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Abstract. In this paper, we derive several characterizations of the s-star partial order in terms
of the core-nilpotent decomposition, and establish the conditions under which the s-star partial
order implies the C-N-star partial order. By applying the core-EP decomposition, we introduce
a new partial order, the c-minus partial order, which generalizes the core-minus partial order.
Additionally, we provide several characterizations and properties of the c-minus partial order.

1. Introduction

In this paper, we use the following symbols. Let Cm×n be the set of m×n com-
plex matrices, A∗ , R (A) and rk(A) denote the respective conjugate transpose, range
(column space) and rank of A ∈ Cm×n , and In be the identity matrix of order n . For
A∈Cn×n , the index of A is the smallest positive integer k such that rk(Ak+1) = rk(Ak) ,
and is denoted by Ind(A) = k . For A is a rectangular m×n matrix, if there exists a X
∈ Cn×m satisfying the following four equations:

(1) AXA = A, (2) XAX = X , (3) (AX)∗ = AX , (4) (XA)∗ = XA,

then X is called the Moore-Penrose inverse of A , and denoted as X = A† . Especially,
if m = n = rk(A) , we have A† = A−1 . If AA† = A†A , then A is EP [28]. It is well
known that A is EP if and only if R (A) = R (A∗) , see [20]. The set of all EP matrices
on Cn×n is denoted as CEP

n :

C
EP
n =

{
A | R (A) = R (A∗) ,A ∈ C

n×n} .

The i-EP matrix is an extension of the EP matrix. If Ak is EP and k is the index
of A , then A is said to be i-EP. The set of all i-EP matrices on Cn×n is denoted as CiE

n :

C
iE
n =

{
A | Ak ∈ C

EP
n , Ind(A) = k,A ∈ C

n×n
}

. (1.1)

For further conclusions on the properties and characterization of EP matrices and i-EP
matrices, see [10, 14, 23, 27, 31].
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Let A∈Cn×n and Ind(A) = k . If there exists a X ∈Cn×n satisfying the following
three equations:

(1k) XAk+1 = Ak, (2) XAX = X , (5) AX = XA,

then X is called the Drazin inverse of A , and denoted as X = AD . In particular, when
k = 1, X is called the group inverse of A , and denoted as A# , see [28]. Furthermore,
we denote

C
CM
n =

{
A | Ind(A) = 1,A ∈ C

n×n} .

Manjunatha Prasad and Mohana [15] introduced the core-EP inverse and gave
some characterizations and properties of the core-EP inverse. Let A∈Cn×n and Ind(A)
= k . If there exists a X ∈ Cn×n satisfying the following conditions:

(1k) XAk+1 = Ak, (2) XAX = X , (3) (AX)∗ = AX , (6) R (X) ⊆ R
(
Ak

)
,

then X is called the core-EP inverse of A , and denoted as X = A †© . In particular, when
k = 1, X is called the core inverse of A , and denoted as A #© , see [2].

Generalized inverses are one of the main tools for studying the partial order of ma-
trices. Recently, the theory of partial order and its applications have received widespread
attention, [1, 3, 4, 5, 7, 8, 9, 13, 17, 18, 22, 26, 32, 33, 34, 35]. A partial order is a binary
relation that satisfies reflexivity, transitivity, and antisymmetry. It is well known that the

classical partial orders are the minus order “
−
�”, the star order “

∗
�” and the sharp order

“
#
�”, see [6, 11, 19]. Let A,B ∈ Cn×n , then

(1) A
−
� B ⇔ A−A = A−B, AA= = BA= , for some A−,A= ∈ A{1} ;

(2) A
∗
� B ⇔ A∗A = A∗B, AA∗ = BA∗ ;

(3) A
#
� B ⇔ A#A = A#B, AA# = BA# , Ind(A) = Ind(B) = 1.

Another major tool for studying partial order is matrix decomposition. Matrix de-
composition is also a primary tool for studying generalized inverses of matrices. Here,
we present two matrix decompositions, one of which is the core-nilpotent decomposi-
tion.

LEMMA 1.1. ([20]) Let A ∈ Cn×n and Ind(A) = k , then A can be uniquely writ-
ten as the sum of A1 and A2 , i.e., A = A1 +A2 , where

(1) Ind(A1) = 1 ;

(2) Ak
2 = 0 ;

(3) A1A2 = A2A1 = 0 .
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Furthermore, there exists an invertible matrix P such that

A1 = P

[
T 0
0 0

]
P−1, A2 = P

[
0 0
0 N

]
P−1, (1.2)

where T is invertible, N is nilpotent and Ind(N) = k .

In the above decomposition, we say that A1 is the core part of A , and A2 is the
nilpotent part of A . According to the decomposition, we can obtain

AD = P

[
T−1 0
0 0

]
P−1.

Especially, if Ind(A) = 1, we have N = 0 and

A# = P

[
T−1 0
0 0

]
P−1.

The other one is the core-EP decomposition.

LEMMA 1.2. ([29]) Let A ∈ Cn×n and Ind(A) = k , then A can be uniquely writ-
ten as the sum of Â1 and Â2 , i.e., A = Â1 + Â2 , where

(1) Ind
(
Â1

)
= 1 ;

(2) Âk
2 = 0 ;

(3) Â∗
1Â2 = Â2Â1 = 0 .

Furthermore, there exists a unitary matrix U such that

Â1 = U

[
T S
0 0

]
U∗, Â2 = U

[
0 0
0 N

]
U∗, (1.3)

where T is invertible, N is nilpotent and Ind(N) = k .

According to the core-EP decomposition, we can obtain

A †© = U

[
T−1 0
0 0

]
U∗.

Especially, when Ind(A) = 1, we have

A = U

[
T S
0 0

]
U∗, (1.4)

and

A #© = U

[
T−1 0
0 0

]
U∗. (1.5)

By applying the core inverse, Baksalary and Trenkler [2] introduced the core par-
tial order on C

CM
n .
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LEMMA 1.3. ([2]) Let A,B ∈ CCM
n , and let A be of the form as (1.4). The follow-

ing conditions are equivalent:

(1) A
#©
� B;

(2) B = U

[
T S
0 Z

]
U∗ , where Z ∈ CCM

n−r ;

(3) A†A = A†B, A2 = BA.

It has become common practice to construct partial orders using matrix decompo-
sition. For example, Hauke and Markiewicz [12] introduced the GL partial order based
on the polar decomposition.

Let A,B ∈ Cn×n , A = Â1 + Â2 and B = B̂1 + B̂2 be the core-EP decompositions
of A and B , respectively. Wang [29] introduced the core-minus partial order:

A
CM
� B : Â1

#©
� B̂1, Â2

−
� B̂2. (1.6)

And let A = A1 +A2 and B = B1 +B2 be the core-nilpotent decompositions of A and
B , respectively. Mitra and Hartwig [21] considered the C-N partial order:

A
#,−
� B : A1

#
� B1, A2

−
� B2. (1.7)

Mitra, Bhimasankaram and Malik [20] established the S-minus partial order:

A
�
� B : A

−
� B, A1

#
� B1. (1.8)

Based on (1.7) and (1.8), Mitra raised the open problem [20, Problem 16.3.1]: What
are necessary and sufficient conditions under which the S-minus partial order implies
the C-N partial order? Wang and Liu [30] studied the problem.

Furthermore, based on the core-nilpotent decomposition, Mitra, Bhimasankaram
and Malik [20] introduced two new partial orders based on the star and sharp partial
orders, which did not exist before. Let A = A1 + A2 and B = B1 + B2 be the core-
nilpotent decompositions of A and B respectively. The forms of A1 and B1 are as
shown in the first equation of (1.2). The first is the C-N-star partial order, and is denoted

as “
#,∗
� ”:

A
#,∗
� B : A1

#
� B1, A2

∗
� B2, A1,B1 ∈ C

EP
n . (1.9)

The second is the s-star partial order, and is denoted as “
=©
�”:

A
=©
� B : A

∗
� B, A1

#
� B1, A1,B1 ∈ C

EP
n . (1.10)

It is easy to see that A
#,∗
� B implies A

=©
� B . Obviously, both of these partial orders

are the C-N partial orders. It follows that

A
∗
� B ⇒ A

#,∗
� B ⇒ A

=©
� B ⇒ A

#,−
� B ⇒ A

−
� B.
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It should be pointed out that Marovt [16, 17] further discussed the characteriza-
tions and properties of these two partial orders. It is well known that the core-nilpotent
decomposition is applied to study the sharp partial order, and the singular value decom-
position is applied to study the star partial order. The C-N-star partial order and the
s-star partial order are both generated by the combination of the sharp partial order and
the star partial order. An interesting fact about the C-N-star (s-star) partial order is that
constraint A1 exists in the set CEP

n . It follows that the two partial orders are established
on a special set of matrices. So, what is this set? Furthermore, how can we establish
a generalized partial order in the set Cn×n ? These factors result in the C-N (S-minus)
partial order and the C-N-star (s-star) partial order, although structurally similar, having
different levels of difficulty.

Although A
#,∗
� B implies A

=©
� B , the reverse is not true, that is, A

=©
� B does not

imply A
#,∗
� B . Therefore, Mitra, Bhimasankaram and Malik raised the open problem

[20, Problem 16.3.2]. Let A = A1 +A2 be the core-nilpotent decomposition of A . The
form of A1 is the first equation of (1.2). Furthermore, let us denote

Cn×n =
{
A | A1 ∈ C

EP
n , A = A1 +A2 is the core-nilpotent decomposition of A ∈ C

n×n} .
(1.11)

PROBLEM 1.1. ([20, Problem 16.3.2]) What are the necessary and sufficient con-

ditions under which A
=©
� B implies A

#,∗
� B?

Marovt studied Problem 1.1 by providing some new characterizations of C-N-star
partial order in [16].

In this paper, we apply the core-nilpotent decomposition to study the s-star partial
order, derive several characterizations of the s-star partial order, consider the above

Problem 1.1 and get some new conditions under which A
=©
� B implies A

#,∗
� B . Based

on the core partial order and the minus partial order, we introduce a new partial order
called the c-minus partial order, get some characterizations of the partial order, and the
relationships between the c-minus and core-minus partial orders.

The structure of the rest of the paper is as follows. In Section 2, we provide
characterizations of the s-star partial order. In Section 3, we study the relationships
between the C-N-star and s-star partial order. In Section 4, we present properties of the
c-minus partial order. Finally, we conclude in Section 5.

2. Characterizations of the s-star partial order on CiE
n

The EP matrix is a special matrix. In [24], Pearl gave it a nice characterization.

LEMMA 2.1. ([24]) Let A ∈ Cn×n . Then A is EP if and only if there is a unitary
matrix U such that

A = U

[
T 0
0 0

]
U∗, (2.1)
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where T is invertible.

REMARK 2.1. ([20]) Let A,B ∈ CEP
n . It is obvious that A# = A† and B# = B† .

Therefore, A
#
� B if and only if A

∗
� B .

Wang and Liu gave a characterization of the i-EP matrix in [31].

LEMMA 2.2. ([31]) Let A∈Cn×n . Then A is i-EP if and only if there is a unitary
U such that

A = U

[
T 0
0 N

]
U∗, (2.2)

where T is invertible, and N is nilpotent.

THEOREM 2.3. Let A and B be i-EP matrices of the same order. Then A
∗
� B if

and only if there exists a unitary matrix U such that

A = U

[
T 0
0 N

]
U∗, B = U

[
T 0
0 B14

]
U∗, (2.3)

where T is invertible, B14 is i-EP, N is nilpotent and N
∗
� B14 .

Proof. Since A is i-EP, then it is of the form (2.2). Let B be partitioned as the
following form according to the block form of A :

B = U

[
B11 B12

B13 B14

]
U∗. (2.4)

Since A
∗
� B , we have AA∗ = BA∗ and A∗A = A∗B . By applying (2.2) and (2.4), it

follows that B11 = T , B12 = 0, B13 = 0, NN∗ = B14N∗ and N∗N = N∗B14 . Therefore,

B is the form as in (2.3) and N
∗
� B14 . Since B is i-EP, then B14 is i-EP. Therefore, we

get (2.3).
Conversely, let the forms of A and B be as in (2.3). It is easy to check that

A
∗
� B . �

LEMMA 2.4. ([20]) Let A,B ∈ Cm×n have the same block forms,

A =
[
A1 A2

A3 A4

]
, B =

[
0 0
0 B4

]
,

and A4 and B4 be of the same order. Then A
−
� B if and only if A1 = 0 , A2 = 0 , A3 = 0

and A4
−
� B4 .
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LEMMA 2.5. Let CiE
n and Cn×n be as in (1.1) and (1.11), respectively. Then

C
iE
n = Cn×n.

Proof. If A ∈ CiE
n , applying (2.2) gives that the core part of A is EP, that is, A ∈

Cn×n . Therefore, CiE
n ⊆ Cn×n .

If A ∈ Cn×n , then A1 is EP. Denote rk(A) = r and let A = A1 +A2 be the core-
nilpotent decomposition of A . Then, applying Lemma 2.1 gives

A1 = Û

[
T̂ 0
0 0

]
Û∗, (2.5)

in which Û is unitary and T̂ is invertible. Furthermore, let A2 be partitioned as

A2 = Û

[
X̂1 X̂2

X̂3 X̂4

]
Û∗, (2.6)

in which X̂1 ∈ C
r×r . Since A = A1 +A2 is the core-nilpotent decomposition of A , then

A1A2 = A2A1 = 0. It follows from (2.5) and (2.6) that X̂1 = 0, X̂2 = 0, X̂3 = 0 and X̂4

is nilpotent. Therefore,

A = A1 +A2 = Û

[
T̂ 0
0 X̂4

]
Û∗. (2.7)

Applying Lemma 2.2 gives that A is i-EP. Therefore, Cn×n ⊆ CiE
n .

In summary, we have CiE
n coincides with Cn×n . �

THEOREM 2.6. Let A and B be i-EP matrices of the same order. Then A
=©
� B if

and only if there exists a unitary matrix U such that

A = U

⎡
⎣T 0 0

0 N11 N12

0 N13 N14

⎤
⎦U∗, B = U

⎡
⎣T 0 0

0 T1 0
0 0 N2

⎤
⎦U∗, (2.8)

where T and T1 are invertible, N14 and N2 have the same order,

[
N11 N12

N13 N14

]
and N2

are nilpotent, and

[
N11 N12

N13 N14

] ∗
�

[
T1 0
0 N2

]
.

Proof. Let A ∈ CiE
n . Applying Lemma 2.2, we have the decomposition of A ,

A = A1 +A2 , in which

A1 = U1

[
T 0
0 0

]
U∗

1 , A2 = U1

[
0 0
0 N

]
U∗

1 , (2.9)

U1 is unitary, T is invertible and N is nilpotent.
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Since A
∗
� B , applying Theorem 2.3 gives that

B = U1

[
T 0
0 B14

]
U∗

1 , (2.10)

where N
∗
� B14 and B14 is i-EP. Furthermore, applying Lemma 2.2, we have the core-

EP decomposition of B14

B14 = U2

[
T1 0
0 N2

]
U∗

2 , (2.11)

in which U2 is unitary, T1 is invertible, and N2 is nilpotent. Substituting (2.11) into
(2.10), we have

B = U1

⎡
⎣T 0

0 U2

[
T1 0
0 N2

]
U∗

2

⎤
⎦U∗

1 . (2.12)

It follows from (2.12) that

B = U1

[
Irk(T ) 0

0 U2

]⎡
⎣T 0 0

0 T1 0
0 0 N2

⎤
⎦[

Irk(T ) 0
0 U2

]∗
U∗

1 . (2.13)

Denote

U =U1

[
Irk(T ) 0

0 U2

]
,

[
N11 N12

N13 N14

]
= U∗

2 NU2. (2.14)

Applying (2.9), (2.13) and (2.14), we have (2.8).

Conversely, let A and B have the forms as in (2.8) and

[
N11 N12

N13 N14

] ∗
�

[
T1 0
0 N2

]
,

A = A1 + A2 and B = B1 + B2 be the core-nilpotent decompositions of A and B , re-
spectively. Then

A1 = U

⎡
⎣T 0 0

0 0 0
0 0 0

⎤
⎦U∗, A2 = U

⎡
⎣0 0 0

0 N11 N12

0 N13 N14

⎤
⎦U∗, (2.15)

B1 = U

⎡
⎣T 0 0

0 T1 0
0 0 0

⎤
⎦U∗, B2 = U

⎡
⎣0 0 0

0 0 0
0 0 N2

⎤
⎦U∗. (2.16)

Applying (2.15) and (2.16), we have A1
#
� B1 and A

∗
� B . Therefore, A

=©
� B . �

THEOREM 2.7. Let A and B be i-EP matrices of the same order, then A
=©
� B if

and only if A
∗
� B.
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Proof. Let A,B ∈ CiE
n . If A

=©
� B , from (1.10), it is obvious that A

∗
� B .

Conversely, if A
∗
� B , then A and B have the forms as in (2.3). Since B14 is i-EP,

then there exists a unitary matrix U1 such that U1B14U∗
1 can be partitioned as

U1B14U
∗
1 =

[
T1 0
0 N2

]
.

Obviously, U1NU∗
1 is nilpotent. We write U1NU∗

1 =
[
N11 N12

N13 N14

]
. It follows from Theo-

rem 2.6 that A
=©
� B . �

Marovt[16] gave a characterization of the C-N-star partial order in proper ∗ -rings.
In particular, the set Cn×n is one special case of proper ∗ -ring.

LEMMA 2.8. ([16]) Let A and B be i-EP matrices of the same order. Then A
#,∗
� B

if and only if there exists a unitary matrix U such that

A = U

⎡
⎣T 0 0

0 0 0
0 0 N14

⎤
⎦U∗, B = U

⎡
⎣T 0 0

0 T1 0
0 0 N2

⎤
⎦U∗, (2.17)

where T and T1 are invertible, N14 and N2 are nilpotent of the same order, and N14
∗
�

N2 .

3. Relationships between the C-N-star and s-star partial orders on CiE
n

In this section, we consider the relationships between the C-N-star and the s-star
partial orders.

Let A =
[
0 1
0 0

]
, B =

[
0 1
1 0

]
, and Ind(A) = 2, Ind(B) = 1. Then we get the core-

nilpotent decompositions of A and B , A = A1 +A2 and B = B1 +B2 , in which

A1 =
[
0 0
0 0

]
, A2 =

[
0 1
0 0

]
, B1 =

[
0 1
1 0

]
, B2 =

[
0 0
0 0

]
.

Then,

AA∗ = BA∗ =
[
1 0
0 0

]
, A∗A = A∗B =

[
0 0
0 1

]
,

A1A
#
1 = B1A

#
1 =

[
0 0
0 0

]
, A#

1A1 = A#
1B1 =

[
0 0
0 0

]
,

A2A
∗
2 =

[
1 0
0 0

]
�= B2A

∗
2 =

[
0 0
0 0

]
,

A∗
2A2 =

[
0 0
0 1

]
�= A∗

2B2 =
[
0 0
0 0

]
.
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It can be seen from the above equation that A
=©
� B , but not A

#,∗
� B . It follows that A

=©
� B

does not imply A
#,∗
� B . So, in what condition(s) does A

=©
� B ⇒ A

#,∗
� B? This is also

Problem 1.1. Marovt discussed this problem on the ring and gave some conclusions in
[16]. Here we present some new results.

THEOREM 3.1. Let A,B ∈ CiE
n , k = max{Ind(A) , Ind(B)} , A = A1 + A2 and

B = B1 +B2 be the core-nilpotent decompositions of A and B, respectively. If A
=©
� B,

then the following conditions are equivalent:

(1) A
#,∗
� B;

(2) BBDA = ABBD , BDA = ADA;

(3) BB †©A = ABB †© , B †©A = A †©A.

Proof. (1)⇒ (2)–(3) : Let A,B∈ C
iE
n and A

#,∗
� B , then the forms of A and B are

as in (2.17). It follows that

AD = U

⎡
⎣T−1 0 0

0 0 0
0 0 0

⎤
⎦U∗, BD = U

⎡
⎣T−1 0 0

0 T−1
1 0

0 0 0

⎤
⎦U∗,

BDA = U

⎡
⎣Irk(T ) 0 0

0 0 0
0 0 0

⎤
⎦U∗, ADA = U

⎡
⎣Irk(T ) 0 0

0 0 0
0 0 0

⎤
⎦U∗,

BBDA = U

⎡
⎣Irk(T ) 0 0

0 Irk(T1) 0
0 0 0

⎤
⎦

⎡
⎣T 0 0

0 0 0
0 0 N14

⎤
⎦U∗ = U

⎡
⎣T 0 0

0 0 0
0 0 0

⎤
⎦U∗,

ABBD = U

⎡
⎣T 0 0

0 0 0
0 0 N14

⎤
⎦

⎡
⎣Irk(T ) 0 0

0 Irk(T1) 0
0 0 0

⎤
⎦U∗ = U

⎡
⎣T 0 0

0 0 0
0 0 0

⎤
⎦U∗,

A †© = U

⎡
⎣T−1 0 0

0 0 0
0 0 0

⎤
⎦U∗, B †© = U

⎡
⎣T−1 0 0

0 T−1
1 0

0 0 0

⎤
⎦U∗,

B †©A = U

⎡
⎣Irk(T ) 0 0

0 0 0
0 0 0

⎤
⎦U∗, A †©A = U

⎡
⎣Irk(T ) 0 0

0 0 0
0 0 0

⎤
⎦U∗,

BB †©A = U

⎡
⎣Irk(T ) 0 0

0 Irk(T1) 0
0 0 0

⎤
⎦

⎡
⎣T 0 0

0 0 0
0 0 N14

⎤
⎦U∗ = U

⎡
⎣T 0 0

0 0 0
0 0 0

⎤
⎦U∗,

ABB †© = U

⎡
⎣T 0 0

0 0 0
0 0 N14

⎤
⎦

⎡
⎣Irk(T ) 0 0

0 Irk(T1) 0
0 0 0

⎤
⎦U∗ = U

⎡
⎣T 0 0

0 0 0
0 0 0

⎤
⎦U∗.
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Applying the above results and (2.17) gives (2)–(3) .
Next, let A

=©
� B and A,B ∈ CiE

n . Then the forms of A and B are as in (2.8). It is
easy to check that

Bk = U

⎡
⎣Tk 0 0

0 Tk
1 0

0 0 0

⎤
⎦U∗. (3.1)

(2) ⇒ (1) : Applying (2.8), we have

BBDA = U

⎡
⎣Irk(T ) 0 0

0 Irk(T1) 0
0 0 0

⎤
⎦

⎡
⎣T 0 0

0 N11 N12

0 N13 N14

⎤
⎦U∗ = U

⎡
⎣T 0 0

0 N11 N12

0 0 0

⎤
⎦U∗,

ABBD = U

⎡
⎣T 0 0

0 N11 N12

0 N13 N14

⎤
⎦

⎡
⎣Irk(T ) 0 0

0 Irk(T1) 0
0 0 0

⎤
⎦U∗ = U

⎡
⎣T 0 0

0 N11 0
0 N13 0

⎤
⎦U∗,

BDA = U

⎡
⎣Irk(T ) 0 0

0 T−1
1 N11 T−1

1 N12

0 0 0

⎤
⎦U∗, ADA = U

⎡
⎣Irk(T ) 0 0

0 0 0
0 0 0

⎤
⎦U∗.

Since BBDA = ABBD , then N12 = 0 and N13 = 0. Since BDA = ADA , then N11 = 0
and N12 = 0. Therefore,

A = U

⎡
⎣T 0 0

0 0 0
0 0 N14

⎤
⎦U∗, A1 = U

⎡
⎣T 0 0

0 0 0
0 0 0

⎤
⎦U∗, A2 = U

⎡
⎣0 0 0

0 0 0
0 0 N14

⎤
⎦U∗. (3.2)

From Theorem 2.6, we have

[
0 0
0 N14

] ∗
�

[
T1 0
0 N2

]
, so N14

∗
� N2 . Therefore, applying

Theorem 2.8 gives A
#,∗
� B .

(3) ⇒ (1) : Applying (2.8), we have

BB †©A = U

⎡
⎣Irk(T ) 0 0

0 Irk(T1) 0
0 0 0

⎤
⎦

⎡
⎣T 0 0

0 N11 N12

0 N13 N14

⎤
⎦U∗ = U

⎡
⎣T 0 0

0 N11 N12

0 0 0

⎤
⎦U∗,

ABB †© = U

⎡
⎣T 0 0

0 N11 N12

0 N13 N14

⎤
⎦

⎡
⎣Irk(T ) 0 0

0 Irk(T1) 0
0 0 0

⎤
⎦U∗ = U

⎡
⎣T 0 0

0 N11 0
0 N13 0

⎤
⎦U∗,

B †©A = U

⎡
⎣Irk(T ) 0 0

0 T−1
1 N11 T−1

1 N12

0 0 0

⎤
⎦U∗, A †©A = U

⎡
⎣Irk(T ) 0 0

0 0 0
0 0 0

⎤
⎦U∗.

Since BB †©A = ABB †© , then N12 = 0 and N13 = 0. Since B †©A = A †©A , then N11 = 0

and N12 = 0. From Theorem 2.6 and Theorem 2.8, it follows that A
#,∗
� B . �
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4. Characterizations and properties of the c-minus partial order

By Lemma 1.3 and (1.6), we see that the core-minus partial order and the core
partial order coincide in CCM

n . Wang [29] used the core-EP decomposition to give the
characterization of the core-minus partial order, as follows:

LEMMA 4.1. ([29]) Let A,B ∈ Cn×n , then A
CM
� B if and only if there exists a

unitary matrix U such that

A = U

⎡
⎣T1 S1 S2

0 0 0
0 0 N1

⎤
⎦U∗, B = U

⎡
⎣T1 S1 S2

0 T2 S3

0 0 N2

⎤
⎦U∗, (4.1)

where T1 and T2 are non-singular, N1 and N2 are nilpotent, satisfying N1
−
� N2 .

In this section we introduce the c-minus partial order, and consider the relation-
ships between the c-minus partial order and the core-minus partial order.

DEFINITION 4.1. Let A , B ∈ Cn×n , A = Â1 + Â2 and B = B̂1 + B̂2 be the core-
EP decompositions of A and B , respectively, where Â1 and B̂1 are core-invertible, and,
Â2 and B̂2 are nilpotent. Then A is below B under the c-minus order if

A
−
� B, Â1

#©
� B̂1.

Whenever this happens, we write A
c©
� B . Since the core-EP decomposition of a

given matrix is unique, and the core order and the minus order are both partial orders,
it is easy to get the following theorem:

THEOREM 4.2. The c-minus order A
c©
� B is a partial order.

THEOREM 4.3. Let A, B ∈ Cn×n . Then A
c©
� B if and only if there exists a unitary

matrix U such that

A = U

⎡
⎣T1 S1 S2

0 N11 N12

0 N13 N14

⎤
⎦U∗, B = U

⎡
⎣T1 S1 S2

0 T2 S3

0 0 N2

⎤
⎦U∗, (4.2)

where T1 and T2 are non-singular,

[
N11 N12

N13 N14

]
and N2 are nilpotent, and

[
N11 N12

N13 N14

] −
�[

T2 S3

0 N2

]
.

Proof. Let A ∈ Cn×n , and the core-EP decompositions of A be as in (1.3). And
let B = B̂1 + B̂2 be the core-EP decomposition of B .
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Let A
c©
� B . Then Â1

#©
� B̂1 . It follows from Lemma 1.3 that

Â1 =U

⎡
⎣T1 S1 S2

0 0 0
0 0 0

⎤
⎦U∗, B̂1 = U

⎡
⎣T1 S1 S2

0 T2 S3

0 0 0

⎤
⎦U∗. (4.3)

Therefore,

B̂2 = U

⎡
⎣0 0 0

0 0 0
0 0 N2

⎤
⎦U∗,

in which N2 is nilpotent. Furthermore, write Â2 = U

⎡
⎣0 0 0

0 N11 N12

0 N13 N14

⎤
⎦U∗ , in which

[
N11 N12

N13 N14

]
is nilpotent. Then A is the form as in (4.2).

Since A
c©
� B , then A

−
� B , that is, rk(B−A) = rk(B)− rk(A) . It follows that

rk(T2)+ rk(N2)− rk

[
N11 N12

N13 N14

]
= rk

([
T2 T3

0 N2

]
−

[
N11 N12

N13 N14

])
.

Therefore, [
N11 N12

N13 N14

] −
�

[
T1 T3

0 N2

]
.

Conversely, let the forms of A and B be as in (4.2). Obviously, Â1
#©
� B̂1 , since[

N11 N12

N13 N14

] −
�

[
T1 T3

0 N2

]
, then rk(B−A) = rk(B)− rk(A) , that is A

−
� B . Therefore,

A
c©
� B . �

From (2.8) and (4.2), we can see the relationship between the c-minus partial order
and the s-star partial order.

REMARK 4.1. The s-star partial order coincides with the c-minus partial order on
CiE

n .

From Lemma 4.1 and Theorem 4.3, it is easy to check that the core-minus partial
order implies the c-minus partial order, and the c-minus partial order implies the minus
partial order, that is,

A
CM
� B ⇒ A

c©
� B ⇒ A

−
� B.

But the c-minus partial order does not imply the core-minus partial order. This can be
verified by the following example.
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EXAMPLE 4.1. Let A =
[
0 1
0 0

]
, B =

[
0 1
1 0

]
. We can write the core-EP decompo-

sitions of A and B as A = Â1 + Â2 and B = B̂1 + B̂2 , respectively, where

Â1 =
[
0 0
0 0

]
, Â2 =

[
0 1
0 0

]
, B̂1 =

[
0 1
1 0

]
, B̂2 =

[
0 0
0 0

]
.

Obviously, we can know that A
−
� B , Â1

#©
� B̂1 , and Â2 is not below B̂2 under the minus

order. That is A
c©
� B , but not A

CM
� B .

Under what condition(s) is the c-minus order equivalent to the core-minus order?
We aim to answer this question with the following results.

THEOREM 4.4. Let A, B ∈ C
n×n , and A and B be the forms as in (4.2). If

N11 = 0 , N12 = 0 and N13 = 0 , then A
c©
� B is equivalent to A

CM
� B.

Proof. Let A
CM
� B , A and B be the forms as in (4.1). Since N1

−
� N2 , then

rk(N2 −N1) = rk(N2)− rk(N1) . It follows that rk(B−A) = rk(B)− rk(A) . Then

A
−
� B . Therefore, A

c©
� B .

Conversely, let A
c©
� B , N11 = 0, N12 = 0 and N13 = 0. Then from Theorem 4.3,

there exists a unitary matrix U such that

A = U

⎡
⎣T1 S1 S2

0 0 0
0 0 N14

⎤
⎦U∗, B = U

⎡
⎣T1 S1 S2

0 T2 S3

0 0 N2

⎤
⎦U∗,

where T1 and T2 are non-singular, N14 and N2 are nilpotent, and

[
0 0
0 N14

] −
�

[
T1 T3

0 N2

]
.

Since A
−
� B , then rk(N2 −N14) = rk(N2)− rk(N14) , that is, N14

−
� N2 . Therefore,

A
CM
� B . �

THEOREM 4.5. Let A, B ∈ Cn×n and k = max{Ind(A) , Ind(B)} . If A
c©
� B, then

the following conditions are equivalent:

(1) A
CM
� B;

(2) BB †©ABk = ABk , BB †©A = AA †©A;

(3) AA †© = AB †© , A †©A = B †©A;

(4) B †©A = A †©B, AA †© = AB †© ;

(5) AA †© = AB †© , BB †©A = AA †©A.
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Proof. (1) ⇒ (2)–(5) : Let A
CM
� B , A and B be the forms as in (4.1). Then

Bk = U

⎡
⎣Tk

1 T̂ T̃
0 Tk

2 T ′
0 0 0

⎤
⎦U∗, (4.4)

A †© = U

⎡
⎣T−1

1 0 0
0 0 0
0 0 0

⎤
⎦U∗, (4.5)

B †© = U

⎡
⎣T−1

1 −T−1
1 S1T

−1
2 0

0 T−1
2 0

0 0 0

⎤
⎦U∗, (4.6)

where
−→
T , T̂ , T̃ , T ′ are some suitable matrices. It follows that

A †©A = U

⎡
⎣Irk(T1) T−1

1 S1 T−1
1 S2

0 0 0
0 0 0

⎤
⎦U∗ = B †©A = A †©B,

AA †© = U

⎡
⎣Irk(T1) 0 0

0 0 0
0 0 0

⎤
⎦U∗ = AB †©,

BB †©A = U

⎡
⎣T1 S1 S2

0 0 0
0 0 0

⎤
⎦U∗ = AA †©A,

BB †©ABk = U

⎡
⎣Tk+1

1 T1T̂ +S1Tk
2 T1T̃ +S1T ′

0 0 0
0 0 0

⎤
⎦U∗ = ABk,

So (2)–(5) are obtained.

Let A
c©
� B and A , B be the forms as in (4.2), then Bk , A †© and B †© are the forms

as in (4.4), (4.5) and (4.6). It is easy to check that

BB †©ABk = U

⎡
⎣Tk+1

1 T1T̂ +S1Tk
2 T1T̃ +S1T ′

0 N11Tk
2 N11T ′

0 0 0

⎤
⎦U∗, (4.7)

ABk = U

⎡
⎣Tk+1

1 T1T̂ +S1Tk
2 T1T̃ +S1T ′

0 N11Tk
2 N11T ′

0 N13Tk
2 N13T ′

⎤
⎦U∗, (4.8)

BB †©A = U

⎡
⎣T1 S1 S2

0 N11 N12

0 0 0

⎤
⎦U∗, AA †©A = U

⎡
⎣T1 S1 S2

0 0 0
0 0 0

⎤
⎦U∗, (4.9)

AA †© = U

⎡
⎣Irk(T1) 0 0

0 0 0
0 0 0

⎤
⎦U∗, AB †© = U

⎡
⎣Irk(T1) 0 0

0 N11T
−1
2 0

0 N13T
−1
2 0

⎤
⎦U∗, (4.10)
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A †©A = U

⎡
⎣Irk(T1) T−1

1 S1 T−1
1 S2

0 0 0
0 0 0

⎤
⎦U∗, (4.11)

B †©A = U

⎡
⎣Irk(T1) T−1

1 S1−T−1
1 S1T

−1
2 N11 T−1

1 S2−T−1
1 S1T

−1
2 N12

0 T−1
2 N11 T−1

2 N12

0 0 0

⎤
⎦U∗, (4.12)

A †©B = U

⎡
⎣Irk(T1) T−1

1 S1 T−1
1 S2

0 0 0
0 0 0

⎤
⎦U∗. (4.13)

(2) ⇒ (1) : Since BB †©ABk = ABk , BB †©A = AA †©A and T2 is non-singular, from
(4.7), (4.8) and (4.9), we have N11 = 0, N12 = 0 and N13 = 0. Applying Theorem 4.4

gives A
CM
� B .

(3) ⇒ (1) : Since AA †© = AB †© and A †©A = B †©A , from (4.10), (4.11) and (4.12),

we have N11 = 0, N12 = 0 and N13 = 0. Therefore, A
CM
� B .

(4) ⇒ (1) : Since B †©A = A †©B and AA †© = AB †© , from (4.10), (4.12) and (4.13),

we have N11 = 0, N12 = 0 and N13 = 0. Therefore, A
CM
� B .

(5) ⇒ (1) : Since AA †© = AB †© and BB †©A = AA †©A , from (4.9) and (4.10), we

have N11 = 0, N12 = 0 and N13 = 0. Therefore, A
CM
� B . �

5. Conclution

This paper provides several characterizations of the s-star partial order, explores
the relationships between the C-N-star partial order and the s-star partial order, and
provided further characterizations of problem 16.3.2 in [20]. Furthermore, this paper
introduces a new partial order, the c-minus partial order, which generalizes the core-
minus partial order. The s-star partial order implies the c-minus partial order on CiE

n .
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[4] G. DOLINAR, B. KUZMA, J. MAROVT, D. MOSIĆ, A note on star partial order preservers on the set
of all variance-covariance matrices, Mathematica Slovaca, 2023, 73 (1): 263–273.
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