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NUMERICAL RADIUS INEQUALITIES FOR THE
WEIGHTED SUMS OF HILBERT SPACE OPERATORS

SONGYUE PANG AND YUXIA LIANG™*

(Communicated by S. Furuichi)

Abstract. Using the generalized Young inequality, operator convexity and positive operator ma-
trix, we extend and refine some numerical radius inequalities for the weighted sums of Hilbert
space operators. Precisely, for r, 7 € [1,2], if Ty, Vi € B(H°) (k=1,...,n) and p; >0 with
i1 Pk = By, then

1 n 1 2 1 n . .
W = Y Vi | < 5wt (5 X (TP +ie) | = inf ().
P, 21/t P, =

k=1 [lxll=1

2
w3

1. Introduction

where

Let 57 be a complex Hilbert space with usual inner product (-,-) and Z(7)
be C*-algebra of all bounded linear operators on 7. For T € (), we denote by

|T| the absolute value operator of 7, thatis |T| = (T*T)i where T* is the adjoint
operator of 7, see [15]. Recall that a function f:J — R is convex if

flox+(1—a)y) < of(x)+(1—a)f(y),

forall o € [0,1] and all x,y € J. Itis well known [21] that a continuous convex function
f in areal interval / C R can satisfy the property

1 & 1 &
f 7 N pra | < 7 N piflar), (1.1)
n =1 n =1
where a; € I, 1 < k < n are given data points and pi,p>,...,p, are a set of non-

negative real numbers constrained by Y} _, px = P,. Moreover, if f is concave, then
the inequality (1.1) is reversed.
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For any T € #(4), the numerical range of T is defined as W(T) = {(Tx,x) :
x|l = 1, x € 2}, which is a nonempty, bounded and convex subset of the complex
plane C (see [23]). The numerical radius w(7') and the spectral radius p(T) are de-
fined respectively as

w(T) =sup{|z|: ze W(T)} and p(T) = sup{|z| : z€ o(T)}

where o(T) = {z € C: zI —T is notinvertible} is the spectrum of 7. Also, W(T)
is a convex subset of the complex plane containing o(7) (see [11, Chapter 2]). We
know that the numerical radius w(-) is a norm on .7, which is equivalent to the usual
operator norm, ||T|| = sup{||Tx| : ||x]| = 1, x € #}. A basic relation between the
numerical radius and the norm of an operator is provided below. For T € #(¢),

1
ST <w() <7 (12)

Clearly, the inequalities (1.2) are sharp, i.e., w(T) = ||T|| if T is normal and w(T) =
LIT| if T2 =0, see [12]. Furthermore, the norm w(-) satisfies self-adjoint prop-
erty i.e., w(T) = w(T™*), weakly unitary invariant property i.e., w(U*TU) = w(T), for
every unitary U € (). Although the numerical radius does not have the submul-
tiplicative property, it satisfies w(TV) < 4w(T)w(V), for T,V € (7). Similar to
the usual operator norm, the numerical radius also satisfies the power inequality, which
asserts that

w(T") <wW'(T) forn=1,2,---. (1.3)

Over the years, various generalizations and refinements of the inequalities (1.2)
have been dicussed in [6, 9, 14, 16, 17, 20]. In particular, the improvement of the
second inequality in (1.2) has been established in [15, 16], Kittaneh proved that for any
T € B(H),

1 *
w(T) < S I+ T < 5 (T 072 2) (14

N | —

and

1 2 *|2 2 1 2 *|2

2 ITPHIT Pl <w (1) < S I+ TP (1.5)
More about powers of the absolute value of operators, one can refer to the following

inequality obtained by Bhunia et al. in [5, 7], which simultaneously generalized and
improved the second inequality (1.2) and the second inequality (1.4) as following

w (1) < ([l |+ (L= a) [T )17, (1.6)

where 0 < o <1 and

1 1
w2 (T) < Z 1T+ T || + w77, (17)
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for all » > 1. And then, El-Haddad [10] also refined and generalized the first inequality
(1.4) and the second inequality (1.5) into

1
Wr(T) < 5 H‘T‘%a_'_ |T*|2r(lfoc)

, (1.8)

Wr(T1+T2) g2r72H|Tl|2roc_|_|T2|2ra_|_|Tl*|2r(lfoc)+‘Tz*‘2r(lfoc) , (1.9)

where 0 < or < 1, r > 1. Recently, Moradi in [ 19] established the following inequalities
which is stronger than (1.8), namely,

1 . * *
w(Ti+Tp) < ﬁw(lTll+|Tz|+z(\Tl |+1731)). (1.10)

Afterwards, the study of numerical radius was extended to the product of two
bounded operators. For example, Dragomir et al. [8] proved that if T,V € () and
r> 1, then

W (TV) < % T+ V]| (1.11)

Meanwhile, Hedarbeygi et al. [13] established a refinement of (1.11) and proved that if
T,V € B() and r > 1, then

1 1
W’ (TV) < i (IT* PV *) + 1 NT*[* v I*]|. (1.12)

Moreover, they also refined the right-hand side of (1.2) to show that, if 7, T>, V|, V> €
HB(H) and r, s > 1 then

1 1
r s

V% + V|
2

TV, V- T*2r T*2r
w2r<11+22)<H|1| 42-|2| (L13)

2

Very recently, Bhunia and Pual [4] showed that if T}, V, € () (k=1,...,n) and
f, g are nonnegative functions on [0,e) which are continous and satisfy the relation
f(u)g(u) =u for all u € [0,00), it holds that

1

W (kz Tka) < ﬁ W <kz pf<vk>(f2f<Tk>+ig2’<rk*>>> (L14)

forr>1.

These operatorsin (1.13) and (1.14) can be viewed as special cases of the weighted
sums of operators denoted as 171,, i1 PiTi on € with ¥}, pr = B,. Motivated by
the above conclusions for numerical radius inequalities especially from [4, 5, 10, 13],
this naturally leads us to ask a more general question.

How can we represent the numerical radius inequalities for the weighted sums of
operators Pin Yie1 PiTi on € with ¥ pr =P, ?
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The main aim of this work is to develop several numerical radius inequalities for
the weighted sums of bounded linear operators. It is organized as follows: we collect
a few results that are required to state and prove the results in the subsequent sections
in Section 2. Various numerical radius inequalities for the weighted sums of operators
on the Hilbert spaces are established by utilizing 2 x 2 operator matrices in Section 3,
and then these bounds are shown as the generalization and improvement on the exist-
ing bounds in (1.6), (1.7), (1.10), (1.12) and (1.13). Meanwhile, some examples are
provided to illustrate our results. In Section 4, we further prove some numerical radius
inequalities for the weighted sums of product operators by using two non-negative con-
tinuous functions on [0,e0), which generalize and improve the the existing inequalities
(1.2), (1.8), (1.9) and (1.14).

2. Preliminaries

To prove our generalized numerical radius inequalities, we need several well-
known lemmas. The first lemma follows from the spectral theorem for positive op-
erators and Jensen’s inequality.

LEMMA 2.1. [22,p. 20] If A € B(I) is positive operator, i.e, T > 0. Then for
all x € A with ||x|| = 1, we have

(@) (Tx,x)" <(T"x,x) forr > 1,

(b) (T"x,x) < (Tx,x)" forre [0 1.

Manasrah and Kittaneh [1] obtained the following result which is a generalization
of the scalar Young inequality.

LEMMA 2.2. Let a,b > 0 and p,q > 1 such that %—f— é = 1. Then for m =
1,2,..., we have

S
|
S
B
S~—
o
N

1 m AN
(arbi )"+ (a? (";+3) =1 @1

where ro = min{%, é} In particular, if p = q =72, then

1 m m m m
(\/E)’”+27(a7 —bEY 27T (d ). 2.2)

Form=1 and p=q =2, we have

1
Vab+ > (f—f) <21 (d+b)T, 2.3)

We note that (2.2) may fail for the case m ¢ N*. For example, let a=4, b=1,
t=1,m= %, the inequality (2.2) is reversed. Third lemma involves 2 x 2 positive
operator matrix.
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LEMMA 2.3. [18, Lemma 1] Let A, B, C € A(H) with A, B > 0. Then the
operator matrix

(‘é %) c BAH D H)

is positive, if and only if
[(Cx,»)* < (Ax,x) (By,),
forall x,y € .

The fourth lemma is known as Buzano’s inequality.
LEMMA 2.4. [3] Let x,y, z € J, where ||z|| = 1. Then

) (e < AT

The last lemma is an extension of both the generalized mixed Schwarz inequality
and the generalized Reid inequality.

LEMMA 2.5. [18, Theorem 5] Let T,V € B() be such that |T|V =V*|T|,
and let f, g be nonnegative functions on [0,e0) which are continous and satisfy the
relation f(u)g(u) =u for all u € [0,00), then

KTV <pWIFAT DIl TPyl

Sfor any vectors x,y € .

3. numerical radius inequalities for the weighted sums of operators

In this part, we will build several generic numerical radius inequalities for the
weighted sums of operators, which generalize and improve some existing numerical
radius inequalities. The proofs of our main results depend on the operator convexity of
the function f(¢) =¢', 1 € [1,2], (see [2]).

THEOREM 3.1. Let Ay, By, Cr € B(H) (k=1,...,n) with Ay, By >0 and such
that the operator matrices

A C)
(Ck Bk> € B(AH & H)

are positive, then for r, s € [1,2] and py > 0 with Y}_| px = Py, we have

1/r l/s
1 zn: Ar 1 zn: B.\'
> k > k

P k:1p k P, k:1p k

1 n
w? (F ZPka> <

k=1
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( nkzlpk k> <

Proof. Let x € # with ||x|| = 1. Then by Lemma 2.3 we have

In particular,

Z PrAk

”kl

Z PiB|| -

"kl

(Crx,x)| < (A, x) /2 (Brx, x) /2,

for k =1,...,n. If we multiply by p; > 0 with Y}_, px = P, and sum, then by the
weighted Cauchy-Bunyakovsky-Schwarz discrete inequality, we have

(2 (28]

"kl

n

2
1
< (17 D Pk<Akx7x>1/2<ka7x>l/2>

k=1

(&8 (5

Utilizing the arithmetic-geometric mean inequality and then the operator convexity of
the function f(¢) =1, I € [1,2] in inequality (1.1), we have

1 & 1 &
D pkAk X, X "y pkBk X, X
| n r 1/r 1/s
<((3Erm) ) ((3Erm) )
n k=1 n k=1
| n 1/r | n l/s
< <<F ZpkAZ> x,x> <<17 ZPkBZ> X,x> .
k=1 k=1

Consequently, we get
2 | n 1/r | n 1/s
< (| 5 X peAr | x,x — DB |xx) .
L L

l n
((2ne)-)
(3.1)

Taking the supremum over all unit vectors x € .77, we deduce the desired result. [J

Letting py = % for k=1,...,n in Theorem 3.1, we get the following result.

COROLLARY 3.2. Let Ay, By, Cy € B() (k=1,...,n) with Ay, B, >0 and

such that the operator matrices A G ) € B(A @A) are positive, then for r,s €

Cy B
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[172}7

1/r 1/s

ey e
;%Ak ;%Bk

1 n
W2 —ZCk <
=1

By Theorem 3.1, we obtain the following corollary, which is a generalized form
of the well-known inequality (1.13).

COROLLARY 3.3. Let Ty, Vi € B(H°) (k= 1,...,n), then for r, s € [1,2] and
i = 0 with Y _| px = P, we have

| | » 1/r | n 1/s

wh | — N oTiVi | < |5 D Pl T [ - PelVil*

1 | ] B3

In particular,
2r 1 < 1 < *|2r 1 < 2r
w = D piTiVie | < || D, pielT{| — > oVl |-
P, P, P,
ng—1 n =1 n =1

Proof. Let Ty, Vi € B(°) with k = 1,...,n. The operator matrices

LTy TV
(Vk*Tk* Vk*Vk> EBHOH)

are positive, due to [(V;T;x,y)|? < ([T [2x,x) (|Vi|2x,x), for all x =y € J#, together

with Lemma 2.3. Then letting Ay = |T;|?, By = |Vi|? and C; = VT in Theorem 3.1,
we get the desired results. [

THEOREM 3.4. Let Ay, By, Cr € B(H) (k= 1,...,n) with Ay, By >0 and such
that the operator matrices

Ay C
(Ck Bk> € B(AH S H)

are positive, then for r,t € [1,2] and py > 0 with Y}_, px = B, we have

where
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Proof. By utilizing s = r in inequality (3.1), we have

s aim

F
<&Mwwww@&wm VAN
2

e o)

(by inequality (2.2) when m = 2)

2

t t 1
(<(,§ St matf) 5o )+ ( (A5 ) x)
<

3 — inf ¢(x)
(by Lemma 2.1 (a))

[lxll=1
(Gpstm)o) o (stnm)e))

<

(by inequality (1.1))

1
_ <(1% Zzzll’kA;:) x,x>2:<(%’l ZZ:1Pk3?> x,x>2 7 _Hi‘lglq)(x)

(by convexity of u?)

t

l ; l c 1t .

ot (5 oo { (3 B o )| - s
—L i” Art+-Brt ?—.f
Tl pnglpf«( x TiBE) | x.x H;‘1‘1:105()6)-

Now the result follows by taking the supremum over all unit vectors in 2. [

REMARK 3.5. In Theorem 3.4, it is obvious that

1 n
inf 9(x)>0=0¢W(=- pr(A;—BY)).
=1 B S
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Choosing t = 1 in Theorem 3.4, we get the following result.

COROLLARY 3.6. Let Ay, By, Cy € B(H°) (k= 1,...,n) with Ay, By > 0 and
such that the operator matrices

A C;
(Ck 5 ) € B(AH & H)

are positive, then for r € [1,2] and py > 0 with ¥}_, px = P, we have

“rgee) (i3
o073 ({5 &) o) (z )]

Choosing n =1 in Corollary 3.6, we get the following result.

I M=

m»—

[l =1

(A,C+iB,2)> — inf ¢(x),

where

COROLLARY 3.7. Let A, B,C € B() with A, B> 0 and such that the operator
matrice

(g‘ %) c BAH D H)

is positive, then for r € [1,2],

W (C) < =w? (A" +iB") — inf ¢(x),

2" Ix|=1
where
000 = 3 ((A7x.2) — (Be.0)?.

EXAMPLE 3.8. Let r =1 and A = diag(5,1), B = diag(2,0) in Corollary 3.7.
Then it is clear that W (A — B) = [1,3] and

4{9(x):xe A, ||x| =1} C [W(a—B)]> =[1,9].
So lanxH 1(])( ) %

REMARK 3.9. Let r =1 in Corollary 3.7, we can obtain

w? (C) < zw? (A+iB) — inf ¢(x), (3.2)

2" x| =1
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where

Setting x € 2 with ||x|| =1, we get

| (Ax,x) +i (Bx,x) |> = (Ax,x)? + (Bx,x)?
< (A%x,x) + (B’x,x) (by Lemma 2.1 (a))
= ((A*+ B*)x,x).

Then taking the supremum over all unit vectors in .7, we have w? (A +iB) < ||A® +
B?||. This together with (3.2) generalize and improve on the inequality in [5], namely,

1
w(C) < §HA2+B2H~

Letting Cy = Ty, Ax = |T¢| and By = |T}"| (k= 1,...,n) in Corollary 3.6, the
operator matrices

are positive, due to [(Tyx,y)|> < (|Ti|x,x) (| T |x,x), for all x=y € 5, and Lemma
2.3, we get the following result.

COROLLARY 3.10. Let T € B(H) (k=1,...,n), thenfor r €[1,2] and py >0
with Y} _| px = P,, we have

—_

() <o (& St 310 -

1 ] [lxfl=1

o) = 1<<<n,§1””"'> > <<nk21”k'Tk'r> >>

REMARK 3.11. Setting r =1, n =2 and p; = p» = 1 in Corollary 3.10, we
obtain the following inequality, which improves the bound (1.10)

[\

where

1 . * *
WA (T + T) < ow? (T +| T + (T | +[751) - inf ()

where

009 = 1 (T3 +1BDw.x) — 77|+ 175 ) 0

1
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THEOREM 3.12. Let Ay, By, Cx € B() (k= 1,...,n) with Ay, B, > 0 and
such that the operator matrices

e
(Ck Bk> € B(AH & H)

are positive, then for r,t € [1,2] and py > 0 with Y}_, px = Pn, we have

1 & 1 1 & 1 &

2r r r
—_— pC <— (— pB)(- pA)
w (PHkZI kk) 2W< PZ kP PZ kg

n =1 k=1
1
1 1< 2, oo
= A2 B[ = inf o(x),
SXER: Pnkg,lpk( B Hi\\:lq)(x)
where
1 1
1 &, : &, :
o (x) 7 FZPkAkr xX,x) — FZPkBkr X, X
" g=1 n k=1

Proof. Let ||x|| = 1, by applying s = r in inequality (3.1), we have

(by Lemma 2.4)
1 1 & 1 &
S((ERIEE
n =1 n k=1
1 n 2 % 1 n 2 %
(rEe) <) ((mEem) ) )
n k=1 n k=1
3 e (2
\2 nl;pk k% Pnlgllpk kX
1
(7 Em))

(by inequality (1.1))
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(8 1 200)
<<

1
( A pkA,%’)x,xy + <(1%. Y1 PkBi’)x7x>t> !
2

({8 (80)-)

(by inequality (2.3))

Nl—

L/ 1
<3 < (E%Pk3k> (Pn kzlpkAk> x x>
1
(B ) (G ) )\
> 2 o=t
(by Lemma 2.1 (a))
1/[1 3 I3
<3 < (Fnkz pkBk> (FnkZlPkAZ) x»x>
1

(by inequality (1.1)).

Now the result follows by taking the supremum over all unit vectors in 7. [

REMARK 3.13. In Theorem 3.12, it is obvious that

inf ¢(x)=0<:>0€W(P Zpk A2 B2’)>

[l =1 n j=
Choosing t = 1 in Theorem 3.12, we get the following result.

COROLLARY 3.14. Let Ay, By, C € B(°) (k=1,...,n) with Ay, By >
such that the operator matrices

Ay C
(Ck 5 ) € B(AH & H)

are positive, then for r € [1,2] and py > 0 with Y}_| px = Py, we have

(i) {42t )

n
- Z (A2r +B2r)
k=1

inf ¢ (x),

+
[l =1

1
4
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where

! 1
1 2
o(x) =7 2 PrAY | x Z By
L P i3
Letting n = 1 in Corollary 3.14, we get the following result, which generalizes

and improves on the inequality in [5], namely,

1
w(AB) + Z||A2+B2||.

NI'—‘

w?(C) <

COROLLARY 3.15. Let A, B,C € #(H) with A, B > 0 and such that the oper-

ator matrice

(‘é CB) € BA©H)

is positive, then for r € [1,2],

1 1
WZr(C) < Ew2 (ArBr)—’—ZHAzr—’_Ber Hlﬁl 1¢( )

where
1 5 1 5 1\ ?
o(x) = 1 <<A "x,x)? — (B rx7x>2) .
Letting Cy = Ty, Ax = |T| and By = |T;*| in Corollary 3.14, we get the following
result.

COROLLARY 3.16. Let T, € B(H#°) (k=1,...,n) and r € [1,2], pr =0 with

i1 Pk = Py, we have

( Zpkrk> \5w<(%ipkm“)( 5 S pinl ))

Pis n k=1
H'ﬁlfl(lﬁ(x),

1 n
L (T + 1T
b5

+

1
4

where
2

000 =1 <<}éipkrk2f)x,x> <<nkzlp|T*|2f> >
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REMARK 3.17. Considering n = 1 in Corollary 3.16, we get the following in-
equality

1 *
W (1) < Sw(T['(T") |\|T|2’+\T \”H—Hl‘l‘lflq)( x),

where

2
o) = 3 ((TPrxa)t = (T Pre) )

Apparently, it follows that the above inequality is an improvement of the inequality

(1.7).

THEOREM 3.18. Let Ay, By, Cp € B(I) (k= 1,...,n) with Ay, B, >0 and
such that the operator matrices

A C;
(Ck 5 ) € B(AH & H)

are positive, then for r,t € [1,2], o € (0,1] and py > 0 with Y}_, px = Py, we have

l n
( Zpk k) < ‘FZPk(OCAZ’Jr(l—Oﬂ)B?)
”k 1

k=1
x A" B

t

- H)icﬁlilq)(X)

where ||A|| = maxi<x<n [|Akl], [|BI| = maxi<<n || Bl

¢(x) =min{o,1 — o} << ZpkAk>xx> —<<Pi§n:pk32> x,x>
= k=1

Proof. By applying s = r in inequality (3.1), we have

(20
(.
(g (800

1
Z PkBk

((e{ Eree) -G o))

1 n
R kA"
P, kg,lp k




NUMERICAL RADIUS INEQUALITIES 321

1 1\ 2
) l n , 2 1 n . 2
—min{c, 1 —a} P 2 PAL | x,x ) — P Z piBy | x,x
n k=1 k=1

(by inequality (2.1))

1
1 p 1
— r 1 < r 1 < r
< [|A]I"0=4|B|| a( <a<<g ZPkAk> x,x> +(1-a) < (F 2Pk3k> X,X>>
n k=1 n k=1

- inf, ¢<x>>
(by Lemma 2.1 (a))

< A||’<1—“>||Bf“< <a<<% ZpkA,’f) > o < (% ZpkB,?> >>
ng—1 n k=1
R W))

Now the result follows by taking the supremum over all unit vectors in 7. [J

(by inequality (1.1)).

Choosing ¢ = 1 in Theorem 3.18, we get the following result.

COROLLARY 3.19. Let Ay, By, Cr € B() (k=1,...,n) with A, By >0 and
such that the operator matrices

e
(Ck Bk> € B(AH & H)

are positive, then for r € [1,2] and py > 0 with Y}_| px = Py, we have

1 & 1
k=1

=Y (el +(1-a)B))
k=1

- inf ¢(X)> A= Bye,

[I¥=1

where ||A|| = maxi<ien |Ac]l; |[BI] = maxicicn || Bill,

¢(x) =min{o,1 — o} <<%kipkA,’<> x,x> —<<Pikzn:pk32> x,x>
np—1 n k=1

Letting n = 1 in Corollary 3.19, we get the following result, which generalizes
and improves on the inequality in [5], namely,

ol—

w?(C) < ||aA+ (1 — o)B||||A]|'~%||B||%, forall & € [0,1].
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COROLLARY 3.20. Let A, B,C € B(5) with A, B > 0 and such that the oper-
ator matrice

(éi)eﬂ%@%ﬁ

is positive, then for r € [1,2],

W (C) < (||aA’+<1 @B - inf ol >) A=) B,

[lx=1

where
1 1\ 2
m@:mmWJ—aNmuwf—wmmﬁ.

Letting Cy = Ty, Ag = |Tx| and By = |T;*| in Corollary 3.19, we get the following
result.

COROLLARY 3.21. Let Ty € B() (k=1,...,n) andfor r € 1,2], pr >0 with
Yi_1 Pk = Pu, we have

(5 <

where ||T|| = max;cecn | Till, 1T = maxicrcn | T 1],

¢(x) =min{o,1 — o} << Zkak> > << ZkakV) >
b5 P i3

REMARK 3.22. Choosing n =r =1 in Corollary 3.21, we deduce a refinement
of the bound in (1.6),

2Pk(05|Tk\ + (1= a)|T7]")
Puio

— inf ¢(x )) 171"

[l =1

2 *
W (T) < (||ar+<1— || ot ot >) 7],

where
¢(x) = min{o, 1 — o} (<|T|x,x>% _ <|T*\x,x>%>2_

Replacing Ay = T[>, By = |Vi|*> and Cy = V;'T;* in Theorems 3.4, 3.12 and
3.18, we obtain several upper bounds for the weighted sums of product operators

w (p% Shet kaka> .
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PROPOSITION 3.23. Let Ty, Vi, € B(H) (k=1,...,n), thenfor r,t € [1,2] and
pr = 0 with Y] px = P,, we have the following bounds:

1 & I 21
2r 7 *|120 s |20
W (17 Zkaka> < A (F > (I P+ il )) — inf ¢(x),

"kl n =1 Il =1
where
1 2
¢(X) - Zpk‘Tk | Zpk|vk|2r .
4 = Y
Moreover,
1 & 1
Wzr (F 2 kaka> < EW (( 2 pk|Vk|2r> ( 2 pk‘T |2r>>
" k=1 }’1 k=1 }’1 k=1
1
+ 1 iEnlPk(\Tk*|4ﬂ‘f'|Vk\4”) — inf ¢(x),
21+1/t P, = =1
where
! 2

00 =4 <<nkzlpk|r*4r> >2—<<nk21pk|vk|4’> >é

And for o € (0,1],
ZPk(OC|Tk P (1= o) |Vi*™)

l n
w?’ 7 > Vi | <
n k=1 L

2r(1— 2
x |IT|Pr= v

f ¢(x)

n
[lxll=1

where ||T|| = maxicecn | Til|, V]| = maxicecn [Vill,

¢(x) =min{o, 1 —a} << 2p|T*2r> > << Zpk|vk|2’> >
nkl "kl

Letting n =¢ =1 in Proposition 3.23, we obtain the following results.

COROLLARY 3.24. Let T,V € B(S) and for r € [1,2], we have the following
bounds:

1
W (TV) < Sw? (T +i|V[*) - nf 9(x),
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where
000 = 3 (" Prx) — (VP
Moreover,
W (1Y) < gw (VPP + 3 T VI = i o, G3)
where

2
000 =7 <<|T*|4’x = (v )t )
And for o € (0,1],

w2 (@v) < (ol 1= V] - i 000 ) I v e,

where
1 1 2
¢(x) =min{c,1— o} <<T*2’x,x>7 —<|V|2’x,x>7> .

REMARK 3.25. Notice that the inequality (3.3) provides an improvement for the
inequality (1.12).

4. Numerical radius inequalities for the weighted sums of product operators

Still for the weighted sums of product operators, we continue to present several
upper bounds involving the numerical radius and spectral radius. These can achieve
some nice generalizations and refinements of the classical inequality.

THEOREM 4.1. Let Ty, Vi € B(H) (k=1,...,n) be such that |Ti|Vy = V;*|Ti],
and p,q > 1 with ;1_7"'% =1, and let f, g be nonnegative functions on [0,°) which
are continous and satisfy the relation f(u)g(u) = u for all u € [0,%0). Then for py >0
with Y7 _| px = P,, we have

W (% 5 kaka) < %w (ié 3 0™ (V) (£ (1) +ig2q<m*>>) ~ inf o)

n =1 n =1 [lx[|=1

where u = min{p, g},

o) = [min{ . 23)* 2 3 o) (27 iwen) (27 )

p qll P, 5

Nl—

)2.
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Proof. Let x € 7 with ||x|| = 1. Then we have

l n
‘< (F Z kaka> x,x>
n k=1

2
1 n
7 2Pk|<Tkax7x>>

2

<
n k=1

2
PP (VOIS (1T xl g (17 )XI|> (by Lemma 2.5)

N

—_ N N
T -
T

n 1 | )
< P, Z pkpz(Vk) <<f2(|Tk|)x,x>2 <g2(|Tk*)x7x>2) (by inequality (1.1))
" =1
LS 2 2 L 132
<o X o> Vi) (7Tl (175 )2 % ) (by Lemma 2.1 (b)
" =1
7 2 % 2, * % v
< % Y pep*(Ve) (2 (I Te))x,x) n (g*(|T |)x,x)
" k=1 p q

1 1y7121 & 1 1\ 2
~[min{ 521 5 B pee20i0 (P2 0n) (7 D))
k=1

(by inequality (2.1))

n 2 X.x 24(|T)x, x
oy Zpkpz(Vk)<<f p(|j;k|) x) (8 q(T;) : >) _H)ic\l\l£1¢(X)

(by convexity of u% , where 2 > 1)

o — inf ¢(x)

[I¥=1

i 2 0™ (PP + 527 ) )

(as |a+ b| < V2|a+ib| for all a,b € R).

Now, the result follows by taking the supremum over all unit vectors in . [

REMARK 4.2. In Theorem 4.1, infj—; ¢(x) > 0 if and only if

0¢ W (r2(ITl) — g2(|T )
forall k=1,...,n.

Choosing p = g =2 in Theorem 4.1 we get the following corollary.

COROLLARY 4.3. Let Tp,, Vi, € B(H) (k=1,...,n) be such that |Ti|V, =V |Ti|,
and let f, g be nonnegative functions on [0,°0) which are continous and satisfy the re-
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lation f(u)g(u) =u for all u € [0,00). Then for py

W2 (g y pkrkvk> <22, (,% > (V) (F4(1Ti) +ig4<|Tk*|>)>
ng—1 n k=1

where

2—2 n

P A

¢(x) =

For pr =1, k=1,...
inequality, which refines the inequality (1.14).

COROLLARY 4.4. Let T, Vi € B() (k=1,...,
o) which are continous and satisfy the re-
o). Then we have

and let f, g be nonnegative functions on [0,
lation f(u)g(u) =u forall u € [0,

<2Tkvk> % (Zp (Vi) (£*( ITkI)+ig4(|Tk*|))>—

where

-hl:

204 (7T
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2 0 with Y, px = Pu, we have

1 1\ 2
3 pep?(Ve) (<f4<m|>xx>f <4<|T,:>x7x>2) |

,n in Corollary 4.3, we get the following numerical radius

n) be such that |Ty| Vi = V| Ti|,

f (])(x),

in
[lx[|=1

)2.

Nl—
Nl—

—(* (1T )x,x)

Letting n =1 in Corollary 4.4, the following result is true.

COROLLARY 4.5. Let T,V € B(H) be such that |T|V = V*|T| and let f,
g be nonnegative functions on [0,00) which are continous and satisfy the relation

f(u)g(u) =u forall u € [0,%). Then
2 pz(V) VP .
w2 0v) < (PT) + i) - inf 000,
where
2 1 1 2
o) = 2 () ()

Letting f(u) = u*, g(u)
following assertion.

=u'"% with 0 <

a < 1 in Corollary 4.5, we get the

COROLLARY 4.6. Let T,V € B(IH) be such that |T|V =V*|T|. Then

2 p*(V)

where 0 < o < 1 and

w(|T|4O‘+i\T*\4(1_°‘)> — inf

T <<|T|4O‘x,x>% _ <\T*\4(1_a)x,x>

¢('x)7

[l =1

2

).

D=
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Considering V; =1 for k= 1,...,n in Theorem 4.1, we have the following in-
equality for the weighted sums of operators.

COROLLARY 4.7. Let Ty € B(H) (k=1,...,n) and p,q > 1 with 3+, =1,
and let f, g be nonnegative functions on [0,e0) which are continous and satisfy the
relation f(u)g(u) =u for all u € [0,o0). Then for py >0 with Y}_, px = Py, we have

( zpkrk>\§w< > o (FPP(T) + i <|T,:|>)>—inf1¢<x>,
S =

nkl

where u = min{p, g},

o) = [min{ 2. 23] S (17 (miinr) - <2q<|T,:‘>x7x>%)2.

REMARK 4.8. In particular, letting n=1, p=¢g =2 and f(u) = g(u) = \/u in
Corollary 4.7, we have the following inequality

2 1 2 k|2
W (1) < o (TP T P) = inf 0(x)

where

2. \3 > 4
o(x) = 1 <<|T| x,x)% = (|T*| x,x>2) .
Itis easy to verify that %w (|T|*+i|T*[*) <||T||>. Therefore, we would like to remark
that Corollary 4.6 improves the classical bound (1.2).

The next result reads as follows and operator concavity of the function f(z) = ¢/,
€ (0,1], (see [2]) is used in the proof.

THEOREM 4.9. Let Ty, Vi € B() (k=1,...,n) be such that |Ti|V, = V;*|Ti],
and f, g be nonnegative functions on [0,°0) which are continous and satisfy the rela-
tion f(u)g(u) =u forall u € [0,00). Then for r € [1,2],t > 1 and m < min{r,t}, m €
N*, px = 0 with Y _, px = P,, we have

k=1

— inf ¢(x)7

[lx=1

1 & 1 2 o,
W’(; Zkaka> <" (P > peom (Vi) (f 7 (1Tel) + g7 (ITk))>

where
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Proof. Let x € 7 be a unit vector. Then we have

(G Eome)es

r

1 & '
g(‘ZPMﬂWM@>
np=1
1 & s
< <— Zpkp(Vk)f(Tk)xIIIIg(Tk*)XII> (by Lemma 2.5)
n k=1
1< r 2 L, 2 * r . .
<= X k" Vi) (2 (ITel)x,x) 2 (€2 (1T |)x, x) 2 (by inequality (1.1))

~
Il
—_

pip” (Vi) <<f2(|Tk|)x,x># <82(\Tk*|)x,x>ﬁ>m

Il
= T}~ I
L
S
ie)

k=1
<p 2o ) (U (‘Tk|)x7x>%<8%(|Tk*\)x,x>%>m(by Lemma 2.1 (a))
k=1
L %n t % * t ?
<%mem%V(ﬁW@;@<nmm>
n k=1
1 & - m . my 2
—Zian]Zlekp’(Vk) <<f3n(Tk|)x,x> - <g2ﬁ(|Tk*Dx’x> 2)
(by inequality (2.2))
2r1 2rt %
1 & m (T , (T )
Q_zmyw)ﬁf(kmw;@ (”y@> ot
"=l lel|=1
(by Lemma 2.1 (a))
1 1 p . . 7
<2m/t<< Zpkpm Vk>(f2"7(Tk>+g%(|T,<*>)>x,x> - inf 9()

(by operator concavity of u )

Now, the result follows by taking the supremum over all unit vectors in . [

REMARK 4.10. In Theorem 4.9, it is obvious that

lﬁ¢u>0©o¢mw( (7)) — g7 (1T 1))

= I

Letting m = 1 in Theorem 4.9 we get the following corollary.

COROLLARY 4.11. Let Ty, Vi € B(H#) (k= 1,...,n) be such that |T;|V; =
V| Tk|, and f, g be nonnegative functions on [0,o0) which are continous and satisfy
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the relation f(u)g(u) = u for all u € [0,%0). Then for all r € [1,2], t > 1 and p; >0
with ¥}_; px = Pu, we have

w" (% z":kaka> <ﬁw% ( Zpkprt Vk)(fzrt(|Tk|)+32”(|Tk ))> inf ¢(x),

n P, = [lx H 1
where
-1 1 < r 2r i 2r * 3 g
o(x) =2 7 Y pep” (Vi) <<f (1Te])x,x)? — (g (|T} |)x,x>2) .
k=1
Letting ¢+ = m in Theorem 4.9 we get the following result.
COROLLARY 4.12. Let Ty, Vi € B(H#°) (k= 1,...,n) be such that |T;|V; =
VE|T|, and f, g be nonnegative functions on [0,%0) which are continous and sat-

isfy the relation f(u)g(u) = u for all u € [0,00). Then for r € [1,2], m <r,m € N* and
pr = 0 with Y| pr = P,, we have

w (% zn:l?kaVk> < %w (% i PkP’(Vk)(f2’(|Tk\) +g2r(|Tk*|))> — inf ¢(),
n k=1

n k=1 [lxfl=1

where

m

2 7 2 m\ 2
o) =2 3 o) ({75 ()" = (6 (1))

n =
Next example is provided to demonstrate Corollary 4.12.
EXAMPLE 4.13. Lettingn=r=m=1 and f(u) =u, g(u) =1 forall u € [0,00),
T = diag(2,2) and V =diag(1,1) in Corollary 4.12, we have

m

m\ 2
) o, 7
~{e¥ () )

o) =25 8 pur4) ({7 (1)
)2

Putting f(u) = u® and g(u) = u'~%, 0 < a < 1 in Corollary 4.12, we get the
following assertion.

S
D=

<<f2(|T|)x ) {he)

| = NIH

COROLLARY 4.14. Let Ty, Vi, € B(H°) (k= 1,...,n) be such that |T}|Vy =
VI Ti|. Then for r € [1,2], m <r,m e N* and py >0 with ¥}_, py = B,, we have

k=1 k=1

| & 1 (1 o1 .
w' (17 Zkaka> Syw (F Y, oo (Vi) (1T + |17 a))> - H;‘l‘lflq)(x),
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where
1Y . v\ % A
o(x)=2 P Zpkrp (Vk) <|Tk\ m x,x> —<|T,< |~ x,x>
np=1
REMARK 4.15. Setting V =1 and n =m =1 in Corollary 4.14, we have the

following inequality

r 1 2ro #12r(1—a) : 1
<

where 0 < a < 1, re[1,2] and

1

1 1 2
o) =3 (TP x)t = (Pt )

One can notice that (4.1) is a refinement of the inequality (1.8). Furthermore, consider-
ingn=2, m=1and V=V, =1, py = p> =1 in Corollary 4.14, we obtain

Wr(Tl + T2) < =2, (‘TI ‘2rcx + ‘T2|2roc + ‘Tl*‘2r(lfoc) + |T2*|2r(lfoc)> _ Hiﬁlflqb(x)’
4.2)

where 0 < a < 1, re[1,2] and

D=

y

1 1 2
_|_% <<|T2|2rax,x>2 _ <T2*2r(1a)x’x>%) )

1 1
o (x) =1 <<T12r°‘x,x>2 — <\T1*|2’(1’°‘)x,x>

Hence, it is easy to see that the inequality (4.2) is stronger than the inequality (1.9).
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