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Abstract. In this paper, we generalize the operator version of Jensen’s inequality and the con-
verse one for the class of h -convex functions. We extend the Hermite-Hadamard’s type inequal-
ity and a multiple operator version of Jensen’s inequality for this class of functions. We also
provide a refinement of Jensen’s inequality for convex functions. In particular, the operator h -
convexity can be reduced to usual h -convexity in some sense and some results for the other
classes of functions can be deduced by choosing an appropriate function h . The superiority of
our results is that our results can recover some known results.

1. Introduction

Throughout this paper, let H be a Hilbert space and B(H ) the algebra of all
bounded linear operators on H . Let A ∈ B(H ) . The operator U ∈ B(H ) is the
adjoint of the operator A if 〈Ax,y〉 = 〈x,Uy〉 for every x,y ∈ H . The operator U is
denoted by A∗ and we say that the operator A is self-adjoint if A = A∗ . The subal-
gebra of all self-adjoint operators in B(H ) is denoted by Bsa(H ) . An operator A in
Bsa(H ) is positive whenever 〈Ax,x〉� 0 for all x∈H and we write A � 0. W denote
by Sp(A) the spectrum of an operator A ∈ B(H ) .

The convexity of functions is an important issue in many fields of science, for
instance in economy and optimization. A function f : I→R , I⊆R is convex whenever
the following inequality

f (u+(1− )v) �  f (u)+ (1− ) f (v)

holds for all u,v ∈ I , for all  ∈ [0,1] and the function f : I → R is concave whenever
− f is convex.

In 1979, Breckner [2] introduced the class of s-convex functions in the second
sense. A function f : [0,) → R is s-convex in the second sense whenever

f (u+(1− )v) �  s f (u)+ (1− )s f (v) (1)

holds for all u,v ∈ [0,) , for all  ∈ [0,1] and for some fixed s ∈ (0,1] . Note that
all s-convex functions in the second sense are non-negative. Hudzik and Maligranda
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(1994) [13] remarked two senses of s-convexity of real-valued functions are known in
the literature. A function f : [0,) → R is s-convex in the first sense if

f (u+v) � s f (u)+ s f (v) (2)

holds for all u,v ∈ [0,) , for all , � 0 with s +  s = 1 and for some fixed s ∈
(0,1] . There is an identity between the class of 1-convex functions and the class of
convex functions. Indeed, the s-convexity means just the convexity when s = 1, no
mater in the first sense or in the second sense. For more details and examples on s-
convex functions we refer to see [4, 9, 11, 13, 17, 18,22].

In 1985, Godunova and Levin (see [14]) introduced the class of Godunova-Levin
functions. A function f : I → R is a Godunova-Levin function on I if

f (u+(1− )v) � f (u)


+
f (v)

1−
, (3)

where u,v ∈ I and  ∈ (0,1) . Note that all non-negative monotonic and non-negative
convex functions belong to this class [7]. The function f is s-Godunova-Levin type if

f (u+(1− )v) � f (u)
 s +

f (v)
(1− )s , (4)

where u,v ∈ I and  ∈ (0,1) .
In 1999, Pearce and Rubinov [21] introduced a new class of convex functions

which is called P-class functions. A function f : I → R is a P-class function on I if

f (u+(1− )v) � f (u)+ f (v), (5)

where u,v ∈ I and  ∈ [0,1] . The inequalities (1) and (2) reduce to P-class functions
when s → 0. Some properties of P-class functions can be found in [7, 8, 16].

In 2007, in order to unify the above concepts for functions of real variable Varoša-
nec [23] introduced a wide class of functions the so called h -convex functions which
generalizes convex, s-convex, Godunova-Levin, and P-class functions. A non-negative
function f : I → R is h -convex on I if

f (u+(1− )v) � h( ) f (u)+h(1− ) f (v), (6)

where h is a non-negative function defined on the real interval J , u,v ∈ I and  ∈
[0,1] ⊆ J . For more results and generalizations regarding h -convexity, we refer the
readers to see [1, 5, 12, 20]. For other types of convexity, we refer the readers to see
[3, 19].

Jensen’s inequality for convex functions is one of the most important result in the
theory of inequalities and many other famous inequalities are particular cases of this
inequality. An operator version of the Jensen inequality for a convex function has been
proved by Mond and Pečarić as follows ([15], [10]):
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THEOREM 1. Let f : [m,M] → R be a convex function. Then,

f (〈Ax,x〉) � 〈 f (A)x,x〉
for every x ∈H with 〈x,x〉 = 1 and every self-adjoint operator A such that mI � A �
MI .

In this paper, we prove some inequalities for self-adjoint operators on a Hilbert
space including an operator version of Jensen’s inequality and its converse for h -convex
functions. Moreover, we refine Jensen’s inequality for convex functions. We prove
the Hermite-Hadamard’s type inequality and a multiple operator version of Jensen’s
inequality for h -convex functions. In particular, we obtain Jensen’s inequality for non-
negative convex, P-class, s-convex, Godunova-Levin, and s-Godunova-Levin func-
tions by choosing an appropriate function h . We show that the operator h -convexity
can be reduced to usual h -convexity in some sense.

2. Mond-Pečarić inequality for h -convex functions

We indicate that an operator version of the Jensen inequality for h -convex func-
tions still holds similar to that Mond-Pečarić considered for convex functions.

THEOREM 2. Let A be a self-adjoint operator on a Hilbert space H and assume
that Sp(A) ⊆ [m,M] for some scalars m,M with 0 < m < M. Let h : [0,1] → R be a
non-negative and non-zero function. If f is a continuous h-convex function on [m,M] ,
then

f (〈Ax,x〉) � 2h

(
1
2

)
〈 f (A)x,x〉 (7)

for each x ∈ H with ||x|| = 1 .

Proof. It follows from h -convexity of f that

f

(
a+b

2

)
−h

(
1
2

)
f (b) � h

(
1
2

)
f (a) (8)

for all a,b ∈ [m,M] . By dividing both sides of (8) with 1
2 , one can reach

f
(

a+b
2

)−h
(

1
2

)
f (b)

1
2

�
h
(

1
2

)
1
2

f (a) (9)

for all a,b ∈ [m,M] . Define

 := min
b∈[m,M]

f
(

a+b
2

)−h
(

1
2

)
f (b)

1
2 (a−b)

. (10)

The inequalities (9) and (10) entail that

(a−b) �
h
(

1
2

)
1
2

f (a) (11)
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for all a,b ∈ [m,M] . Consider the linear function l(t) := (t − b) . The inequality
(11) implies l(a) � 2h

(1
2

)
f (a) for all a ∈ [m,M] . Put g = 〈Ax,x〉 . So, it is clear that

m � g � M . Consider the straight line l′(t) := (t − g)+ f (g) passing through the
point (g, f (g)) and parallel to the line l . The continuity of the function f ensures that

l′(g) � f (g)−  (12)

for all  > 0. We now consider two cases:
(i) Assume that l′(t) � 2h

(
1
2

)
f (t) for every t ∈ [m,M] . By using the functional

calculus, one has l′(A) � 2h
(1

2

)
f (A) and consequently

〈l′(A)x,x〉 � 2h

(
1
2

)
〈 f (A)x,x〉 (13)

for each x ∈H with ||x||= 1. The linearity of the function l′ and the inequalities (12)
and (13) imply

f (〈Ax,x〉)−  � l′(〈Ax,x〉) = 〈l′(A)x,x〉 � 2h

(
1
2

)
〈 f (A)x,x〉.

Since  is arbitrary, we observe that

f (〈Ax,x〉) � 2h

(
1
2

)
〈 f (A)x,x〉. (14)

(ii) Assume that there exist some points t ∈ [m,M] such that l′(t) > h( )
 f (t) .

Define the sets T and S as follows:

T :=
{

t ∈ [m, g] : l′(t) > 2h

(
1
2

)
f (t)
}

,

S :=
{

t ∈ [g,M] : l′(t) > 2h

(
1
2

)
f (t)
}

.

Consider tT := max{t : t ∈ T} and tS := min{t : t ∈ S} . We use two lines passing
through the points (tT ,0) , (g, f (g)) and (tS,0) and (g, f (g)) , respectively. Let lT be
the line passing through the points (tT ,0) and (g, f (g)) and lS the line passing through
the points (tS,0) and (g, f (g)) . Define the function L as follows:

L(t) :=

{
lT (t), t ∈ [m, g],
lS(t), t ∈ [g,M].

We prove that the inequality L(t) � 2h
(

1
2

)
f (t) holds for all t ∈ [m,M] . We consider

the partition {m, tT , g,tS,M} for the closed interval [m,M] and we notice that lT (t) � 0
for every t ∈ [m, tT ] . Since f (t) � 0, we clearly observe that lT (t) � 2h

(
1
2

)
f (t) for

every t ∈ [m, tT ] . On the other hand, we see that

l′(t) � 2h

(
1
2

)
f (t) (15)
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for every t ∈ (tT , g] ; otherwise, there exists t0 ∈ (tT , g] such that l′(t0) > 2h
(

1
2

)
f (t0)

and so t0 ∈ T and t0 < tT , which is a contradiction. So, it follows from (15) by letting
t tends to tT from right that

l′(tT ) � 2h

(
1
2

)
f (tT ). (16)

Moreover, since tT is in the closure of the set T , the reversed inequality holds in (16)
and hence l′(tT ) = 2h

(1
2

)
f (tT ) . It follows that l′ is the line passing through the points

(tT ,2h
(

1
2

)
f (tT )) and (g, f (g)) and its slope is  =

f (g)−2h( 1
2) f (tT )

g−tT
, where the slope

of the line lT is  ′ = f (g)
g−tT

. By the inequality (15) we observe that

lT (t) =  ′(t− g)+ f (g) � (t − g)+ f (g) = l′(t) � 2h

(
1
2

)
f (t)

for every t ∈ (tT , g] . So, L(t) = lT (t) � 2h
(

1
2

)
f (t) for every t ∈ [m, g] .

By the similar methods one can show that L(t) = lS(t) � 2h
( 1

2

)
f (t) for every

t ∈ [g,M] . Note that the lines lT and lS are joining at the point along the length of g
and so lT (g) = lS(g) and since f is continuous,

lT (g) = f (g) � f (g)−  (17)

for arbitrary  > 0. For the case Sp(A) ⊆ [m, g] , we have

f (〈Ax,x〉)−  � lT (〈Ax,x〉) = 〈lT (A)x,x〉 � 2h

(
1
2

)
〈 f (A)x,x〉.

Moreover, for the case Sp(A)⊆ [g,M] , we have

f (〈Ax,x〉)−  � lT (〈Ax,x〉) = lS(〈Ax,x〉) = 〈lS(A)x,x〉

� 2h

(
1
2

)
〈 f (A)x,x〉

and consequently one can deduce (7). �
We demonstrate that the constant 2h

(
1
2

)
is the best possible in (7) such one in the

following example.

EXAMPLE 1. Let h(t) =
√

t and t > 0. Define g : [0,)→R by g(t) =
√

t . Note
that the function g is h -convex, since

g(x+(1−)y) = (x+(1−)y)
1
2

� (x)
1
2 +((1−)y)

1
2

= 
1
2 x

1
2 +(1−)

1
2 y

1
2

= h()x
1
2 +h(1−)y

1
2
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for every x,y � 0 and  ∈ [0,1] . Consider A =
(1 0

0 0

)
and x = ( 1√

2
, 1√

2
) . A simple

calculation shows that g(〈Ax,x〉) = g( 1
2) =

√
1
2 and 〈g(A)x,x〉 = 1

2 . Therefore,

g(〈Ax,x〉) = 2h

(
1
2

)
〈g(A)x,x〉.

REMARK 1. Applying Theorem 2 and considering the unital positive linear map
(A) = 〈Ax,x〉 and p = 1 in [6, Corollary 3.7], we see that the operator h -convexity
of f can reduce to the usual h -convexity without any condition on the function h .
Note that the operator h -convex functions are h -convex, but the converse is not true in
general.

We now compare the results of this article with the work done by others. We
generally cover all the work done for some specific functions. It is remarkable that the
superiority of our results is that our results can recover the other works.

COROLLARY 1. Let A be a self-adjoint operator on a Hilbert space H and as-
sume that Sp(A) ⊆ [m,M] for some scalars m,M with 0 < m < M and x ∈ H with
||x|| = 1 .

(1) ([15, Theorem 1]) If f is a non-negative convex function on [m,M] , then

f (〈Ax,x〉) � 〈 f (A)x,x〉. (18)

(2) ([16, Theorem 2.1]) If f is a continuous P-class function on [m,M] , then

f (〈Ax,x〉) � 2〈 f (A)x,x〉. (19)

(3) ([17, Theorem 2]) If f is a continuous s-convex function on [m,M] in the second
sense, then

f (〈Ax,x〉) � 21−s〈 f (A)x,x〉. (20)

(4) If f is a continuous Godunova-Levin function on [m,M] , then

f (〈Ax,x〉) � 4〈 f (A)x,x〉. (21)

(5) If f is a continuous s-Godunova-Levin function on [m,M] , then

f (〈Ax,x〉) � 21+s〈 f (A)x,x〉. (22)

Proof. Consider h(t) = t , h(t) = 1, h(t) = ts , h(t) = 1
t , and h(t) = 1

ts in parts
(1)–(5), respectively. Then, the coefficient 2h( 1

2) can be calculated in each case and a
simple calculation gets the desired result in each case. �

We provide a refinement of the Mond and Pečarić inequality for convex functions.
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COROLLARY 2. Let the conditions of Theorem 2 be satisfied and h
(

1
2

)
� 1

2 .
Then,

f (〈Ax,x〉) � 2h

(
1
2

)
〈 f (A)x,x〉 � 〈 f (A)x,x〉 (23)

for each x ∈ H with ||x|| = 1 .

Proof. Note that the function f is mid convex, since h
(

1
2

)
� 1

2 and so f is convex.
The first inequality follows from Theorem 2 and the second one follows from the fact
that 2h

(
1
2

)
� 1. �

THEOREM 3. Let the conditions of Theorem 2 be satisfied. Then,

〈 f (A)x,x〉 � 2h

(
1
2

)(
M−〈Ax,x〉

M−m
f (m)+

〈Ax,x〉−m
M−m

f (M)
)

. (24)

Proof. Consider D =
(m 0

0 M

)
and x =

⎛
⎝
√

M−t
M−m√
t−m
M−m

⎞
⎠ . By applying Theorem 2, we

have

f (t) = f (〈Dx,x〉)

� 2h

(
1
2

)
〈 f (D)x,x〉

= 2h

(
1
2

)(
M− t
M−m

f (m)+
t−m
M−m

f (M)
)

.

Since the operator 2h
(

1
2

)(
M−A
M−m f (m)+ A−m

M−m f (M)
)− f (A) is positive, we get (24). �

THEOREM 4. Let the conditions of Theorem 2 be satisfied. Let J be an inter-
val such that f ([m,M]) ⊂ J . If F(u,v) is a real function defined on J × J and non–
decreasing in u, then

F(〈 f (A)x,x〉, f (〈Ax,x〉))

� max
t∈[m,M]

F

(
2h

(
1
2

)(
M− t
M−m

f (m)+
t−m
M−m

f (M)
)

, f (t)
)

= max
∈[0,1]

F

(
2h

(
1
2

)
( f (m)+ (1− ) f (M)), f (m+(1− )M)

)
. (25)

Proof. Since g = 〈Ax,x〉 ∈ [m,M] , by the non-decreasing character of F and The-
orem 3, one has

F(〈 f (A)x,x〉, f (〈Ax,x〉))

� F

(
2h

(
1
2

)(
M− g
M−m

f (m)+
g−m
M−m

f (M)
)

, f (g)
)

� max
t∈[m,M]

F

(
2h

(
1
2

)(
M− t
M−m

f (m)+
t−m
M−m

f (M)
)

, f (t)
)

.
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The second form of the right side of (25) follows at once from the change of variable
 = M−t

M−m , so that t = m+(1− )M , with 0 �  � 1. �

DEFINITION 1. The function f is piecewise continuously twice differentiable on
[m,M] whenever the following conditions fulfil:

(1) f is continuous on [m,M] ,

(2) there exists a finite subdivision {x0, . . . ,xn} of [m,M] , x0 = a , xn = b such that

(2.1) f is continuously twice differentiable on (xi−1,xi) for every i ∈ {1, . . . ,n} ,

(2.2) the one-sided limits limx→x+
i−1

f ′(x) and limx→x−i
f ′(x) exist for every

i ∈ {1, . . . ,n} ,

(2.3) the one-sided limits limx→x+
i−1

f ′′(x) and limx→x−i
f ′′(x) exist for every

i ∈ {1, . . . ,n} .

We provide a converse inequality in Theorem 2.

THEOREM 5. Let the conditions of Theorem 2 be satisfied. Moreover, let f be
piecewise continuously twice differentiable on [m,M] .

(i) There exists  � 1 such that

1

2h
(

1
2

)

〈 f (A)x,x〉 � f (〈Ax,x〉).

(ii) There exists  � 0 such that

1

2h
(1

2

) 〈 f (A)x,x〉− � f (〈Ax,x〉).

Proof. (i) Suppose R = {x0,x1, . . . ,xn} , x0 = m , xn = M is a finite subdivision of
[m,M] such that the conditions of Definition 1 fulfils. Consider F(u,v) = u

v , J = (0,) ,
h(t) = 2h

(
1
2

)
i(t) for every t ∈ [xi−1,xi] , where i(t) = Li(t)

f (t) , Li(t) = f (xi−1) +

i(t− xi−1) and i = f (xi)− f (xi−1)
xi−xi−1

. According Theorem 4 we have

〈 f (A)x,x〉
f (〈Ax,x〉) � max

t∈[m,M]
h(t) = 2h

(
1
2

)
max
1�i�n

max
t∈[xi−1,xi]

i(t). (26)

Now  ′
i (t) = Gi(t)

f (t)2 , where Gi(t) = i f (t)−Li(t) f ′(t) for every t ∈ [xi−1,xi] . If i �= 0,

then
G′

i(t) = −Li(t) f ′′(t).

If i = 0 and ti ∈ (xi−1,xi) is a unique solution of the equation f ′(t) = 0, then we
consider

i = max
t∈[xi−1,xi]

h(t) = 2h

(
1
2

)
f (xi−1)
f (ti)

.
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Define

A = {i : lim
t→x+

i−1

f ′′(t) > 0, lim
t→x−i

f ′′(t) > 0, f ′′(t) > 0,t ∈ (xi−1,xi)},

B = {i : lim
t→x+

i−1

f ′′(t) < 0, lim
t→x−i

f ′′(t) < 0, f ′′(t) < 0,t ∈ (xi−1,xi)}.

Suppose t ∈ [m,M] . Then, there exists i ∈ {1, . . . ,n} such that t ∈ [xi−1,xi] .
(1) If i ∈ A , then G′

i(t) < 0 and so Gi is decreasing on [xi−1,xi] . So,

Gi(xi−1)Gi(xi) = − f (xi−1) f (xi)(i − f ′(xi−1))( f ′(xi)− i) < 0.

This indicates the equation Gi(t) = 0 has a unique solution at ti ∈ (xi−1,xi) and so the

equation  ′
i (t) = 0 has a unique solution at ti ∈ (xi−1,xi) . Let Di =

( xi−1 0
0 xi

)
and

x =

(√ xi−t
xi−xi−1√
t−xi−1
xi−xi−1

)
. Since i ∈ A , the function f is convex on [xi−1,xi] . So, by Theorem

1, for the convex function f on [xi−1,xi] , one can reach

f (t) = f (〈Dix,x〉)
� 〈 f (Di)x,x〉 =

xi − t
xi − xi−1

f (xi−1)+
t− xi−1

xi − xi−1
f (xi) = Li(t).

Consequently, Li(t)
f (t) � 1 for every t ∈ [xi−1,xi] and

h(t) = 2h

(
1
2

)
Li(t)
f (t)

� 2h

(
1
2

)

for every t ∈ [xi−1,xi] where the equality occurs at xi−1 and xi . Note that the maximum
value of i is attained in ti ∈ [xi−1,xi] , since  ′′

i (ti) < 0. We consider

i = max
t∈[xi−1,xi ]

h(t)

= 2h

(
1
2

)
max

t∈[xi−1,xi ]
i(t)

= 2h

(
1
2

)
i(ti)

= 2h

(
1
2

)
Li(ti)
f (ti)

= 2h

(
1
2

)
i

f ′(ti)
.

The last equality comes from the fact that Gi(ti) = 0.
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(2) If i ∈ B , then define Di and x as the part (1) and apply Theorem 1 for the
concave function f on [xi−1,xi] . So, Li(t)

f (t) � 1 and this inequality yields

0 � h(t) = 2h

(
1
2

)
Li(t)
f (t)

� 2h

(
1
2

)

for every t ∈ [xi−1,xi] where equality occurs at xi−1 and xi . We consider

i = max
t∈[xi−1,xi ]

h(t) = 2h

(
1
2

)
.

It follows from the cases (1) and (2) in the part (i) that

i =

⎧⎪⎪⎨
⎪⎪⎩

2h
(1

2

) f (xi−1)
f (ti)

, i = 0, i ∈ {1, . . . ,n} \A∪B,

2h
(1

2

) i
f ′(ti)

, i �= 0, i ∈ A,

2h
(

1
2

)
, i �= 0, i ∈ B.

Define  = max1�i�ni . Then,  = 2h
(1

2

)
 , where

 = max

{
max

i∈(A∪B)c

f (xi−1)
f (ti)

,max
i∈A

i

f ′(ti)
,1

}
.

By virtue of (26), we deduce

〈 f (A)x,x〉
f (〈Ax,x〉) � max

t∈[m,M]
h(t) = 2h

(
1
2

)
.

(ii) Consider the sets R , P , A , and B as the part (i) and define F(u,v) = u−
2h
(

1
2

)
v , J = R and h(t) = 2h

(
1
2

)
i(t) for every t ∈ [xi−1,xi] , where i(t) = Li(t)−

f (t) and Li(t) defined in the part (i). By virtue of Theorem 4 we yield

〈 f (A)x,x〉−2h

(
1
2

)
f (〈Ax,x〉) � max

t∈[m,M]
h(t)

= 2h

(
1
2

)
max
1�i�n

max
t∈[xi−1,xi]

i(t). (27)

If i �= 0, then  ′′
i (t) = − f ′′(t) and if i = 0 and ti ∈ (xi−1,xi) is the unique solution

of the equation f ′(t) = 0, then we define

i = max
t∈[xi−1,xi]

h(t) = 2h

(
1
2

)
( f (xi−1)− f (ti)).

Suppose t ∈ [m,M] . Then, there exists i ∈ {1, . . . ,n} such that t ∈ [xi−1,xi] .
(1) If i ∈ A , then  ′′

i (t) < 0 for every t ∈ [xi−1,xi] and so  ′
i is decreasing on

[xi−1,xi] . On the other hand, the equation  ′
i (t) = 0 has a unique solution at t = ti ∈
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[xi−1,xi] , since  ′
i (xi−1) ′

i (xi) < 0. Clearly,  ′′
i (ti) < 0 and so the maximum value of

i is attained in ti . We define

i = max
t∈[xi−1,xi]

h(t)

= 2h

(
1
2

)
max

t∈[xi−1,xi]
i(t)

= 2h

(
1
2

)
i(ti)

= 2h

(
1
2

)
(Li(ti)− f (ti))

= 2h

(
1
2

)
( f (xi−1)+ i(ti − xi−1)− f (ti)).

(2) If i∈B , then f ′′(t)< 0 for every t ∈ [xi−1,xi] . This means that f is concave on
[xi−1,xi] and so f (t) � Li(t) for every t ∈ [xi−1,xi] . This ensures i(t) = Li(t)− f (t) �
0 and this inequality entails

max
t∈[xi−1,xi]

i(t) � 0.

Since i(xi) = 0 = i(xi−1) , i attains its maximum value and the maximum value is
0. So that

i = max
t∈[xi−1,xi ]

h(t) = 2h

(
1
2

)
max

t∈[xi−1,xi]
i(t) = i(xi) = 0.

Consequently, it follows from the cases (1) and (2) in the part (ii) that

i =

⎧⎪⎪⎨
⎪⎪⎩

2h
(

1
2

)
( f (xi−1)− f (ti)), i = 0, i ∈ {1, . . . ,n} \A∪B,

2h
(1

2

)
( f (xi−1)+ i(ti − xi−1)− f (ti)), i �= 0, i ∈ A,

0, i �= 0, i ∈ B.

Define  = max1�i�ni . Then,  = 2h
(

1
2

)
 , where

 = max{ max
i∈(A∪B)c

( f (xi−1)− f (ti)),max
i∈A

( f (xi−1)+ i(ti − xi−1)− f (ti)),0}.

In view of (27), we deduce

〈 f (A)x,x〉−2h

(
1
2

)
f (〈Ax,x〉) � max

t∈[m,M]
h(t) =  = 2h

(
1
2

)
 . �

COROLLARY 3. Let the function f be a piecewise continuously twice differen-
tiable on [m,M] and A a self-adjoint operator on a Hilbert space H . Assume that
Sp(A)⊆ [m,M] for some scalars m,M with 0 < m < M and x ∈ H with ||x|| = 1 .
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(1) If f is non-negative convex on [m,M] , then

(i) there exists  � 1 such that

1

〈 f (A)x,x〉 � f (〈Ax,x〉),

(ii) there exists  � 0 such that

〈 f (A)x,x〉− � f (〈Ax,x〉).

(2) If f is P-class on [m,M] , then

(i) there exists  � 1 such that

1
2

〈 f (A)x,x〉 � f (〈Ax,x〉),

(ii) there exists  � 0 such that

1
2
〈 f (A)x,x〉− � f (〈Ax,x〉).

(3) If f is s-convex on [m,M] in the second sense, then

(i) there exists  � 1 such that

1
21−s

〈 f (A)x,x〉 � f (〈Ax,x〉),

(ii) there exists  � 0 such that

1
21−s 〈 f (A)x,x〉− � f (〈Ax,x〉).

(4) If f is Godunova-Levin on [m,M] , then

(i) there exists  � 1 such that

1
4

〈 f (A)x,x〉 � f (〈Ax,x〉),

(ii) there exists  � 0 such that

1
4
〈 f (A)x,x〉− � f (〈Ax,x〉).

(5) If f is s-Godunova-Levin on [m,M] , then

(i) there exists  � 1 such that

1
21+s

〈 f (A)x,x〉 � f (〈Ax,x〉),
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(ii) there exists  � 0 such that

1
21+s 〈 f (A)x,x〉− � f (〈Ax,x〉).

Proof. Consider h(t) = t , h(t) = 1, h(t) = ts , h(t) = 1
t , and h(t) = 1

ts in parts
(1)-(5), respectively and calculate the coefficient 2h( 1

2) . According Theorem 5, we get
the desired result in each part. �

3. Applications

In this section, we obtain the Hermite-Hadamard’s type inequality for h -convex
functions. Moreover, we obtain a multiple operator version of Theorem 2 for h -convex
functions. In particular, one may reach a result for the convex, P-class, s-convex,
Godunova-Levin, and s-Godunova-Levin functions.

COROLLARY 4. Let the conditions of Theorem 2 be satisfied and let p and q be
non-negative numbers, with p+q > 0 , for which

〈Ax,x〉 =
pm+qM

p+q
.

Then,

1

2h
(

1
2

) f
( pm+qM

p+q

)
� 〈 f (A)x,x〉 � 2h

(
1
2

)
p f (m)+q f (M)

p+q
.

Proof. By virtue of Theorems 2 and 3 we reach

f
( pm+qM

p+q

)
= f (〈Ax,x〉) � 2h

(
1
2

)
〈 f (A)x,x〉)

�
(

2h

(
1
2

))2(M−〈Ax,x〉
M−m

f (m)+
〈Ax,x〉−m

M−m
f (M)

)

=
(

2h

(
1
2

))2 p f (m)+q f (M)
p+q

. �

We may consider a multiple operator version of Theorem 2 as follows and obtain
some interesting corollaries.

COROLLARY 5. Let Ai be self-adjoint operators with Sp(Ai) ⊆ [m,M] for some
scalars m < M and xi ∈ H , i ∈ {1, . . . ,n} with n

i=1 ||xi||2 = 1 . If f is h-convex on
[m,M] , then

f
( n


i=1

〈Aixi,xi〉
)

� 2h

(
1
2

) n


i=1

〈 f (Ai)xi,xi〉.



208 I. NIKOUFAR AND D. SAEEDI

Proof. We define

Ã =

⎛
⎜⎝

A1 · · · 0
...

. . .
...

0 · · · An

⎞
⎟⎠ and x̃ =

⎛
⎜⎝

x1
...
xn

⎞
⎟⎠ .

So, Sp(Ã) ⊆ [m,M] , ||x̃|| = 1, and

f (〈Ãx̃, x̃〉) = f
( n


i=1

〈Aixi,xi〉
)
,

〈 f (Ã)x̃, x̃〉 =
n


i=1

〈 f (Ai)xi,xi〉.

In view of Theorem 2 the result follows. �

We obtain a complementary inequality in Corollary 5 as follows.

COROLLARY 6. Let the conditions of Corollary 5 be satisfied.

(i) There exists  � 1 such that

1

2h
(

1
2

)


n


i=1

〈 f (Ai)xi,xi〉 � f (〈
n


i=1

Aixi,xi〉). (28)

(ii) There exists  � 0 such that

1

2h
(

1
2

) n


i=1

〈 f (Ai)xi,xi〉− � f (〈
n


i=1

Aixi,xi〉). (29)

Proof. Consider Ã and x̃ as in the proof of Corollary 5 and apply Theorem 5. �

COROLLARY 7. Let A1, . . . ,An be self-adjoint operators with Sp(Ai) ⊆ [m,M] ,
i ∈ {1, . . . ,n} for some scalars m < M. If f is h-convex on [m,M] and pi � 0 with
n

i=1 pi = 1 , then

f

(
n


i=1

pi〈Aix,x〉
)

� 2h

(
1
2

) n


i=1

pi〈 f (Ai)x,x〉

for every x ∈ H with ||x|| = 1 .

Proof. By using Corollary 5 and setting xi =
√

pix , i ∈ {1, . . . ,n} we can reach
the result. �
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4. Conclusions

We obtained a Mond-Pečarić and Hermite-Hadamard type inequalities for the class
of h -convex functions and refined Jensen’s inequality for convex functions. We proved
some multiple operator versions for this class of functions. In particular, we discovered
that the operator h -convexity can be reduced to the usual h -convexity in some sense.
Moreover, we showed that some results for the other classes of functions such as the
class of convex, P-class, s-convex, Godunova-Levin, and s-Godunova-Levin functions
can be deduced by choosing an appropriate function h .

Declarations. We remark that the potential conflicts of interest and data sharing
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[12] A. HÁZY, Bernstein–doetsch type results for h-convex functions, Math. Inequal. Appl. 14 (3), 499–

508 (2011).
[13] H. HUDZIK AND L. MALIGRANDA, Some remarks on s -convex functions, Aequationes Math. 17,

100–111 (1994).
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