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Abstract. The subject of the paper is a new approach to selecting real constants for which cer-
tain analytic inequalities hold. This approach is based on the introduction and analysis of the
corresponding families of functions that are stratified and such that each function from the fam-
ily has certain Taylor expansions. The approach is illustrated on some D’Aurizio-Sándor-type
inequalities that were previously proved only for values of parameters that are natural numbers.
In this paper, we analyse and prove those inequalities for all real values of the parameters for
which they are defined. Our approach has enabled selecting the best real constants for which
those inequalities hold.

1. Introduction

Many inequalities
f (x) > 0, x∈(a,b)

where f : [a,b] −→ R , are generalised by introducing a real parameter to inequalities
of the form

p(x) > 0, x∈(a,b) (1)

where p(x) is a function from the real family of functions {p(x)}p∈P , /0 �=P⊆R ,
defined on [a,b] (Chapter 2.14.6 [2, 5, 7, 17, 20, 21, 25, 27–30, 32, 34, 35, 37–39, 44, 46,
47, 49]). The main problem is to determine, when possible, values of the parameter p
for which functions from the family are positive on (a,b) . The inequalities f (x) < 0
and their generalisations of the form p(x) < 0 are considered analogously.

Our approach to solving these problems is based on the use of so-called stratifica-
tion of the family of functions [5,25,27–30,32,35]. The family of functions {p(x)}p∈P

is increasingly stratified on the interval (a,b) iff

(∀x∈(a,b))(∀p1, p2∈P) p1 < p2 ⇐⇒ p1(x) < p2(x),

Mathematics subject classification (2020): 41A44, 26D05, 26D07.
Keywords and phrases: Taylor expansions, stratified families of functions, D’Aurizio-Sándor inequal-

ities.
This work was financially supported by the Ministry of Science, Technological Development and Innovation of

the Republic of Serbia under contract numbers: 451-03-137/2025-03/200103 (for the first, third and fourth authors) and
451-03-136/2025-03/200103 (for the second author). This research was conducted at the Center for Applied Mathematics,
the Palace of Science; therefore, the authors wish to express their gratitude to the Miodrag Kostić Endowment, Belgrade.
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and, conversely, the family of functions {p(x)}p∈P is decreasingly stratified on the
interval (a,b) iff

(∀x∈(a,b))(∀p1, p2∈P) p1 < p2 ⇐⇒ p1(x) > p2(x).

Let {p(x)}p∈P be a stratified family of functions on the interval (a,b) . We say
that the constant p1∈P is the best possible for the inequality p(x) > 0 on (a,b) and
for p∈P iff p1(x) > 0 on (a,b) and there is no constant p2∈P such that

(∀x∈(a,b)) p1(x) > p2(x) > 0.

Of particular interest in this paper are families of functions {p(x)}p∈P , defined
on [a,b] , a < b , which are stratified and such that each function p(x) has Taylor ex-
pansions at the points a and b with at least one non-zero coefficient. For such functions
p(x) , we examine the sign on the interval (a,b) .

Let us outline the further structure of the paper. In Section 2, a method for proving
mixed trigonometric polynomial inequalities is briefly described. Section 3 contains
the main theoretical results of the paper through which we select possible real values
of the parameter for which the functions from the family {p(x)}p∈P are positive,
i.e. negative on the corresponding interval. In Section 4, based on the method for
proving mixed trigonometric polynomial inequalities and the results from Section 3, we
extend D’Aurizio-Sándor-type inequalities [17, 39] from the values of parameters that
are natural numbers to real values and obtain the best values for those real parameters.
In the conclusion, we propose an open problem.

2. Mixed trigonometric polynomial inequalities

By a mixed trigonometric polynomial (MTP) inequality, we refer to an inequality
of the form

f (x) > 0, x∈I (2)

where I is an open, semi-open, or closed interval, and

f (x) =
n


i=1

ix
pi cosqixsinrix ,

for i∈R\{0}, pi,qi,ri∈N0 and n∈N , is an MTP function, see [9, 11–13, 18, 19, 22–
24, 26, 36, 45].

One method for proving MTP inequalities over I was proposed in [5,26]. Accord-
ing to that method, we first transform the MTP function f (x) in the form

f (x) =
m


i=1

ix
sitrigi(k x) , (3)

where i ∈R\{0},si ∈N0 , trigi = cos or trigi = sin , k∈Z and m∈N . Then, for
the function f (x) , we find a positive downward polynomial approximation P(x) (if
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it exists) by determining the corresponding polynomial approximations of the func-
tions trigi(k x) for i = 1,2, . . . ,m . If the coefficients of the polynomial P(x) are not
rational numbers, according to [23], it is possible to determine a corresponding posi-
tive downward polynomial approximation of the polynomial P(x) with the polynomial
Q(x) whose coefficients are rational numbers. Thus, proving the inequality (2) is re-
duced to proving the polynomial inequality P(x) > 0, i.e. Q(x) > 0, for x∈ I . To
effectively prove the positivity of polynomials, we use Sturm’s theorem ( [41], Theo-
rem 4.1 and 4.2 [14]).

Let us note that the results provided in Lemmas 1.1 and 1.2 from [26] are used
when forming the polynomial P(x) . By using those Lemmas, it is also possible to
determine upward/downward polynomial approximations for the functions y = cos(k x)
and y = sin(k x) , where k∈Z , which appears in the expression (3).

In this paper, we also consider the determination of upward/downward polynomial
approximations for the functions y = cos( x) and y = sin( x) , where  ∈R . For a
function  : R −→ R and ∈R , let us denote

(x) = ( x).

If T  ,a
n is the Taylor expansion of order n of a function  in a neighbourhood of the

point a , then for any ∈R , it holds:

T  ,0
n (x) = T  ,0

n ( x). (4)

The equality (4) for  = cos or  = sin , based on Lemmas 1.1 and 1.2 from [26], allows
us to determine some upward/downward polynomial approximations for the functions
y = cos( x) and y = sin( x) as used in Section 4.

Let us note that since the method for provingMTP inequalities from [26] is compu-
ter-implemented within the prover SimTheP [4, 5], MTP inequalities could also be
proved automatically.

3. Main results

The following theorem holds.

THEOREM 1. Let {p(x)}p∈P , /0 �= P⊆R , be a family defined on [a,b] , a< b,
such that each function p(x) has Taylor expansions at the points a and b with at least
one non-zero coefficient.

(i) Let cp,a
n be the first non-zero coefficient in the Taylor expansion

p(x) =
n+


i=0

cp,a
i (x−a)i +o

(
(x−a)n+) , (5)

where n∈N0 , ∈N .

If the equation
cp,a

n = 0 (6)
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has the solution p = pa∈P and for pa there exists j �  such that

cpa,a
n+1 = cpa,a

n+2 = . . . = cpa,a
n+ j−1 = 0 ∧ cpa,a

n+ j < 0(
i.e. cpa,a

n+1 = cpa,a
n+2 = . . . = cpa,a

n+ j−1 = 0 ∧ cpa,a
n+ j > 0

)
,

then, there exists b1∈(a,b] such that for each x∈(a,b1) , it holds:

pa(x) < 0 (i.e. pa(x) > 0) .

(ii) Let cp,b
m be the first non-zero coefficient in the Taylor expansion

p(x) =
m+


i=0

cp,b
i (x−b)i +o

(
(x−b)m+) , (7)

where m∈N0 , ∈N .

If the equation

cp,b
m = 0 (8)

has the solution p = pb∈P and for pb there exists k �  such that

c
pb,b
m+1 = c

pb,b
m+2 = . . . = c

pb,b
m+k−1 = 0 ∧ (−1)m+k c

pb,b
m+k < 0(

i.e. c
pb,b
m+1 = c

pb,b
m+2 = . . . = c

pb,b
m+k−1 = 0 ∧ (−1)m+k c

pb,b
m+k > 0

)
,

then, there exists a1∈ [a,b) such that for each x∈(a1,b) , it holds:

pb(x) < 0
(
i.e. pb(x) > 0

)
.

Proof. Based on the properties of the Taylor expansion of functions. �

REMARK 1. If in Theorem 1, the Taylor expansion (5) is such that the first non-
zero coefficient cp,a

n has a constant sign for all values of the parameter p∈P , then all
functions from the family {p(x)}p∈P has the same sign in some right neighbourhood
of the point a . For the Taylor expansion (7) , the similar assertion holds.

The first non-zero coefficient cp,a
n ( i.e. cp,b

m ) from Theorem 1, we call the
main coefficient. If the main coefficient is a monotonic function with respect to p∈P ,
then a solution to the equation (6) ( i.e. the equation (8) ) is unique if it exists.

For the stratified family of functions {p(x)}p∈P , based on the properties of the
Taylor expansions of functions and properties of the stratified families of functions, the
following assertion holds.
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THEOREM 2. Let {p(x)}p∈P , /0 �= P⊆R , be a family of functions defined on
[a,b] , a<b, for which, it holds:

(1) the family is increasingly (i.e. decreasingly) stratified on the interval (a,b) ,

(2) the family satisfies conditions from (i) and (ii) in Theorem 1 ,

(3) the main coefficients from Theorem 1 are monotonic functions with respect to p∈P ,

(4) the set P contains the constants pa and pb from Theorem 1 .

Then, it holds:

(i) For each d∈ (a,b] such that (∀x∈ (a,d)) pa(x) < 0 and for each p′ < pa (i.e.
for p′ > pa) , it holds:

x∈(a,d) =⇒ p′(x) < pa(x) < 0. (9)

Particularly, if d = b, then pa is the best possible constant for the inequality p(x) < 0
on the interval (a,b) , for p∈P .

(ii) For each c∈ [a,b) such that (∀x∈ (c,b)) pb(x) > 0 and for each p′′ > pb (i.e.
for p′′ < pb) , it holds:

x∈(c,b) =⇒ 0 < pb(x) < p′′(x). (10)

Particularly, if c = a, then pb is the best possible constant for the inequality p(x) > 0
on the interval (a,b) , for p∈P .

(iii) For each d∈(a,b] such that (∀x∈(a,d)) pa(x) > 0 and for each p′′ > pa (i.e.
for p′′ < pa) , it holds:

x∈(a,d) =⇒ 0 < pa(x) < p′′(x). (11)

Particularly, if d = b, then pa is the best possible constant for the inequality p(x) > 0
on the interval (a,b) , for p∈P .

(iv) For each c∈ [a,b) such that (∀x∈ (c,b)) pb(x) < 0 and for each p′ < pb (i.e.
for p′ > pb) , it holds:

x∈(c,b) =⇒ p′(x) < pb(x) < 0. (12)

Particularly, if c = a, then pb is the best possible constant for the inequality p(x) < 0
on the interval (a,b) , for p∈P .

Proof. Based on the conditions (2) , (3) and (4) , the constants pa and pb are
unique. The implications (9), (10), (11) and (12) follow from (1) . Based on (1) and
the fact that the main coefficients change the sign at the points pa and pb (the condition
(3)), if c = a and d = b , there are no better constants than pa and pb on the interval
(a,b) and for p∈P . �

Based on the previous results, a brief outline of our approach is given bellow.
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First of all, we consider families of functions {p(x)}p∈P , /0 �=P ⊆R and x∈
[a,b] , a < b , such that the functions p(x) are differentiable at least once with respect
to the parameter p and that for each p∈P , the function p(x) has Taylor expansions
at the points a and b with at least one non-zero coefficient.

Next, we select, if it exists, a set P ⊆ P such that:

(1) the family is stratified on the interval (a,b) ,

(2) the main coefficients are monotonic functions on the set P and have the zeros
pa, pb∈P .

If the functions pa(x) and pb(x) have a constant sign on the entire interval
(a,b) , then, based on Theorem 2, the constants pa and pb are the best possible for the
corresponding inequalities on (a,b) and for p ∈ P .

In the next section, we will illustrate the previously described method with specific
examples.

4. Applications to some D’Aurizio-Sándor-type inequalities

In this section, we apply the described method to generalise some D’Aurizio-
Sándor-type inequalities. Instead of a parameter that is a natural number, we introduce
a real parameter and determine the best real constants for the observed inequalities.

The D’Aurizio-Sándor inequalities [15, 40] are given by:

THEOREM 3. Let x∈
(
0,

2

)
. Then, it holds that

3
8

<

1− cosx
cos x

2

x2 <
4
2 (13)

and

4
2

(
2−

√
2
)

<

2− sinx
sin x

2

x2 <
1
4

.

The inequality (13) was generalised in [39] by introducing a parameter which is a
natural number, as follows:

THEOREM 4. For any x∈
(
0,

2

)
and all positive integers n � 3 , one has

4
2 <

1− cosx
cos x

n

x2 <
n2−1
2n2 .

In [17], the authors gave an additional generalisation of the D’Aurizio-Sándor
inequalities through the following assertion.
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THEOREM 5. Let x∈
(
0,

2

)
. Then the two double inequalities

4
2 <

1− cosx
cos x

p

x2 <
p2−1
2p2 (14)

and

4
2

(
p− csc

(

2p

))
<

p− sinx
sin x

p

x2 <
p2−1

6p
(15)

hold for p = 3,4,5, . . . . In particular, (15) remains true when p = 2 , while (14) is
reversed when p = 2 .

In the following two subsections, we analyse the double inequality (14) for real
values of the parameter p and x∈(0,/2) .

4.1. Extension of the left side of the inequality (14)

Based on the left side of the inequality (14), we introduce the family of functions
{p(x)}p∈P , where

p(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− cosx
cos x

p

x2 − 4
2 , x∈(0,/2]

1
2
− 1

2p2 −
4
2 , x = 0,

(16)

which is defined for each x∈ [0,/2] and the parameter p∈P = R\ [−1,1] .
Due to the evenness of all functions p(x) , it is sufficient to analyse the afore-

mentioned family for p∈(1,+) . Additionally, for this family, the following assertion
holds.

LEMMA 1. The family of functions {p(x)}p∈P , P = (1,+) , is increasingly
stratified on the interval (0,/2) .

Proof. It holds that

p(x)
 p

=
cosxsin x

p

x
(

pcos x
p

)2 > 0

for p∈(1,+) and x∈(0,/2) . �

Further, we consider the family {p(x)}p∈P for P = (1,+) and x∈ [0,/2] .
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The Taylor expansion of p(x) at the point 0 is

p(x) =
(

1
2
− 1

2p2 −
4
2

)
+
(
− 1

24
+

1
4p2 −

5
24p4

)
x2 +o

(
x2) (17)

and the Taylor expansion of p(x) at the point /2 is

p(x) =
(

4
2 cos 

2p
− 16

3

)(
x− 

2

)

+

(
4sin 

2p

p2
(
cos 

2p

)2 − 16
3 cos 

2p
+ 48

4

)(
x− 

2

)2
+o
((

x− 
2

)2)
.

(18)

The first non-zero coefficient of the Taylor expansion (17) is a monotonic function

with respect to p∈(1,+) given by c
p0 ,0
0 = 1

2 − 1
2p2 − 4

2 .

The solution to the equation c
p0 ,0
0 = 1

2 − 1
2p2 − 4

2 = 0 is unique with respect to

p∈(1,+) and is given by the constant p = p0 =
√

2−8
= 2.29760 . . . ∈(1,+) .

The first non-zero coefficient of the Taylor expansion (18) is a monotonic function

with respect to p∈(1,+) given by c
p/2

,/2

1 = 4
2 cos 

2p
− 16

3 .

The solution to the equation c
p/2

,/2

1 = 4
2 cos 

2p
− 16

3 = 0 is unique with respect

to p∈ (1,+) and is given by the constant p = p/2 =


2arccos 
4

= 2.35340 . . . ∈
(1,+) .

Based on Theorem 1, it follows:

1) since the coefficient c
p0 ,0
2 = − 1

24 + 1
4p0

2 − 5
24p0

4 < 0, we conclude that there exists

a right neighbourhood of the point 0 such that p0(x) < 0, and

2) since the coefficient c
p/2

,/2

2 = (−1)2

⎛
⎜⎝ 4sin 

2p/2

p/22
(

cos 
2p/2

)2 − 16
3 cos 

2p/2

+ 48
4

⎞
⎟⎠ >

0, we conclude that there exists a left neighbourhood of the point /2 such that
p/2

(x) > 0.

In Theorem 6, we prove that p0(x) < 0 on the entire interval (0,/2) , while in
Theorem 7, we prove that p/2

(x) > 0 on the entire interval (0,/2) .

THEOREM 6. For x∈
(
0,

2

)
and p = p0 =

√
2−8

, it holds that

4
2 >

1− cosx
cos x

p

x2 .
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The constant p0 =
√

2−8
is the best possible for the previous inequality and for the

parameter p∈(1,+) .

Proof. For p0 = √
2−8

, it holds that

p0(x) =

(
2−4x2

)
cos x

√
2−8
 −2 cosx

2x2 cos x
√

2−8


.

In order to examine the sign of the function

f (x) =
(
2−4x2)cos

x
√
2−8


−2 cosx

on the interval (0,/2) , we consider the following two cases:

1. x∈(0,1.5] :

If we approximate the function cos x
√

2−8
 by the Maclaurin polynomial of degree

4, and the function cosx by the Maclaurin polynomial of degree 6, then the function
f (x) has the upward polynomial approximation

P1(x) =
(
2−4x2

)
T cos,0
4

(
x
√

2−8


)
−2T cos,0

6 (x)

=
(

2

720 − 1
6 + 8

32 − 32
34

)
x6 +

(
4
3 − 40

32

)
x4

= x4
((

2

720 − 1
6 + 8

32 − 32
34

)
x2 + 4

3 − 40
32

)
on the interval (0,1.5] . It is easy to prove that P1(x) < 0 on the interval (0,1.5] . Thus,

f (x) < 0

on the interval (0,1.5] .

2. x∈(1.5,/2) :
Let us prove that f (x) < 0 also holds on the interval (1.5,/2) . By substitution

x = /2− t , we obtain the function

g(t) = f
(

2 − t
)

= 4t (− t)cos (−2t)
√

2−8
2 −2 sin t

= 4t (− t)cos
√

2−8
2 cos t

√
2−8


+4t (− t)sin
√

2−8
2 sin t

√
2−8
 −2 sin t ,

where t∈(0,/2−1.5) . Notice that the function g is defined on the entire set R . We
will prove that g(t) is negative on the interval (0,0.1]⊃ (0,/2−1.5) . If we approxi-

mate the functions cos t
√

2−8
 , sin t

√
2−8
 and sin t by the Maclaurin polynomials of
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degrees 4, 1 and 3, respectively, then the function g(t) has the upward polynomial
approximation

P2(t) = 4t (− t)cos
√

2−8
2 T cos,0

4

(
t
√

2−8


)

+4t (− t)sin
√

2−8
2 T sin,0

1

(
t
√

2−8


)
−2T sin,0

3 (t)

=
(
− cos

√
2−8
2

6 + 8cos
√
2−8
2

32 − 32cos
√
2−8
2

34

)
t6

+
(

 cos
√
2−8
2

6 − 8cos
√
2−8
2

3 + 32cos
√
2−8
2

33

)
t5

+
(

2cos
√

2−8
2 − 16cos

√
2−8
2

2

)
t4

+
(
−2 cos

√
2−8
2 + 16cos

√
2−8
2

 − 4
√

2−8sin
√
2−8
2

 + 2

6

)
t3

+
(

4
√
2−8sin

√
2−8
2 −4cos

√
2−8
2

)
t2

+
(
−2 +4 cos

√
2−8
2

)
t

= −0.00463 . . . t6 +0.0145 . . . t5 +0.293 . . . t4−0.377 . . . t3

+0.353 . . . t2−0.127 . . . t

on the interval (0,0.1] . The polynomial P2(t) has the upward polynomial approxima-
tion with rational coefficients

Q2(t) = −0.0046 t6 +0.015 t5 +0.3 t4−0.37 t3 +0.36 t2−0.12 t

= t

(
− 23

5000
t5 +

3
200

t4 +
3
10

t3− 37
100

t2 +
9
25

t− 3
25

)

on the interval (0,0.1] . By applying Sturm’s theorem to the polynomial

− 23
5000

t5 +
3

200
t4 +

3
10

t3− 37
100

t2 +
9
25

t− 3
25

on the segment [0,0.1] , it can be concluded that this polynomial has no zeros on the
segment [0,0.1] . Hence, the polynomial Q2(t) has no zeros on the interval (0,0.1] .
Considering that Q2(0.1) =− 43699273

5000000000 =−0.0087398 . . . < 0, it holds that Q2(t) < 0
on the interval (0,0.1] . Therefore,

g(t) < 0

on the interval (0,0.1] since g(t) < P2(t) < Q2(t) < 0 on the interval (0,0.1] . Thus,

f (x) < 0
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on the interval [/2−0.1,/2) , and consequently on the interval (1.5,/2) .

Based on the previous two cases, it is evident that p0(x) < 0 on the interval
(0,/2) .

Based on Theorem 2 and Lemma 1, the constant p0 =
√

2−8
is the best possible

for p∈(1,+) . �

THEOREM 7. For x∈
(
0,

2

)
and p = p/2 =


2arccos 

4

, it holds that

4
2 <

1− cosx
cos x

p

x2 .

The constant p/2 =


2arccos 
4

is the best possible for the previous inequality and for

the parameter p∈(1,+) .

Proof. For p/2 =


2arccos 
4

, it holds that

p/2
(x) =

(
2−4x2

)
cos

2xarccos 
4


−2 cosx

2x2 cos
2xarccos 

4



.

In order to examine the sign of the function

f (x) =
(
2−4x2)cos

2xarccos 
4


−2 cosx

on the interval (0,/2) , we consider the following two cases:

1. x∈(0,0.9] :

If we approximate the function cos
2xarccos 

4


by the Maclaurin polynomial of

degree 2, and the function cosx by the Maclaurin polynomial of degree 4, then the
function f (x) has the downward polynomial approximation

P1(x) =
(
2−4x2

)
T cos,0
2

(
2xarccos 

4



)
−2T cos,0

4 (x)

=
(
− 2

24 +
8(arccos 

4 )2

2

)
x4 +

(
2

2 −4−2
(
arccos 

4

)2)
x2

= x2

((
− 2

24 +
8(arccos 

4 )
2

2

)
x2 + 2

2 −4−2
(
arccos 

4

)2)

on the interval (0,0.9] . It is easy to prove that P1(x) > 0 on the interval (0,0.9] . Thus,

f (x) > 0
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on the interval (0,0.9] .

2. x∈(0.9,/2) :
Let us prove that f (x) > 0 also holds on the interval (0.9,/2) . By substitution

x = /2− t , we obtain the function

g(t) = f
(

2 − t
)

= 4t (− t)cos
(−2t)arccos 

4
 −2 sin t

= t (− t) cos
2t arccos 

4


+ t (− t)
√

16−2 sin
2t arccos 

4
 −2 sin t ,

where t∈(0,/2−0.9) . Notice that the function g is defined on the entire set R . We
will prove that g(t) is negative on the interval (0,0.7]⊃ (0,/2−0.9) . If we approxi-

mate the functions cos
2t arccos 

4
 , sin

2t arccos 
4

 and sin t by the Maclaurin polynomials
of degrees 2, 3 and 5, respectively, then the function g(t) has the downward polyno-
mial approximation

P2(t) = t (− t)T cos,0
2

(
2t arccos 

4


)
+ t (− t)

√
16−2T sin,0

3

(
2t arccos 

4


)
−2T sin,0

5 (t)

=
(

4
√

16−2(arccos 
4 )3

33 − 2

120

)
t5

+
(

2(arccos 
4 )

2

 − 4
√

16−2(arccos 
4 )

3

32

)
t4

+
(
−2
(
arccos 

4

)2− 2
√

16−2 arccos 
4

 + 2

6

)
t3

+
(
2
√

16−2 arccos 
4 −

)
t2

= −0.0505 . . . t5 +0.184 . . . t4−0.298 . . . t3 +0.163 . . . t2

on the interval (0,0.7] . The polynomial P2(t) has the downward polynomial approxi-
mation with rational coefficients

Q2(t) = −0.051 t5 +0.18 t4−0.3 t3 +0.16 t2

= −t2
(

51
1000

t3− 9
50

t2 +
3
10

t− 4
25

)

on the interval (0,0.7] . By applying Sturm’s theorem to the polynomial

51
1000

t3− 9
50

t2 +
3
10

t − 4
25

on the segment [0,0.7] , it can be concluded that this polynomial has no zeros on the
segment [0,0.7] . Hence, the polynomial Q2(t) has no zeros on the interval (0,0.7] .
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Considering that Q2(0.7) = 1014643
100000000 = 0.010146 . . . > 0, it holds that Q2(t) > 0 on

the interval (0,0.7] . Therefore,

g(t) > 0

on the interval (0,0.7] since g(t) > P2(t) > Q2(t) > 0 on the interval (0,0.7] . Thus,

f (x) > 0

on the interval [/2−0.7,/2) , and consequently on the interval (0.9,/2) .

Based on the previous two cases, it is evident that p/2
(x) > 0 on the interval

(0,/2) .

Based on Theorem 2 and Lemma 1, the constant p/2 =


2arccos 
4

is the best

possible for p∈(1,+) . �

Therefore, based on the previous analysis, the following general statement holds.

THEOREM 8. Let:

A = p0 =
√

2−8
and B = p/2 =


2arccos 

4
.

Then, it holds:

(i) If p∈(1,A) , then

(
∀x∈

(
0,

2

)) 1− cosx
cos x

p

x2 <

1− cosx
cos x

A

x2 <
4
2

and the constant A is the best possible.

(ii) If p∈(B,+) , then

(
∀x∈

(
0,

2

)) 4
2 <

1− cosx
cos x

B

x2 <

1− cosx
cos x

p

x2

and the constant B is the best possible.

Figure 1 illustrates the stratified family of functions defined by (16), with particular
emphasis on the cases when p = 2, p = 3, p = 4 and p = 5 from Theorem 5, as well
as when the parameter p is equal to the best constants according to Theorem 8.
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Figure 1: Stratified family of functions defined by (16)

4.2. Extension of the right side of the inequality (14)

Based on the right side of the inequality (14), we introduce the family of functions
{p(x)}p∈P , where

p(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− cosx
cos x

p

x2 − p2−1
2p2 , x∈(0,/2]

0, x = 0,

(19)

which is defined for each x∈ [0,/2] and the parameter p∈P = R\ [−1,1] .
Due to the evenness of all functions p(x) , it is sufficient to analyse the afore-

mentioned family for p∈(1,+) . Additionally, for this family, the following assertion
holds.

LEMMA 2. The family of functions {p(x)}p∈P , P =
[√

15
3 ,+

)
, is decreasingly

stratified on the interval (0,/2) .

Proof. It holds that

p(x)
 p

=
pcosxsin x

p − x
(
cos x

p

)2

xp3
(
cos x

p

)2 .
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Let us introduce the family of functions { fp(x)}p∈P , defined by

fp(x) = pcosxsin
x
p
− x

(
cos

x
p

)2

, (20)

on the interval [0,/2] . The Taylor expansion of fp(x) at the point 0 is

fp(x) =
(
−1

2
+

5
6p2

)
x3 +

(
1
24

+
1

12p2 −
13

40p4

)
x5 +o

(
x5
)

. (21)

Therefore, based on Theorem 1, there exists a right neighbourhood of the point 0 such
that f√15/3(x) < 0 (

√
15/3 = 1.29099 . . . ).

Let us prove that fp(x) < 0 for p �
√

15/3, when x∈ (0,/2) . By introducing
substitution x = t p in (20), we obtain:

fp(x) = fp(t p) = pcos(t p) sin t− t p(cost)2 = p
(
cos(t p)sin t− t (cost)2

)
.

Let us observe the family of functions {gp(t)}p∈P , where

gp(t) = cos(t p)sin t − t (cost)2 , for p �
√

15/3 and t =
x
p
∈
(
0, 3

2
√

15

)
⊂(0,/2) .

It holds that
gp(t)
 p

= −t sin(t) sin(t p) < 0

given that t p∈ (0,/2) . Thus, the family of functions {gp(t)}p∈P is decreasingly
stratified for p �

√
15/3 and t∈(0,/2) . Let us prove that the function

g√
15
3

(t) = cos t
√

15
3 sin t− t (cost)2

= 1
2 sin

t(
√

15+3)
3 − 1

2 sin
t(
√

15−3)
3 − 1

2 t cos(2t)− 1
2 t

is negative for t∈(0,/2) . If we approximate the functions sin
t(
√

15+3)
3 , sin

t(
√

15−3)
3

and cos(2t) by the Maclaurin polynomials of degrees 9, 3 and 6, respectively, then
the function g√

15
3

(t) has the upward polynomial approximation

P(t) = 1
2T sin,0

9

(
t(
√

15+3)
3

)
− 1

2T sin,0
3

(
t(
√

15−3)
3

)
− 1

2 t T cos,0
6 (2t)− 1

2 t

=
(

487
√

15
1574640 + 163

136080

)
t9 +

(
− 433

√
15

102060 + 953
34020

)
t7 +

(
11

√
15

324 − 109
540

)
t5

= t5
((

487
√

15
1574640 + 163

136080

)
t4 +

(
− 433

√
15

102060 + 953
34020

)
t2 + 11

√
15

324 − 109
540

)
.

for t∈(0,/2) . It is easy to prove that P(t) < 0 for t∈(0,/2) . Thus,

g√
15
3

(t) < 0
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for t ∈ (0,/2) . Based on the decreasing stratification of the family of functions
{gp(t)}p∈P , it follows that

gp(t) < 0 for p �
√

15
3 and t∈(0,/2) .

Since fp(t p) = p ·gp(t) , it holds that

fp(x) = fp(t p) < 0

for p �
√

15
3 and x∈(0,/2) . Hence, it holds that

p(x)
 p

=
fp(x)

xp3
(
cos x

p

)2 < 0

for p∈
[√

15
3 ,+

)
on the interval (0,/2) . �

For p∈
(
1,
√

15/3
)

, the family of functions {p(x)}p∈(1,+) defined by (19) is

not stratified on the interval (0,/2) , which we prove at the end of this subsection, in
Lemma 3.

Further, we consider the family {p(x)}p∈P for P = [
√

15/3,+) and x∈[0,/2] .
The Taylor expansion of p(x) at the point 0 is

p(x)=
(
− 1

24
+

1
4p2 −

5
24p4

)
x2 +

(
1

720
− 1

48p2 +
5

48p4 −
61

720p6

)
x4 +o

(
x4) (22)

and the Taylor expansion of p(x) at the point /2 is

p(x) =
(
−1

2
+

1
2p2 +

4
2

)
+

(
4

2 cos 
2p

− 16
3

)(
x− 

2

)
+o
((

x− 
2

))
. (23)

The first non-zero coefficient of the Taylor expansion (22) is a monotonic function

with respect to p∈ [
√

15/3,+) given by c
p0 ,0
2 = − 1

24 + 1
4p2 − 5

24p4 .

The solution to the equation c
p0 ,0
2 = − 1

24 + 1
4p2 − 5

24p4 = 0 is unique with re-

spect to p∈ [
√

15/3,+) and is given by the constant p = p0 =
√

5 = 2.23606 . . . ∈
[
√

15/3,+) .
The first non-zero coefficient of the Taylor expansion (23) is a monotonic function

with respect to p∈ [
√

15/3,+) given by c
p/2

,/2

0 = − 1
2 + 1

2p2 + 4
2 .

The solution to the equation c
p/2

,/2

0 =− 1
2 + 1

2p2 + 4
2 = 0 is unique with respect

to p∈ [
√

15/3,+) and is given by the constant p = p/2 =
√

2−8
= 2.29760 . . . ∈

[
√

15/3,+) .
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Based on Theorem 1, it follows:

1) since the coefficient c
p0 ,0
4 = 1

720 − 1
48p0

2 + 5
48p0

4 − 61
720p0

6 > 0, we conclude that

there exists a right neighbourhood of the point 0 such that p0(x) > 0.

2) since the coefficient c
p/2

,/2

1 = (−1)1
(

4
2 cos 

2p/2

− 16
3

)
< 0, we conclude that

there exists a left neighbourhood of the point /2 such that p/2
(x) < 0.

In Theorem 9, we prove that p/2
(x) < 0 on the entire interval (0,/2) , while in

Theorem 10, we prove that p0(x) > 0 on the entire interval (0,/2) .

THEOREM 9. For x∈
(
0,

2

)
and p = p/2 =

√
2−8

, it holds that

1− cosx
cos x

p

x2 <
p2−1
2p2 .

The constant p/2 =
√

2−8
is the best possible for the previous inequality and for

the parameter p∈ [
√

15/3,+) .

Proof. For p/2 =
√

2−8
, it holds that

p/2
(x) =

(
2−4x2

)
cos

x
√
2−8


−2 cosx

2x2 cos
x
√
2−8


.

In Theorem6, it has already been proved that the aforementioned function is negative on

the interval (0,/2) . Based on Theorem 2 and Lemma 2, the constant p/2 =
√

2−8
is the best possible for p∈ [

√
15/3,+) . �

THEOREM 10. For x∈
(
0,

2

)
and p = p0 =

√
5 , it holds that

1− cosx
cos x

p

x2 >
p2−1
2p2 .

The constant p0 =
√

5 is the best possible for the previous inequality and for the pa-
rameter p∈ [

√
15/3,+) .

Proof. For p0 =
√

5, it holds that

p0(x) =
−2x2 cos x

√
5

5 +5cos x
√

5
5 −5cosx

5x2 cos x
√

5
5

.
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Let us examine the sign of the function

f (x) = −2x2 cos
x
√

5
5

+5cos
x
√

5
5

−5cosx (24)

on the interval (0,/2) . If we approximate the function cos x
√

5
5 by the Maclaurin

polynomial of degree 4 in the first addend of the function (24) and by the Maclaurin
polynomial of degree 6 in the second addend of the function (24), and the function cosx
by the Maclaurin polynomial of degree 8, then the function f (x) has the downward
polynomial approximation

P(x) = −2x2T cos,0
4

(
x
√

5
5

)
+5T cos,0

6

(
x
√

5
5

)
−5T cos,0

8 (x)

= − 1
8064x8 + 4

1125x6 = x6
(− 1

8064x2 + 4
1125

)
on the interval (0,/2) . It is easy to prove that P(x) > 0 on the interval (0,/2) .
Thus,

f (x) > 0

on the interval (0,/2) . Therefore, it is evident that p0(x)> 0 on the interval (0,/2) .
Based on Theorem 2 and Lemma 2, the constant p0 =

√
5 is the best possible for

p∈ [
√

15/3,+) . �

Therefore, based on the previous analysis, the following general statement holds.

THEOREM 11. Let:

C =
√

15
3

, A = p0 =
√

5 and B = p/2 =
√

2−8
.

Then, it holds:

(i) If p∈ [C,A) , then

(
∀x∈

(
0,

2

))
0 <

1− cosx
cos x

A

x2 − A2−1
2A2 <

1− cosx
cos x

p

x2 − p2−1
2p2

and the constant A is the best possible.

(ii) If p∈(B,+) , then

(
∀x∈

(
0,

2

)) 1− cosx
cos x

p

x2 − p2−1
2p2 <

1− cosx
cos x

B

x2 − B2−1
2B2 < 0

and the constant B is the best possible.
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Figure 2 illustrates the stratified family of functions defined by (19) for some val-
ues of the parameter p∈[

√
15/3,+) for which this family is stratified, with particular

emphasis on the cases when p = 2, p = 3, p = 4 and p = 5 from Theorem 5, as well
as when the parameter p is equal to the best constants according to Theorem 11.

Figure 2: The stratified part of family of functions defined by (19)

Lastly, we prove that the considered family of functions {p(x)}p∈(1,+) defined

by (19) is not stratified for p∈
(
1,
√

15/3
)

on the interval (0,/2) .

LEMMA 3. For the family of functions {p(x)}p∈(1,+) , x∈ [0,/2] , and for p∈(
1,
√

15/3
)

, it holds:

p(x)
 p

> 0 in some right neighbourhood of the point 0 (25)

and
p(x)
 p

< 0 in some left neighbourhood of the point /2 . (26)

Proof. Based on Theorem 1 and the Taylor expansion (21), for p∈
(
1,
√

15/3
)

,

there exists a right neighbourhood of the point 0 such that

fp(x) > 0;

thus,
p(x)
 p

=
fp(x)

xp3
(
cos x

p

)2 > 0 .
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Based on the Taylor expansion of fp(x) at the point /2

fp(x)=−
2

(
cos


2p

)2

+

(
−psin


2p

−
(
cos


2p

)2

+

p

cos

2p

sin

2p

)(
x−

2

)
+o
(
x−

2

)
,

we conclude that there exists a left neighbourhood of the point /2 such that

fp(x) < 0

for p > 1. Therefore,
p(x)
 p

=
fp(x)

xp3
(
cos x

p

)2 < 0

in a left neighbourhood of the point /2 for p∈
(
1,
√

15/3
)

. �

Figure 3 illustrates some functions from the family of functions defined by (19)
for some values of the parameter p∈(1,

√
15/3) for which this family is not stratified

on the interval (0,/2) . The conditions (25) and (26) provide a self-intersection of the
functions from this family, as shown in the figure.

(a)

(b)

Figure 3: (a) Functions 1.04(x) , 1.11(x) and 1.29(x) on the interval (0,/2) ; (b) The
unstratified part of family of functions defined by (19)
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5. Conclusion

There are numerous well-known inequalities for which the best constants are ob-
tained [1–3,5–8,10,16,25,27–35,37,38,42–44,46–50]. Closely related to any consid-
eration of inequalities of the type (1) is the question of the existence and determination
of the best constants. In this paper, we gave a new approach for selecting the best real
constants for some inequalities of the type (1).

By applying the proposed method, an improvement of the double inequality (14)
was obtained. It has been shown how, by applying the stratification of families of func-
tions, such inequalities can be generalised, i.e. considered for real values of parameters,
with selecting the best values for those parameters.

We propose the extension of the double inequality (15) to real values of the pa-
rameter, along with selecting the best constants, as an open problem.
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[2] Y. J. BAGUL, C. CHESNEAU, M. KOSTIĆ, The Cusa-Huygens inequality revisited, Novi Sad J. Math.
50: 2 (2020), 149–159.
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[24] B. MALEŠEVIĆ, B. BANJAC, I. JOVOVIĆ, A proof of two conjectures of Chao-Ping Chen for inverse
trigonometric functions, J. Math. Inequal. 11: 1 (2017), 151–162.
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[36] M. NENEZIĆ, B. MALEŠEVIĆ, C. MORTICI, New approximations of some expressions involving
trigonometric functions, Appl. Math. Comput. 283 (2016), 299–315.

[37] F. QI, B.-N. GUO, Sharpening and generalizations of Shafer’s inequality for the arc sine function,
Integral Transforms Spec. Funct. 23: 2 (2012), 129–134.

[38] F. QI, D.-W. NIU, B.-N. GUO, Refinements, Generalizations, and Applications of Jordan’s Inequality
and Related Problems, J. Inequal. Appl. 2009, 271923 (2009), 1–52.
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