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ON SEQUENCES SATISFYING
FOURTH-ORDER DIFFERENCE INEQUALITIES

BESSEM SAMET

(Communicated by M. Niezgoda)

Abstract. We consider the class of sequences a = (ay,---,a,) € R" satisfying the fourth-order
difference inequality A*q; <0, i=1,---,n—4. A Hermite-Hadamard-type inequality is estab-
lished for this class of sequences. The proof of our result is based on the choice of an appropriate
sequence which is the solution to a certain fourth-order difference equation. Moreover, if «a is
a convex sequence, we obtain an interesting refinement of the right discrete Hermite-Hadamard
inequality. We next extend our study to the class of matrices satisfying a system of fourth-order
difference inequalities. In particular, we obtain a trace inequality for the class of symmetric
matrices.

1. Introduction

Convex functions are frequently applied to model many problems in engineering,
economics, management, etc. Due to this fact, much effort has been devoted to the
study of the properties of such functions, see e.g. [2, 3, 17, 28, 30-34,40]. One of
the important inequalities involving convex functions is the Hermite-Hadamard double
inequality which can be stated as follows: If f : [a,b] — R is a convex function, then

f<a;b> - a/ £(0) fla );f( ) (L1

The above double inequality dates back to an 1883 observation of Hermite [18] with
an independent use by Hadamard [16] in 1893. Hermite-Hadamard double inequality
is very useful in the study of the properties of convex functions and their applications
in optimization and approximation theory, see e.g. [13—15]. This fact motivated the
study of inequalities of type (1.1) in various directions. For more details, we refer
to [1,4-12,19-22,26,27,35,36,38] (see also the references therein).

The notion of convex sequences is a discrete version of the convexity concept.
Namely, a sequence a = (a1, --,a,) € R", where n > 3, is said to be convex, if a
satisfies the second order difference inequality

A%a; >0, i=1,--,n—2,
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where A2q; = ai+2 — 2ai+1 + a;. Several interesting inequalities involving convex se-
quences have been established, see e.g. [23-25,29,37,39] and the references therein.
In [23], the authors established (among many other results) a discrete version of Fejér
double inequality [12]. In particular, they obtained the following discrete version of
the Hermite-Hadamard double inequality (1.1): If a = (ay,---,a,) € R" is a convex
sequence, then

an +ap1-N < 1S @<

2 iz

ay+ay
7 (1.2)
where N = [”2#] is the integer part of % . We also refer to [29], where some exten-
sions of the obtained results in [23] have been established using some matrix methods
based on column stochastic and doubly stochastic matrices.
In this paper, we first consider the class of sequences a = (ay, - - -,a,) € R", where
n > 5, satisfying the fourth-order difference inequality

A*a; <0, i=1,-,n—4,

where A*a; = A>(Aa;). For this class of sequences, we establish a Hermite-Hadamard-
type inequality. If in addition the sequence a is convex, our obtained result provides an
interesting refinement of the right inequality in (1.2). Our approach is completely dif-
ferent to that used in [23]. Namely, our method is based on the choice of an appropriate
sequence, which is the solution to a certain fourth-order difference equation. We next
consider the class of real matrices A = (¢, j)1<i<n,1<j<m, Where n,m > 5, satisfying
the system of fourth-order difference inequalities

(I Forall j=1,---,m,
Ala;; <0, i=1,--,n—4,

(D) Foralli=1,---,n,
Agai,jgoa jzla"'am_47

where Aja; j (resp. Ala; ;) is the fourth-order partial difference operator with respect
to the index i (resp. j). For this class of matrices, Hermite-Hadamard-type inequalities
are proved.

Throughout this paper, we shall use the following notations. Let n > 5 and a =
(a1, -+ ,a,) € R". We denote by A the first order difference operator defined by

Aaj=ajr1—aj, i=1,---.n—1.
By A%, we mean the second order difference operator defined by
A’a; = AAa)) = ajpo —2ai 1 +ai, i=1,---.n—2.
The fourth-order difference operator A* is defined by

Ala; = A (AN’a)) = ajra — dai3 +6ai0 —dai +ai, i=1,--n—4.
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Let n,m > 5 and A = (a; j)1<i<n,1<j<m be areal matrix. Forall i=1,---,n—1,
we denote by Aja; ; the partial difference operator with respect to the index 7, defined
by

Ala,-h,':aiﬂ.’j—a,-’j, j=1,~~~,m.
Forall i=1,---,n—2, we denote by A%a,-7 ; the second order partial difference operator
with respect to the index 7, defined by
A%ai,j =aj12j—2a;11jtaij, j=1,,m
Forall i=1,---,n—4, we denote by Aj‘a,; ; the fourth-order partial difference operator
with respect to the index i, defined by
Alaij=aj 4 j—4ais j+6ai j—4ai1 j+aij, j=1,-m.
Similarly, for all j=1,---,m—1, we denote by Aya; ; the partial difference operator

with respect to the index j, defined by

Aoaij=ajjr1—a;j, i=1,---,n
Forall j=1,---,m—2, we denote by A%a,-h,' the second order partial difference opera-
tor with respect to the index j, defined by
A%aw =ajji2—2a;j11+aj, i=1,--,n
Forall j=1,---,m—4, we denote by A‘z‘ai7 ; the fourth-order partial difference operator

with respect to the index j, defined by
4 .
Adaij = aijya —4aij3+6ai 10— 4aij +aij, i=1,---n

The rest of the paper is organized as follows. Section 2 is devoted to the main
results and their proofs. Namely, in Subsection 2.1, we establish an auxiliary result that
will be used later in the proofs of the main results. In Subsection 2.2, we establish a
Hermite-Hadamard-type inequality for the class of sequences

5””:{a:(a1,~~~,an)ER”:A4ai<O,i=1,~~~,n—4}.

In Subsection 2.3, a Hermite-Hadamard-type inequality is derived for the class of se-
quences
“F={a=(a1,--,an) € S : ais convex}.

Finally, in Subsection 2.4, we obtain a Hermite-Hadamard-type inequality for systems
of fourth-order difference inequalities.

2. Main results and proofs

2.1. An auxiliary result
For n > 5, let us consider the fourth-order difference equation

A*i =1, i=3,---.n—2 (2.1)
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under the boundary conditions
by=by=b,_1 =b,=0. (2.2)
The following lemma will be useful later.

LEMMA 2.1. Let n > 5. The sequence b= (by,---,b,) € R" defined by

1 . . . o
bi= g i= D=2~ (1=1)(i=n), i=1-.n, 2.3)
satisfies (2.1)—(2.2).

Proof. Let us write the possible solutions to problem (2.1)—(2.2) in the form b =
(by,--+,by) € R", where

bi=co+cri+cit+c3id +eait, i=1,-,n,
where ¢, j=0,---,4, are constants. Elementary calculations show that for all i =
3,---.n—2,
A*bi g =biyg —4biy 1 +6bi—4b; 1 +bi )
= 246’4.

Hence, taking ¢4 = ﬁ , we obtain
A*bi =1, i=3,---,n—2.

On the other hand, b satisfies the boundary conditions (2.2) if and only if 1, 2, n—1
and n are roots of b; forall i =1,---,n. Consequently, we get

bi=c(i—1)(i—-2)(i—(n—=1))(i—n), i=1,---,n,
which proves the desired result. [
2.2. The class of sequences satisfying A*a; < 0
For n > 5, we consider the class of sequences
Sy = {a: (ar,---,an) ER": A% <0,i= 17---7n—4}.
Our first main result is the following Hermite-Hadamard-type inequality.

THEOREM 2.2. Let n > 5. If a= (ay,---,a,) € %, then

1

(Aan,l — Aal) . (24)

n4 2 12
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Proof. Let a= (ay,---,a,) € %, and b= (by,---,b,) € R" be a given sequence.
We have

n—2 n—2
> birtai o =" bi(ai —4ais1 +6a;—4a;i 1 +a;2)
i=3 i=3

n—2 n—2 n—2 n—2 n—2
= biair—4 Y, biai1+6 Y, aibi—4 Y biai_1+ Y, biai
i=3 i=3 i=3 i=3 i=3

n n—1 n—2 n—3 n—4
Y aibi o =4, abi 1 +6 Y, aibi—4 Y, abiy1+ Y, aibiya
i=s i=4 i=3 i=2 i=1

n—2
= —azby — ashy + ay_1by—3+ anby_2+ Y, aibi>
i=3
n—2 n—2
— 4 —azby +a,—1by—2+ 2 aibi_1 | +6 2 a;b;
i=3 i=3

2

e
—4 <02b3 —apobp1+ Y, aibi+l>

i=3
n—2

+a1bs + azbs — ay_3by_1 — an_2by+ Y, aibii2,
i=3
that is,
n—2 n—2
D biAta; o = Y ai(bivs — 4biy1 +6b; — 4bi_y +bi_2) + &(a,b)
i=3 i=3
n—2
= 2 Cle4bi_2 =+ g (Cl, b)a
i=3
where

E(a,b) = a3(4by — by) + an—1(by—3 — 4by—2) + ar(bs — 4b3) + an—»(4by—1 — by)
—agby +apnby, >+ a1by —ay_3b, .

Now, let us consider the sequence b defined by (2.3). By Lemma 2.1, we obtain
n—2 n—2 .
N ai= biN*aiy — an_1(by—3—4by_2) — az(bs — 4b3) — anb,_> — a1 bs,
i=3 i=3
which implies that
n—2

n
Noai= Y bir'aio—ay(by-3—4byr—1)—ax(bs—4b3— 1)
i=1 i=3

—an(bn_z — 1) —al(b3 — 1).
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On the other hand, by (2.3), we have b; > 0 forall i =3,--- ;n —2. Furthermore, since
a€.¥,, wehave A%a;_, <0 forall i = 3,---,n—2. Consequently, we get

n—2
Y birta; -, <0.
i=3

Therefore, it holds that
n
N ai < —ap_1(by—3 — 4by—2— 1) — as(bs — 4b3 — 1) — an(by—2 — 1) —ay (b3 — 1).
i=1
(2.5)
Elementary calculations give us that

b3=bn,2 n—4)(n—3)7b4:bn,3:%(n—S)(n—4)7

:E(

which implies that
1
bn_3 —4bn_2 —1= b4 —4b3 —1= —E(l’l— l)n

e (1=7) _nln—1)
n(n— n(n— n
bn7 - l = b — 1 = = — —.
2 3 12 12 2
Then, the right hand side of (2.5) can be written as

—ap_1(bp-3—4b,_2—1) —ay(bs—4b3— 1) —ay(b, 2 — 1) —ay(b3 - 1)

= 11—2("— Dn(ap-1+a2) + (g - n(nlg 1)> (an+ar)
= anta) " (6, a0 - (@ -a)
= g(al +an) — I’l(l’llg 1) (Aan,1 —Aal).

Finally, (2.4) follows from the above identity and (2.5).

2.3. The class of convex sequences satisfying A*q; <0

For n > 5, we now consider the class of sequences
€= {a= (a1, - ,an) € S :ais convex}.
Observe that, if a = (ay,---,a,) € R" is convex, that is,
A%q; >0, i=1,--,n—2,
then

air2 —2ai1+a; = (a2 — aip1) — (@1 —ai) 20, i=1,---.n-2,
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which means that the sequence (Ag;)i—1....,—1 is nondecreasing. Consequently, if a =
(a1, ,a,) € R" is convex, then

Aan,1 — Aa1 2 0.

Hence, from Theorem 2.2, we deduce the following interesting refinement of the right
inequality in (1.2).

COROLLARY 2.3. Let n>5. If a= (ay,---,a,) € ©.%,, then
1 & aj+a, n—1 ay+ay
- i < ——(Aay—1 —Aay) < ——.
nl_:Zla 2 1 (Ad-1i—Aa) S 5

2.4. Systems of fourth-order difference inequalities

We now consider the class of real matrices A = (a; j)1<i<n,1<j<m, Where n,m > 5,
satisfying the system of fourth-order difference inequalities

(D Forall j=1,---,m
Afaij<0, i=1,--,n—4,

D) Foralli=1,---,n,
Azaw 0, j=1,---.-m—4.

We have the following result.
THEOREM 2.4. Let n,m > 5. If A = (a; j)1<i<n,1<j<m Satisfies (I) and (1I), then

i

1j=1

n n
(2 at,j + Z a'hj) + % (Zai,l + Zai,m>
i=1 i=1

j=1

M:

i

-BIE

Y (Aoaim—1 — Moain)

n(n 2 (Alanfl,j - Alaw») — M

24 =
mn (2.6)
S (@t aim + ang +dnn)
m(m—1)n
- 7( 48 ) (Moay w1 —Mgay 1 + Doty m—1 — Aoap)
n(n—1)m

- T (Aran—1,1—Aar ) +Arap—1m—Aray )
m(m—1) &

_ 1 m
n(n Z (Aran—1;—Ajay j) — 7 Z (Ao@im—1 —Asaiy).
=1 i=1
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Proof. Let j € {1,---,m} be fixed. By (I), the sequence (ayj,--,anj) € Sp.
Hence, by Theorem 2.2, we obtain

1 & ayi+ta,; n—1
- Ya; < —L—L - (Aray-1;—Aray ).

n4 2 12
Summing over j=1,---,m, we get
apj+ap; nn—1)
Zl Za” Zl J 3 ] 2 Zl (Ala,,,hj —Alalh,») . (27)
j=li= Jj= Jj=

Similarly, let i € {1,---,n} be fixed. By (II), the sequence (a; 1,---,aim) € %n. Hence,
by Theorem 2.2, we obtain

u a1—|—a,m m—1
Z, i< — T T (A2ajm—1 —Asa;y),

which implies after summation over i = 1,---,n that

n

n " a +a,m m(m—1
ZZau my, = B (12

i=1j= i=1 i

(Aoajm—1 —Asa;y). (2.8)
1

n
From (2.7) and (2.8), we deduce that

$%a, < (zaw B i) (St S 29
i=1 i=1

i=1j=1

| S

_1 m —1)
n 2 (A1a17j—A1a17j) - %2(A2ai,m71 _A2ai,l)~
j=1 i=1

On the other hand, by (II), the sequence (aj i, - ,a1m) € /. Then, Theorem 2.2
yields

- a a m—1
2 < Litaim

ap; < 7 7 (Agay -1 —NAsay ). (2.10)

m
ani+apm m—1
Y an; <= 5 AR B (Asanm—1—Asan ). (2.11)

From (2.10) and (2.11), we deduce that

n
Z<2a1/+2an1> X a11+alm+anl+anm) (212)
m(m—1)n

BT (Ao m—1—Asar 1 + Aoapm—1 — Moay 1) .
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Proceeding as above, we obtain

n

1 a1 +a. n—1
- E a1 < Ll L (Aran—11—Aay ;) (2.13)
n & 2 12

and

1 2": - Al +apm n—1
- m 3 -

2 1 (Aran—1m—Arar ) - (2.14)

nig
Then, (2.13) and (2.14) yield

&3

(Zalﬁzazm) < B2 (@11 + @n1 + a1+ an ) (2.15)

n(n—1)m
T (Aran—11—Arar 1 +Aran—1m— Araim) -

Next, making use of (2.9), (2.12) and (2.15), we get

n m m m n n
I 26117]4-261"71' +Z 261,'714-261,'7,”
J=1 J=1 i=1 i=1

_n(n—

1) & mm—1) &
) Y (Aran-1,;—Aarj) — m(m —1) N (Aoaim—1 — Moaiy)
= '

mn
T(a171+al,;n+an7l+a"7m) (2.16)
m(m—1)n
_ (478) (A2a17m71 —A2a171 +A2an7m—l - A2an,1)
n(n—1)m
48

n—l

<

(Aran—11—Arar 1 +Aray—1 m— Araiy)

m m m_l n
Z (Aran—1,j—Aayj) — % Y (Aoaim—1 —Aoaiy).
=1 i—1

Finally, (2.6) follows from (2.9) and (2.16). [

Let us consider the special case of Theorem 2.4, where A is a square and symmet-
ric matrix, that is,
m=nz=5,a;;=aj; i,j=1,--,n.

In this case, we obtain

=

ZZ%./ZZ ,,+22 2 aij, 2.17)

i=1j=1 i=1 i=1 j=i+1
n m n n n
- apj+ amj = ayi+ ) ani
4 J 4
i=1 i=1 i=1

(2.18)

n n <
=7 (a1,1+an1)+ 1 2 (ar;+an,),
i=2
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n l’l—l m m(m—1
( ) Y (Aran-1j—Aar ;) + m(m —1) 2 (At = Mo
% %5
nn—1)
- 24 ) D (Arap1—Arar;+Moaipn-1 —Asai )
=1
nn—1)

[(ani— an—1,) — (azi—a1,;) + (ain— ain-1) — (aip—ai1)]  (2.19)

I
)
=
.M=

N}
|
Ju—,
~
T
—_

Il
S
—~
—
V)
-M:

—

(a@in—ain—1) — (aip —ai1)]

nn—1) &
_n(n—-1) S (Modip1 — Moaiy),
12 i=1
m(m—1)n
S48 (Aoar m—1—Doar 1+ Dodym—1 — Doan 1)
nn—1)m
i % (A1 = Arar1 + A1t = Ara1m) (2.20)
2
n“(n—1
B % (Aoay p—1 — Boay1 + Dopp—1 — Boan 1),
and i
mn n
(@it aintant+anm) = 7 (a1 +2a1,+ any) - (2.21)

On the other hand, since A is symmetric, forall i € {1,---,n} and j € {1,---,n—4},
we have .
Ayaij = ajjia—4aiji3+64aiji2—4aiji1+aij
=ajia;i—4aj43i+6aj40—4aj1it+aj;
= Ajaji,
which shows that (I) and (II) are equivalent.

Hence, from Theorem 2.4, (2.17), (2.18), (2.19), (2.20), and (2.21), we deduce the
following result.

COROLLARY 2.5. Let n > 5. If A= (a; j)i<i,j<n IS a Symmetric matrix satisfying
(I) with m = n, then

1 Zn—l n
“Tr(A)+= Y Y aij
n ni S

1 L n—1g
<§ a1,1+an,1+2(al,i+an,i) BT Z(A2ai,n71_A2ai,l)

i=2 i=1

n nn—1)

<Z(al,1+2al,n+an,n)— 2 (Agay y—1 —Asay 1 +DMoay u—1 — Arap)

N (Aoain-1 —Msayy),
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n
where Tr(A) = Za,;,-.
i=1

Assume that in addition of the assumptions of Corollary 2.5, the matrix A satisfies
(I Foralli=1,---,n,
Aa;;j>0, j=1,--,n—2.
In this case, forall i =1,---,n, one has
Naij = aiji2—2a;j11+ai

= (aj j42 —ajj1) — (@i jy1 —aij)

=Maj i1 —Maij 20,
which implies that the sequence {Agai, J'}j=1,m | is decreasing (with respect to j).
Consequently, we have

M=

Aoajp1—Maj1 20, i=1,---,n.
Then, from Corollary 2.5, we deduce the following trace inequalities.

COROLLARY 2.6. Let n > 5. If A= (a; j)1<i,j<n IS a symmetric matrix satisfying
(1) with m = n, and (III), then

n n n—1 n
Tr(A) < 5 <61171 +an,1 + 2(a17i+an7,~)> -2 2 2 a;j

i=2 i=1 j=i+1
nn—1)

n
BT 2(A2ai,n—l —Aoay)
-1

n n n—1 n
< 7 al,l+an,1+2(al,i+an,i) —22 2 aj j-
i=2 i=1 j=i+1
We provide below an example to illustrate the above result.

EXAMPLE 2.1. In this example, we will construct a symmetric matrix A with

m =n =15 such that
Ala;j=0, j=1,--,5. (2.22)

Clearly, the above condition implies that (I) is satisfied.
Let us consider the symmetric matrix A = (4, j)1<;, j<5 given by

-10-% 4 1 ¢

|
[SS]
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e We first show that (2.22) holds.

For j =1, we have

Alai ) =as) —4as) +6as) —4az; +ay
1 15
— 64X +6x(—4)—4x[—=)—10
x5 +6x(—4)—4x ( 5 )

=0.
For j =2, we have

4
A1a172 =asy— 4a4,2 + 6a3.’2 — 4a2,2 +aip

1 19 23 103 15

=0.
For j =3, we have

4
A1a1,3 =as3— 4a4’3 —|—6a3’3 - 4a2,3 +aij

:—%—4><(—6)+6>< (—23—5> —4x <—23—3> —4

=0.
For j =4, we have

4
Alayg=asg—4as4+6a34—4azs+aiq

7 13 19 1
_§—4>< <_T)+6X(_6)_4X <_Z>+§
=0.

For j =35, we have

4
A1a1.’5 =ass— 4a4.’5 + 6a3’5 - 4a2,5 +ais

38 7 2 1
_?—4>< <§)+6>< (—5) —4x <6>+6

=0.

Consequently, (2.22) holds.
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e Next, we show that (III) is satisfied.

For i =1, we have

2
Asaq ai3—2a1p+a; aiz app a 1
2
MNap | = | ara—2a13+a12 | = | a4 a13 a1 -2
Alay 3 ays—2a14+ar3 aysaig a3 1
—4 -5 10 1 1>0
|1 15 _ _
= 5 -4 -3 2 =]11>0
6 % —4 1 1>0

For i =2, we have

2
Asaz a3 —2ap+az; a3 azp az ) 1
2 _ _
MNays | = | ey —2a3+ap | = | a2a ar3 azp -2
Aay 3 a5 —2a4+ax3 Qs ax4 a3 1
23 103 15
31 73 1 2>0
_ 19 23 103 o | =
=l-7 3 1 21=12>0
1 19 23
5 —4 —3 1 2>0

For i = 3, we have

2
Asaz a33—2a32+as a33 azp as 1
2
ANazp | = | aza—2a33+azp | = | az4 as3 azp -2
Alas 3 azs—2a34+az3 azs az4 as3 1
25 23
e 1 3>0
— 6 25 23 _ _
= 5 2 2|=]3>0

_% 6 -» 1 3>0
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For i = 4, we have

2
Asay as3 —2a42+aq as3 agp ag] 1
Nassr | = | asa—2as3+asr | = | asa ass asn -2
Alay s ass—2a44+as3 ass aq4 a43 1
19 1
—6 -1 1 4>0
_ 13 19 A
—| -8 6 L 2(=]4>0
7 13
7 -5 1 4>0

For i =5, we have

2
Adas as3z—2asp+as; as3z dasp asy 1
2 _ _
Asasp | = | asa—2as3+asp | = | asg ass asp -2
2
Asas 3 ass—2as4+as;3 ass asg4 as;3 1
2 1
~2 1 ¢ 1 5>0
- 7 21 _ -
= 5 —5 @ 21=15>0
38 7 2
3 7 -5 1 5>0

The above calculations confirm that (III) is satisfied. Then, from Corollary 2.6, we have

Te(A) <X +Y +Z <X +Y, (2.23)
where
5 5 4 5
XZE a1,1+a5,1+2(a1,i+a5,i) ) Y=—22 2 aj j,
i—2 i=1 j=i+1
and

Z=— (Aza,‘74 — Aza,‘71).

W[ Wn
.Mu-

i=1
Let us check the validity of (2.23). From the definition of the matrix A, we have

5
X = 3 a1 +ais+ (aip+asr+aiz+aszt+aiat+asa+aps+ass)

5
=3 (a1 +2a15+ai2+asp+aiz+asz+aia+ass+ass)

5 15 1 2 1 7 38

=2 (1042x6- 24440
2( F2x6=F g 3+2+2+3>
50
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5 5 5
Y=-2 (251171-—!— Zag,ﬂ— 203,1"‘1‘@4,5)

J=2 J=3 j=4

=2(aiptaiztaiatais+aztastars+azs+azs+ass)

15 1 23 19 1 2 7
_—2(—7—4+§+6—?—Z+6—6—§+5>
245
==

and
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5
Z=- 3 [(Azar 4 —Agay 1) + (Agas s — Moaz 1) + (Axaz 4 — Azazy) + (Aras s — Asay )

+(Aas 4 — Asas 1))

5
=3 ((a15—aia—aip+aiy)+ (ars—ara—arp+az))

+(ass—aza—azr+as))+ (aas—ass—aspr+as)
+(ass—asa—asy+as;))

5
=3 (2ais+ai1 —2a04—arp+azs—aza—azp+az ) —ass+ass)

:—% <2><6—10—2>< (—B)—<—%>—%+6+§—4+2+

4 3 3 4

= -75.
Furthermore, we have

103 25 13 38

Finally, the above calculations show the validity of (2.23).

Conclusion
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Various classes of sequences are studied. We first considered the class of se-
quences a = (ay,---,a,) € .%,. For this class, a Hermite-Hadamard-type inequality is
proved (see Theorem 2.2). The proof of this result makes use of an appropriate choice
of a sequence which is the solution to a certain fourth-order difference equation (see
Lemma 2.1). We next considered the sub-class €.¥, of .%, containing all the convex
sequences belonging to .7,. For this sub-class, an interesting refinement of the right
inequality in (1.2) is obtained (see Corollary 2.3). We also studied the class of real
matrices A = (a; j)1<i<n,1<j<m Satisfying the system of difference inequalities (I) and
(ID). For this class of matrices, some Hermite-Hadamard-type inequalities are derived
(see Theorem 2.4). In the special case when A is symmetric and satisfies (III), a trace

inequality is obtained (see Corollary 2.6).
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In this paper, we only considered some classes of sequences satisfying fourth-
order difference inequalities. It will be interesting to extend the present study to the set
of sequences a = (ay,---,a,) € R" satisfying the k-th order difference inequality

(—1)*A%*a; <0, i=1,---,n—2k,
where n > 2k+1.
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