with N � n a sequence of
vectors and A be a normal n× n matrix, A �= 0 , with eigenvalues {1, . . . ,n} . We
suppose that kl � 0 , (∀) k, l = 1, . . . ,n. Then

N


i, j=1

|〈 fi,A f j〉|2 �

( N


i=1

‖A fi‖2
)2

n


k=1

|k|2
. (6)

If kl > 0, (∀) k, l = 1, . . . ,n, we have equality in relation (6) if and only if F
is a tight frame.
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Proof. From the Spectral Theorem, there exists

E = {e1, . . . ,en}

an orthonormal basis of Cn which consists from the eigenvalues of A

Aek = kek, k = 1, . . . ,n.

We can write

f j =
n


k=1

f j(k)ek, j = 1,2, . . . ,N.

Then

A f j =
n


k=1

f j(k)Aek =
n


k=1

f j(k)kek.

Let x =
n


k=1

x(k)ek be an arbitrary vector from Cn. We also have

〈x,A f j〉 =
n


k=1

x(k) f j(k)k.

So

|〈x,A f j〉|2 = 〈x,A f j〉〈x,A f j〉

=
( n


k=1

x(k) f j(k)k

)( n


l=1

x(l) f j(l)l

)

=
n


k,l=1

x(k)x(l) f j(k) f j(l)kl

Thus

N


j=1

|〈x,A f j〉|2 =
N


j=1

( n


k,l=1

x(k)x(l) f j(k) f j(l)kl

)

=
n


k,l=1

N


j=1

x(k)x(l) f j(k) f j(l)kl

=
n


k,l=1

x(k)x(l)kl

N


j=1

f j(k) f j(l)

Let be the matrix ⎛
⎜⎜⎜⎝

f1(1) f2(1) · · · fN(1)
f1(2) f2(2) · · · fN(2)

...
...

. . .
...

f1(n) f2(n) · · · fN(n)

⎞
⎟⎟⎟⎠ (7)
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and
f k = ( f1(k), f2(k), . . . , fN(k)), k = 1, . . . ,n

Then

〈 f l , f k〉 =
N


j=1

f j(l) f j(k).

We obtain
N


j=1

|〈x,A f j〉|2 =
n


k,l=1

klx(k)x(l)〈 f l , f k〉 (8)

In equation (8) we take x = fi , i ∈ {1,2, . . .N} and sum after i to get

N


i=1

N


j=1

|〈 fi,A f j〉|2 =
N


i=1

n


k,l=1

kl fi(k) fi(l)〈 f l , f k〉

=
n


k,l=1

kl〈 f l , f k〉
N


i=1

fi(k) fi(l)

=
n


k,l=1

kl〈 f l , f k〉〈 f k, f l〉.

Thus, we obtain
N


i, j=1

|〈 fi,A f j〉|2 =
n


k,l=1

kl〈 f l , f k〉〈 f k, f l〉. (9)

We use the following Lagrange identity for complex numbers( n


k=1

|zk|2
)( n


k=1

|wk|2
)
−

∣∣∣∣ n


k=1

zkwk

∣∣∣∣
2

= 
1�k<l�n

|zlwk − zkwl |2.

In the above equality, we take

zk = k, wk = k〈 f k, f k〉, k = 1, . . . ,n

and we obtain ( n


k=1

|k|2
)( n


k=1

|k|2|〈 f k, f k〉|2
)
−

∣∣∣∣ n


k=1

|k|2〈 f k, f k〉
∣∣∣∣
2

(10)

= 
1�k<l�n

|k|2|l|2|〈 f k, f k〉− 〈 f l, f l〉|2

Above we saw that

A fi =
n


k=1

fi(k)kek.

This implies that

‖A fi‖2 =
n


k=1

| fi(k)|2|k|2.
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On the other hand,

‖ f k‖2 =
N


i=1

| fi(k)|2

and

N


i=1

‖A fi‖2 =
N


i=1

n


k=1

| fi(k)|2|k|2 =
n


k=1

N


i=1

| fi(k)|2|k|2

=
n


k=1

|k|2‖ f k‖2 =
n


k=1

|k|2〈 f k, f k〉.

Also, from equation (9), we have that

N


i, j=1

|〈 fi,A f j〉|2 =
n


k,l=1

kl〈 f l , f k〉〈 f k, f l〉

=
n


k=1

|k|2|〈 f k, f k〉|2 +
n


k,l,k �=l

kl|〈 f k, f l〉|2

Thus, from (10), we obtain( n


k=1

|k|2
)( N


i, j=1

|〈 fi,A f j〉|2
)
−

( N


i=1

‖A fi‖2
)2

=
( n


k=1

|k|2
)( n


k=1

|k|2|〈 f k, f k〉|2 +
n


k,l=1,k �=l

kl|〈 f k, f l〉|2
)
−

( n


k=1

|k|2‖ f k‖2
)2

= 
1�k<l�n

|k|2|l|2|〈 f k, f k〉− 〈 f l, f l〉|2 +
( n


k=1

|k|2
)( n


k,l=1,k �=l

kl|〈 f k, f l〉|2
)

.

So ( n


k=1

|k|2
)( N


i, j=1

|〈 fi,A f j〉|2
)
−

( N


i=1

‖A fi‖2
)2

= 
1�k<l�n

|k|2|l|2(‖ f k‖2−‖ f l‖2)2

+2

( n


k=1

|k|2
)(


1�k<l�n

kl|〈 f k, f l〉|2
)

.

The conclusion follows from Proposition 1.1. �

COROLLARY 3.1. Let A be a unitary matrix with kl > 0 , (∀) k, l = 1,2, . . . ,n.
Then it takes place the following inequality

N


i, j=1

|〈 fi,A f j〉|2 � 1
n

( N


i=1

‖ fi‖2
)2
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and the equality occurs if and only if F is a tight frame.

In the case when A is identity matrix, we have exactly Welch’s result.

REMARK 3.1. The condition kl � 0 in Theorem 3.1 is essential for (6) to
take place.

Indeed, for the matrix

A =
(

1 2
2 1

)
,

the eigenvalues are 1 = −1, 2 = 3 so 12 < 0.
In this case, the inequality (6), for a single vector is

|〈x,Ax〉|2 � ‖Ax‖4

|1|2 + |2|2 , where x =
(

x1

x2

)

which is equivalent with

(x2
1 +4x1x2 + x2

2)
2 � (5x2

1 +8x1x2 +5x2
2)

2

10
.

This can not take place for x2 = 0 and x1 arbitrary.
In the previous example, the matrix A is self-adjoint. We can give an example of

an unitary matrix. Indeed, the matrix

A =

⎛
⎜⎜⎜⎝
− 1√

2

1√
2

1√
2

1√
2

⎞
⎟⎟⎟⎠

is unitary and its eigenvalues are 1 = −1, 2 = 1 so 12 = −1 < 0.

In this case the inequality (6) for a single vector is equivalent with

|〈x,Ax〉|2 � ‖Ax‖4

2

i.e. with
√

2|− x2
1 +2x1x2− x2

2| � x2
1x

2
2, for x =

(
x1

x2

)
.

This it can not take place if x2 = (
√

2−1)x1.
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4. An operatorial proof for the weighted Welch inequality
when the weight is a positive definite matrix

An operatorial proof of the Welch inequality (3) was given in [9]. In the following
we give an operatorial proof for the weighted Welch inequality when the weight is a
positive definite matrix A . This result follows immediately from Theorem 3.1.

THEOREM 4.1. Let { fi}N
i=1 be a collection of N vectors in Cn and A be a posi-

tive definite matrix. Then it takes place the following inequality

N


i, j=1

|〈 fi,A f j〉|2 �

( N


i=1

‖A fi‖2
)2

n


k=1

 2
k

.

The equality holds if and only if F is a tight frame.

An operatorial proof of Theorem 4.1. We consider the Hilbert space of all n× n
complex matrices equipped with the inner product

〈B,C〉 := Tr(B∗C)

Here, B∗ is the standard adjoint (conjugate transpose) of B and for an arbitrary n× n
matrix D, Tr(D) is the trace of the matrix. Let F be the n×N matrix that has fi as its
ith column (i.e., the matrix (7))

For a n×n positive definite matrix A, the cycle property of the trace gives

‖AF‖2 = 〈AF,AF〉 = Tr[(AF)∗(AF)]

= Tr(F∗AAF) = Tr[A(A
1
2 FF∗A

1
2 )],

i.e.,
‖AF‖2 = 〈A,A

1
2 FF∗A

1
2 〉.

By the Cauchy-Schwarz inequality, we have

‖AF‖2 = 〈A,A
1
2 FF∗A

1
2 〉 � ‖A‖‖A 1

2 FF∗A
1
2 ‖.

We have equality if and only if A is a scalar multiple of A
1
2 FF∗A

1
2 , namely iff { fi}N

i=1
is a tight frame. This inequality is a restatement of the result of Theorem 3.1. To
elaborate, squaring both sides gives

‖AF‖4 � ‖A‖2‖A 1
2 FF∗A

1
2 ‖2

Here, AF is the n×N matrix whose ith column is A fi, meaning

‖AF‖2 =
N


i=1

‖A fi‖2.
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Meanwhile, letting {k}n
k=1 be the eigenvalues of A gives

‖A‖2 = Tr(A2) =
n


k=1

 2
k

Finally, since F∗AF is N×N matrix whose (i, j)th entry is 〈 fi,A f j〉 ,
‖A 1

2 FF∗A
1
2 ‖2 = TrA

1
2 FF∗A

1
2 A

1
2 FF∗A

1
2

= Tr[(F∗AF)2] = ‖F∗AF‖2

=
N


i, j=1

|〈 fi,A f j〉|2

Putting all of this together, the inequality ‖AF‖4 � ‖A‖2‖A 1
2 FF∗A

1
2 ‖2 becomes( N


i=1

‖A fi‖2
)2

�
( n


k=1

 2
k

)( N


i, j=1

|〈 fi,A f j〉|2
)

�

COROLLARY 4.1. Let be { f j}N
j=1 ⊂ C so that {A f j}N

j=1 is a a− tight frame for
A positive definite matrix. Then

a =

N


j=1

‖ f j‖2

n


k=1

1

 2
k

.

Proof. If {A f j}N
j=1 is a a− tight frame and A is positive definite, then

AFF∗A = (AF)(AF)∗ = aI

and so FF∗ = aA−2 implying

N


j=1

‖ f j‖2 = Tr(F∗ f ) = Tr(FF∗) = Tr(aA−2) = a
n


k=1

−2
k . �

OPEN PROBLEM. The inequality (1) was generalized in the following form

N


i=1

|〈 fi, f j〉|2k � N2(
n+N−1

k

) (11)

for the unit vectors { fi}N
i=1 in Cn and k � 1 integer. The problem is to generalize (6)

for all k � 1 to incorporate (11).
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