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Abstract. In this paper, utilizing the Hadamard product of matrices, we show several new bounds
for the numerical radius in a way that extends some known bounds for the operator norm. How-
ever, the presented results treat special cases to overcome the general case, invalid for the nu-
merical radius. As a consequence of our discussion, we find relations between the numerical
radii of the Aluthge and Duggal transformations. Then, we show some bounds for the product
of three Hilbert space operators, and some mean-like terms are treated using operator matrices
techniques.

1. Introduction

Let (H ,〈·, ·〉) be a complex Hilbert space and B (H ) denote the C∗ -algebra of
all bounded linear operators on H . In the case when dimH = n , we identify B(H )
with the matrix algebra Mn of all n×n matrices with entries in the complex field C .
Given an orthonormal basis

{
e j
}

of a Hilbert space H , the Hadamard product A◦B
of two operators A,B is defined by

〈
A◦Bei,e j

〉
=
〈
Aei,e j

〉〈
Bei,e j

〉
. For matrices,

one easily observes that the Hadamard product of A = (ai j) and B = (bi j) is A ◦B =
(ai jbi j) , a principal submatrix of the tensor product A⊗ B = (ai jB)1�i, j�n . If T ∈
B (H ) , the real and imaginary parts of T are defined by T = T+T ∗

2 and T = T−T ∗
2i ,

respectively. We call a norm on operators or matrices weakly unitarily invariant if its
value at operator T is not changed by replacing T by U∗TU , provided only that U is
unitary.

The numerical range of an operator T in B (H ) is defined as W (T ) = {〈Tx,x〉 :
‖x‖= 1} . The numerical radius and the usual operator norm of an operator T ∈B(H )
are defined respectively as  (T ) = sup

‖x‖=1
|〈Tx,x〉| and ‖T‖ = sup

‖x‖=1
‖Tx‖ . It is well-

known that  (·) defines a norm on B (H ) , which is equivalent to the usual operator
norm ‖·‖ . Namely, for T ∈ B (H ) , we have

1
2
‖T‖ �  (T ) � ‖T‖ . (1.1)

Other facts about the numerical radius can be found in [7].

Mathematics subject classification (2020): Primary 47A30, 47A12; Secondary 47B15, 15A60, 47A50.
Keywords and phrases: Numerical radius, operator norm, inner product, polar decomposition.

c© � � , Zagreb
Paper JMI-19-17

261

http://dx.doi.org/10.7153/jmi-2025-19-17


262 A. HOSSEINI, M. HASSANI AND H. R. MORADI

The inequalities in (1.1) have been improved considerably by many authors, (see,
e.g., [8, 10, 12, 13, 18, 25]). Kittaneh [16, 17] has shown the following precise estimates
of  (T ) by using several norm inequalities and ingenious techniques:

 (T ) � 1
2

(
‖T‖+

∥∥T 2
∥∥ 1

2

)
, (1.2)

and
1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥� 2 (T ) � 1

2

∥∥∥|T |2 + |T ∗|2
∥∥∥ . (1.3)

In [5], Dragomir gave the following estimate of the numerical radius which refines the
second inequality in (1.1): For every T ,

2 (T ) � 1
2

(

(
T 2)+‖T‖2

)
.

We refer the reader to [1, 11, 21, 23, 24] as a list of references that treated numerical
radius inequalities, with attempts to sharpen the above and other bounds.

Let T = U |T | be the polar decomposition of T . The Aluthge transform T̃ of

T is defined by T̃ = |T | 1
2U |T | 1

2 [2]. The Duggal transform TD of T is specified by
TD = |T |U which is first referred to in [6]. The mean transform T̂ of T is represented

by T̂ = T+TD

2 . This transform was first raised in [19]. A type of operator transform is
the generalized mean transform T̂ () of T , presented recently in [3], by

T̂ () =
|T |U |T |1− + |T |1−U |T |

2
; 0 �  � 1

2
.

In this paper, we first discuss some related bounds for the numerical radius and
then new types of operator norm inequalities. In particular, we present possible upper
bounds for the numerical radius of Heinz-type quantities and a mean-type inequality for
the numerical radius. An application will include a new relation between the Aluthge
and Duggal transforms.

Among many results, we show that


(
T̂ ()

)
� 

(
2rT̃ +(1−2r)T̂

)
,

where r = min
{
v,1− v,

∣∣1
2 − v

∣∣} . Moreover, we show an arithmetic-geometric mean
inequality for the numerical radius in Theorem 2.4. As for the norm results, we show

that if

[
A C∗
C B

]
is a positive operator in B (H ⊕H ) , then

‖BCA+AC∗B‖ �
∥∥A2 +B2

∥∥
2

∥∥∥∥[A C∗
C B

]∥∥∥∥ .

This presents a new mean inequality for the product of three operators.
As a technical lemma, we state the following simple observation when simplifying

the products.



MEAN-TYPE INEQUALITIES FOR THE NUMERICAL RADIUS AND THE OPERATOR NORM 263

LEMMA 1.1. Let T,X ∈ Mn be such that T = diag(i) is a diagonal matrix. If

, � 0 , then TXT = (
i xi j


j ).

Proof. Letting ri(·) and c j(·) be the i− th row and j− th column,respectively, we
have

ri(TX) = ri(T)X
= [

i xi1,
i xi2, . . . ,

i xin].

Now, it is evident that

ri(TX)c j(T  ) = 
i xi j


j ,

which is the desired conclusion. �

2. Numerical radii inequalities

Before expressing the first main result of this section, recall that a continuous real-
valued function f defined on an interval J ⊆ R is called operator monotone if A � B
implies that f (A) � f (B) for all self-adjoint operators A,B with spectra in J .

THEOREM 2.1. Let T,X ∈ Mn such that T is positive definite and let f be an
operator monotone function on (0,) . Then

 ( f (T )X −X f (T )) � 
(
f ′ (T )

)
 (TX −XT) .

Proof. We focus on case T = diag(i) � 0. If T is not diagonal, then using the
spectral decomposition T = Udiag(i)U∗ and noting that  (·) is weakly unitarily
invariant imply the result. Letting Z = f (T )X −X f (T ) , we can see that

zi j =
{

xi j( f (i)− f ( j)), i �= j
0, i = j

=

{
f (i)− f ( j)

i− j
xi j(i − j), i �= j

f ′(i)xii(i − j), i = j
.

Notice that this can be written as Z = Y ◦ (TX −XT) where Y = f [1] (T ) , i.e.,

yi j =

{
f (i)− f( j)

i− j
; when i �= j

f ′ (i) ; when i = j
.

By [4, Theorem V.3.4], f [1] (T ) � O . Consequently

 ( f (T )X −X f (T )) =  (Y ◦ (TX −XT))
� maxyii (TX −XT)

=
∥∥ f ′ (T )

∥∥ (TX −XT)

= 
(
f ′ (T )

)
 (TX −XT) .

This completes the proof. �
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REMARK 2.1. It follows from Theorem 2.1 that

 (T rX −XTr) � r
∥∥T r−1

∥∥ (TX −XT) ; 0 � r � 1.

In particular,

 (|T |rU −U |T |r) � r
∥∥∥|T |r−1

∥∥∥ (
TD −T

)
; 0 � r � 1.

THEOREM 2.2. Let T,X ∈ Mn such that T be positive definite. Then for any
0 �  � 1 ,


(
T XT 1− +T 1−XT )� 

(
4rT

1
2 XT

1
2 +(1−2r)(TX +XT)

)
where r = min

{
,
∣∣ 1
2 −

∣∣ ,1−
}

.

Proof. First, we consider the case 0 �  � 1
2 . Let T = diag(i) � 0. Of course, if

T is not diagonal, then using the spectral decomposition T =Udiag(i)U∗ and noting
that  (·) is weakly unitarily invariant imply the result. By Lemma 1.1, we conclude
that for 0 � r � 1

4 ,(
T XT 1− +T1−XT )

i j

= 
i xi j 1−

j + 1−
i xi j

j

= 
i

(
 1−2

j + 1−2
i

)


j xi j

=


i

(
 1−2

j + 1−2
i

)


j

4r
1
2
i 

1
2
j +(1−2r)(i + j)

(
4r

1
2
i 

1
2
j +(1−2r)(i + j)

)
xi j

=


i

(
 1−2

j + 1−2
i

)


j

4r
1
2
i 

1
2
j +(1−2r)(i + j)

(
4r

1
2
i xi j

1
2
j +(1−2r)(ixi j + xi j j)

)
.

This means that

T XT 1− +T 1−XT  = W ◦
(
4rT

1
2 XT

1
2 +(1−2r)(TX +XT)

)
where W is a Hermitian matrix with entries

wi j =

⎧⎪⎨⎪⎩
i

(
 1−2

i + 1−2
j

)
j

4r
1
2

i 
1
2
j +(1−2r)(i+ j)

; when i �= j

1; when i = j

.

From [14, Theorem 4.4], we know that W � O whenever 0 � r � 1
4 . Therefore,


(
T XT 1− +T 1−XT )= 

(
W ◦

(
4rT

1
2 XT

1
2 +(1−2r)(TX +XT)

))
� 

(
4rT

1
2 XT

1
2 +(1−2r)(TX +XT )

)
,
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which completes the proof for the case 0 �  � 1
2 . For the case 1

2 �  � 1, replacing
 by 1− in the first case implies the desired conclusion. �

REMARK 2.2. It observes from Theorem 2.2 that


(
|T |U |T |1− + |T |1−U |T |

)
� 

(
4r|T | 1

2U |T | 1
2 +(1−2r)(|T |U +U |T |)

)
which can be written as

2
(
T̂ ()

)
� 

(
4rT̂

(
1
2

)
+2(1−2r)T̂ (0)

)
= 

(
4rT̃ +2(1−2r) T̂

)
i.e.,


(
T̂ ()

)
� 

(
2rT̃ +(1−2r)T̂

)
.

Integral inequalities have attracted several researchers’ attention in operator the-
ory, as found in [14]. In the following result, we present possible bounds for the nu-
merical radius of the integral of the Heinz means.

THEOREM 2.3. Let T,X ∈ Mn such that T be positive definite. Then for any
, ∈ R ,


(
T

+
2 XT 1− +

2 +T 1− +
2 XT

+
2

)
� 1

| −|
⎛⎝ ∫



(
T XT 1− +T 1−XT )d

⎞⎠
� 1

2

(
TXT 1− +T 1−XT +TXT 1− +T 1−XT

)
.

Proof. Without loss of generality, assume that  <  . Let T = diag(i) � 0. Of
course, if T is not diagonal, then using the spectral decomposition T = Udiag(i)U∗
and noting that  (·) is weakly unitarily invariant imply the result.

Lemma 1.1 implies that, for i �= j,

(
T

+
2 XT 1− +

2 +T 1− +
2 XT

+
2

)
i j

= 
+

2
i xi j

1− +
2

j + 1− +
2

i xi j
+

2
j

=


−
2

i (logi − log j)
−

2
j

−
i −−

j

i j,
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where

i j =
xi j

logi − log j

(
−

i 
1−
j + 1−

i 
j +

i 
1−
j − 1−

i 
j

)
= xi j

∫ 



(


i  1−
j + 1−

i 
j

)
d

=
∫ 



(


i xi j 1−
j + 1−

i xi j
j

)
d.

This means that

T
+

2 XT 1− +
2 +T 1− +

2 XT
+

2 = Y ◦
(∫ 



(
T XT 1− +T1−XT )d

)
where Y is the Hermitian matrix with entries

yi j =

⎧⎪⎨⎪⎩

−

2
i (logi−log j)

−
2

j

−i −−j

; when i �= j

1
− ; when i = j

.

Notice that 1
− follows from the above integral when i = j , up to a scalar factor.

It has been shown in [14, Theorem 4.1] that Y � O . Thus,


(
T

+
2 XT 1− +

2 +T 1− +
2 XT

+
2

)
= 

(
Y ◦

(∫ 



(
T XT 1− +T 1−XT )d

))
� 1

 −

(∫ 



(
T XT 1− +T 1−XT )d

)
.

So, for arbitrary , ,


(
T

+
2 XT 1− +

2 +T 1− +
2 XT

+
2

)
� 1

| −|
⎛⎝ ∫



(
T XT 1− +T 1−XT )d

⎞⎠ .

To prove the second inequality, by Lemma 1.1 and an argument similar to that in the
proof of the first inequality, we have

∫


(
T XT 1− +T 1−XT )d = Z◦

(
TXT 1− +T 1−XT +TXT 1− +T1−XT 

)
where Z is the Hermitian matrix with entries

zi j =

⎧⎪⎨⎪⎩
−i −−j

(logi−log j)
(
−i +−j

) ; when i �= j

−
2 ; when i = j

.
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From [14, Theorem 4.1] we know that Z � O . Thus,



⎛⎝ ∫


(
T XT 1− +T 1−XT )d

⎞⎠
= 

(
Z ◦

(
TXT 1− +T 1−XT +TXT 1− +T1−XT

))
�  −

2

(
TXT 1− +T 1−XT +TXT 1− +T 1−XT 

)
as required. �

REMARK 2.3. It follows from Theorem 2.3 that


(

T̂

(
 +

2

))
� 1

| −|
⎛⎝ ∫



T̂ ()d

⎞⎠�

(
T̂ ()

)
+

(
T̂ ( )

)
2

.

A possible arithmetic-geometric mean inequality for the numerical radius can be
stated as follows. We should remark that, in the next result, a similar bound for (TSX)
cannot be found similarly. This idea was discussed in [20].

THEOREM 2.4. Let T,X ∈ Mn . Then for any t � 0 ,

(2+ t) (TXT ∗) � 
(
|T |2X + t |T |X |T |+X |T |2

)
� 2+ t

2

(
|T |2X +X |T |2

)
.

Proof. Let T = diag(i)� 0. By Lemma 1.1, we have for r �  > 0 or r �  < 0,
or r � 0 �  , or r � 0 �  and t � 0,

T X + t
(
T XT (1−) +T (1−)XT 

)
+XT = H ◦ (T rXT −r +T−rXTr)

where

hi j =

⎧⎨⎩
i +t

(


i (1−)
j +(1−)

i 
j +j

)
 r

i 
−r
j +−r

i  r
j

; when i �= j

1+ t; when i = j
.

As is shown in the proof of Theorem 4.4 in [22], H � O . Thus,


(
T X + t

(
T XT (1−) +T(1−)XT 

)
+XT

)
= 

(
H ◦ (T rXT −r +T −rXTr))

� (1+ t)
(
T rXT −r +T −rXTr)

i.e.,


(
T X + t

(
T XT (1−) +T(1−)XT 

)
+XT

)
� (1+ t)

(
T rXT −r +T −rXTr) .
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If we set  = 1
2 and replace t by t

2 , in the above inequality, we obtain

2
(
T X + tT


2 XT


2 +XT

)
� (2+ t)

(
TrXT −r +T −rXTr) . (2.1)

In particular, the case  = 2 gives,

2
(
T 2X + tTXT +XT2)� (2+ t)

(
T 2X +XT2) . (2.2)

On the other hand, one can see that for any −2 < t � 2 and 1 � 2r � 3,

(2+ t)
(
T rXT 2−r +T2−rXT r)� 2

(
T 2X + tTXT +XT2) .

Indeed, this inequality is a consequence of the observation that (see Lemma 1.1)

(2+ t)
(
T rXT 2−r +T2−rXT r)= K ◦ (T 2X + tTXT +XT3),

where

ki j = (2+ t)

(
 r

i 
2−r
j + 2−r

i  r
j

 2
i + ti j + 2

j

)
.

The matrix K is positive definite by [26, Theorem 6]. Thus, when r = 1, we have

(2+ t) (TXT ) � 
(
T 2X + tTXT +XT2) . (2.3)

Combining inequalities (2.2) and (2.3), we get

(2+ t) (TXT ) � 
(
T 2X + tTXT +XT2)

� 2+ t
2


(
T 2X +XT2) .

(2.4)

Now, if we assume T is an arbitrary matrix with the Cartesian decomposition T =
U |T | , we get from (2.4) that

(2+ t) (TXT ∗) = (2+ t) (U |T |X |T |U∗)
= (2+ t) (|T |X |T |)
� 

(
|T |2X + t |T |X |T |+X |T |2

)
� 2+ t

2

(
|T |2X +X |T |2

)
.

This completes the proof. �

REMARK 2.4. Assume that T = U |T | is the polar decomposition of T . The
second inequality in Theorem 2.4 can be written in the following form

 (TXT ∗) � 1
2+ t

 (T |T |XU∗+UX |T |T ∗ + tTXT ∗) , (2.5)
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due to

 (TXT ∗) � 1
2+ t


(
|T |2X +X |T |2 + t |T |X |T |

)
=

1
2+ t

 (U (|T | |T |X +X |T | |T |+ t |T |X |T |)U∗)

=
1

2+ t
 (T |T |XU∗ +UX |T |T ∗ + tTXT ∗) .

Notice that (2.5) is a generalization and refinement of [20, Lemma 2.1].

3. Norm bounds

In this section, we present some bounds for the operator norm of certain operators.

THEOREM 3.1. Let A, B, and C be operators in B(H ) , where A and B are

positive. If

[
A C∗
C B

]
is a positive operator in B (H ⊕H ) , then

‖BCA+AC∗B‖ �
∥∥A2 +B2

∥∥
2

∥∥∥∥[A C∗
C B

]∥∥∥∥ .

Proof. Let x,y not both equal to zero, and let z =

[
x
y

]
√

‖x‖2+‖y‖2
. Then, z is a unit

vector in H ⊕H . On the other hand, notice that [15, Lemma 1][
A C∗
C B

]
� O ⇔ |〈Cx,y〉| �

√
〈Ax,x〉〈By,y〉; (∀x,y ∈ H ) . (3.1)

Therefore,

4〈Cx,y〉
‖x‖2 +‖y‖2 � 2 |〈Cx,y〉|+2〈Cx,y〉

‖x‖2 +‖y‖2 (since a � |a| for any a ∈ C)

� 2
√〈Ax,x〉〈By,y〉+2〈Cx,y〉

‖x‖2 +‖y‖2 (by (3.1))

� 〈Ax,x〉+ 〈By,y〉+2〈Cx,y〉
‖x‖2 +‖y‖2

(by the arithmetic-geometric mean inequality)

=

〈[
A C∗
C B

][
x
y

]
,

[
x
y

]〉
‖x‖2 +‖y‖2

=
〈[

A C∗
C B

]
z,z

〉
�
∥∥∥∥[A C∗

C B

]∥∥∥∥ .
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Thus,

〈Cx,y〉 �
(
‖x‖2 +‖y‖2

4

)∥∥∥∥[A C∗
C B

]∥∥∥∥ (3.2)

for all x,y ∈ H . Now, replacing x and y by Ax and Bx , in (3.2), we infer that

〈BCAx,x〉 = 〈CAx,Bx〉

�
(
‖Ax‖2 +‖Bx‖2

4

)∥∥∥∥[A C∗
C B

]∥∥∥∥
=

〈(
A2 +B2

)
x,x

〉
4

∥∥∥∥[A C∗
C B

]∥∥∥∥
�
∥∥A2 +B2

∥∥
4

∥∥∥∥[A C∗
C B

]∥∥∥∥
i.e.,

〈BCAx,x〉 �
∥∥A2 +B2

∥∥
4

∥∥∥∥[A C∗
C B

]∥∥∥∥ .

So,

‖(BCA)‖ �
∥∥A2 +B2

∥∥
4

∥∥∥∥[A C∗
C B

]∥∥∥∥
as desired. �

COROLLARY 3.1. Let A,B∈B (H ) , where A is self-adjoint, B � O, and ±A �
B. Then

‖BAB‖ � ‖B‖2

2
max(‖B+A‖ ,‖B−A‖) .

In particular,

‖ |A| A |A| ‖ � ‖A‖2

2
max(‖ |A|+A ‖ ,‖ |A|−A ‖) .

Proof. Let X =
[
B A
A B

]
. The matrix

[
B A
A B

]
is unitarily equivalent to

[
B+A O

O B−A

]
,

indeed,

U

[
B A
A B

]
U∗ =

[
B+A O

O B−A

]
; U =

1√
2

[
I I
−I I

]
.

Meanwhile, ±A � B , so it follows that X is positive. Thus, by Theorem 3.1, we have

‖BAB‖ �
∥∥B2

∥∥
2

∥∥∥∥[B A
A B

]∥∥∥∥
=

∥∥B2
∥∥

2

∥∥∥∥[B+A O
O B−A

]∥∥∥∥
=

∥∥B2
∥∥

2
max(‖B+A‖ ,‖B−A‖) ,



MEAN-TYPE INEQUALITIES FOR THE NUMERICAL RADIUS AND THE OPERATOR NORM 271

as desired.
To prove the second inequality, notice that if A is a self-adjoint operator, then

±A � |A| . Now, the result follows from the first inequality. �

COROLLARY 3.2. Let A, B, and C be operators in B(H ) , where A and B are

positive. If

[
A C∗
C B

]
is a positive operator in B (H ⊕H ) , then

‖(A+B)(C) (A+B)‖ � ‖A+B‖2

4
max(‖A+B+2C‖,‖A+B−2C‖) .

Proof. If

[
A C∗
C B

]
� O , then

[
B C
C∗ A

]
� O . So,

[
A+B 2C
2C A+B

]
� O . Now, apply-

ing Theorem 3.1, we get

‖(A+B)(C) (A+B)‖ � ‖A+B‖2

4

∥∥∥∥[A+B 2C
2C A+B

]∥∥∥∥
=

‖A+B‖2

4

∥∥∥∥[A+B+2C O
O A+B−2C

]∥∥∥∥
=

‖A+B‖2

4
max(‖A+B+2C‖,‖A+B−2C‖)

as desired. �

COROLLARY 3.3. Let A,B ∈ B (H ) be positive operators. Then

‖AB+BA‖�

∥∥∥A
4
3 +B

4
3

∥∥∥∥∥∥A
2
3 +B

2
3

∥∥∥
2

.

Proof. Let X =
[
A

1
2 B

1
2

O O

]
. Then X∗X =

[
A A

1
2 B

1
2

B
1
2 A

1
2 B

]
� O. Now, by employing

Theorem 3.1, we get∥∥∥B
3
2 A

3
2 +A

3
2 B

3
2

∥∥∥�
∥∥A2 +B2

∥∥
2

∥∥∥∥∥
[

A A
1
2 B

1
2

B
1
2 A

1
2 B

]∥∥∥∥∥ .

Notice that ∥∥∥∥∥
[

A A
1
2 B

1
2

B
1
2 A

1
2 B

]∥∥∥∥∥=

∥∥∥∥∥
[
A

1
2 O

B
1
2 O

][
A

1
2 B

1
2

O O

]∥∥∥∥∥
=

∥∥∥∥∥
[
A

1
2 B

1
2

O O

][
A

1
2 O

B
1
2 O

]∥∥∥∥∥
=
∥∥∥∥[A+B O

O O

]∥∥∥∥
= ‖A+B‖ ,
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i.e., ∥∥∥A
3
2 B

3
2 +B

3
2 A

3
2

∥∥∥�
∥∥A2 +B2

∥∥‖A+B‖
2

.

Replacing A and B by A
2
3 and B

2
3 , we deduce the desired result. �

If A and B are arbitrary, then letting X =
[
A B
O O

]
and use the positivity of the

matrix X∗X =
[|A|2 A∗B
B∗A |B|2

]
. The same arguments imply that

∥∥∥|A|2A∗B|B|2 + |B|2B∗A|A|2
∥∥∥�

∥∥∥|A|4 + |B|4
∥∥∥∥∥∥|A|2 + |B|2

∥∥∥
2

.

REMARK 3.1. Let T = U |T | be the polar decomposition of T . Replacing A =
|T |t and B = |T |1−t in Corollary 3.3 with 0 � t � 1.∥∥∥|T |t |T |1−t + |T |1−t |T |t

∥∥∥=
∥∥∥U (

|T |t |T |1−t + |T |1−t |T |t
)

U∗
∥∥∥

=
∥∥∥U |T |t |T |1−tU∗ +U |T |1−t |T |tU∗

∥∥∥
= 2‖U |T |U∗‖
= 2‖ |T ∗| ‖ (by [7, p. 58])

= 2‖T‖ .

Thus,

‖T‖ �

∥∥∥|T | 4
3 t + |T | 4

3 (1−t)
∥∥∥∥∥∥|T | 2

3 t + |T | 2
3 (1−t)

∥∥∥
4

; (0 � t � 1)

for any T ∈ B(H ) . The equality holds when t = 1
2 . Indeed, in this case, we obtain

‖T‖ �
∥∥∥|T | 2

3

∥∥∥∥∥∥|T | 1
3

∥∥∥ , but the right side is equal to ‖T‖ (remember, if X ∈ B (H ) ,
and if f is a non-negative increasing function on [0,) , then ‖ f (|X |)‖ = f (‖X‖) ).
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