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ON NEWTON–LIKE INEQUALITIES FOR COMPLEX NUMBERS

CÉSAR BAUTISTA-RAMOS ∗ , CARLOS GUILLÉN-GALVÁN

AND PAULINO GÓMEZ-SALGADO

(Communicated by T. Burić)

Abstract. I. Newton famously stated that the sequence of normalized elementary symmetric
polynomials has the following property: the square of each polynomial is greater than or equal
to the product of its two adjacent polynomials when evaluated at any real numbers. We intro-
duce several novel generalizations of this property for evaluations on multisets of self-conjugate
complex numbers in the angular sector |arg z| � /4 .

1. Introduction

Let Z be a multiset of complex numbers such that |Z| = n . The elementary sym-
metric polynomials in n variables, e0, . . . ,en , can be defined by the following equation
in the ring of polynomials with complex coefficients and indeterminate x :


z∈Z

(x+ z) =
n


k=0

en−k(Z)xk. (1)

Newton’s inequalities [6, 11, 15] state that

e2
k(Z) �

(
1+

1
k

)(
1+

1
n− k

)
ek−1(Z)ek+1(Z) (2)

for 1 � k � n− 1, where Z is an arbitrary multiset of real numbers with cardinality
n . A proof of (2) for positive numbers can be found in [6, p. 53] (using induction).
Pages later, in [6, §4.3, p. 104], a proof of (2) is given for arbitrary real numbers
(based on Rolle’s Theorem). In [13], Monov proved a generalization, known as  -
Newton inequalities, for multisets of self-conjugate complex numbers. Subsequently,
Xu [20] introduced another generalization also applicable to multisets of self-conjugate
complex numbers. Ellard and Šmigoc [4] further explored modifications of Newton’s
inequalities on complex numbers for specific subsequences of the elementary symmet-
ric polynomials. Meanwhile, Ren [17] established a different type of generalization
involving sums of normalized elementary symmetric polynomials, this time applicable
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to arbitrary real numbers. While more generalizations exist for arbitrary real numbers
(e.g., [5, 16, 18]), this paper focuses on those valid for complex numbers. It is worth
mentioning that some of these generalizations have found applications in the fields of
linear algebra, particularly in the study of M -matrices (see [7, 14]), and in differential
equations, specifically partial differential equations associated with curvature problems
(see [10, 17]).

In this paper, we introduce an additional generalization of Newton’s inequalities
for multisets of self-conjugate complex numbers (see Theorem 5), utilizing primarily
the concept of ultra log-concave sequences and a theorem by Liggett [9, Thm. 3], which
states that the convolution of two ultra log-concave sequences is itself ultra log-concave.

The organization of this paper is as follows. In Sect. 2, we present some defi-
nitions, and some lemmas, mainly about weighted log-concavity, which are needed in
Sect. 3, where we focus on ultra log-concavity as a particular case of weighted log-
concavity. In Sect. 4 we use the aforementioned Liggett’s theorem in order to obtain
new Newton-like inequalities on self-conjugate complex numbers in Theorem 5. This
theorem is our main result. We compare our results with the so-called  -Newton in-
equalities in Sections 5 and 6. In Sect. 7, as a consequence of Theorem 5, we show
Newton-like inequalities for some subsequences of the elementary symmetric polyno-
mials with indices in a fixed residual class. These inequalities generalize, in a sense,
the results by Ellard and Šmigoc [4]. We further compare our findings in Section 7 with
theirs. Finally, in Sect. 8, again as a consequence of Theorem 5, we show Newton-like
inequalities for linear combinations of the normalized elementary symmetric polyno-
mials. This result offers an answer to a question raised by Ren [17].

2. Definitions and preliminary results

We denote the set of nonnegative integers by N . The fields of real numbers and
complex numbers are denoted by R and C , respectively. The ring of formal power
series with coefficients in R is denoted by R[[x]] . The semiring of formal power series
with real nonnegative coefficients and indeterminate x is denoted by R�0[[x]] . If a,b∈
N such that a � b , [a,b] stands for the integer interval {k ∈ N : a � k � b} .

DEFINITION 1. Let = (dk)k∈N be a sequence of real numbers.

(i) The support of  , denoted supp , is defined as

supp = {k ∈ N : dk �= 0}.

(ii) The support of a formal power series p(x) , denoted supp p(x) , is the support of
the sequence of its coefficients.

(iii) The sequence  has no internal zeros if supp is a nonempty interval of integer
numbers.

(iv) The set of sequences of nonnegative real numbers without internal zeros is de-
noted by W.
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(v) A formal power series p(x)∈R[[x]] has the property P if and only if the sequence
of its coefficients has the same property P .

(vi) If p(x) ∈ R�0[[x]] , we define the symbols  p(x) and  p(x) by

 p(x) =

{
minsupp p(x), if p(x) �= 0;

−, if p(x) = 0;

 p(x) =

{
maxsupp p(x), if p(x) �= 0;

−, if p(x) = 0.

(vii) If p(x) ∈ R[[x]] , then p′(x) stands for the formal derivative of p(x) .

Additionally, we need the concept of partial ratio-dominance, which was intro-
duced in [1] (see also [2]).

DEFINITION 2. Let p(x),q(x) ∈ R�0[[x]] , where p(x) = k akxk and q(x) =
k bkxk . The formal power series q(x) is partially ratio-dominant over p(x) , denoted
p(x) � q(x) , if  p(x) � q(x)+1 and

ak+1bk � akbk+1, for all k � 0. (3)

In [1, 2], it is proven that the pair (W,�) is a poset up to multiplicative constants.
This means that, on W, the relationship � is reflexive, transitive, and antisymmetric
in the following sense: p(x) � q(x) and q(x) � p(x) imply p(x) = cq(x) for some
positive real number c . We take advantage of these facts in the following.

DEFINITION 3. Let = (dk)k∈N be a sequence of nonnegative real numbers. For
any p(x) ∈ R�0[[x]] such that p(x) = k akxk , we define the operator Shf as

Shf[p(x)] =



k=1

dkak−1x
k,

and we call the polynomial p(x) weighted log-concave with weights  if p(x) �
Shf[p(x)] and p(x) ∈ W. In such a case, we write p(x) ∈ WLC() .

A similar weighted shifted operator was considered by Gurvits [5, p. 64], where
instead of ak−1 , the term ak+1 is used. On the other hand, it is clear that if p(x) has no
internal zeros and neither does the sequence  , then Shf[p(x)] ∈ W.

LEMMA 1. Let p(x) ∈ WLC() and d(x) be the generating function of the se-
quence  . If p(x) = k akxk and d(x) = k dkxk such that supp p′(x) ⊆ suppd ′(x) ,
then

dl+1akal � dkak−1al+1 (4)

for all 1 � k � l .
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Proof. Let m ∈ N with m � 1. Straightforwardly from Definition 3, it follows
that the operator Shf is a monotone map on (W,�) , that is, preserves the partial
ratio-dominant order � . Thus,

p(x) � Shf[p(x)] � Shf[Shf[p(x)]] � ·· · � Shfm [p(x)].

The transitivity property implies that p(x) � Shfm [p(x)] , which in turn implies that

ak−mak+1dk−m+1

m−2


j=0

dk− j � ak+1−makdk+1

m−2


j=0

dk− j (5)

for k � m , since Shfm [p(x)] = 
k=m dkdk−1 . . .dk−m+1ak−mxk and the partial ratio-

domination definition. Assume first that dk+1 �= 0. It follows that

dk−m+1ak−mak+1 � dk+1ak+1−mak (6)

because this inequality holds trivially if dk−m+1 = 0. Otherwise, if dk−m+1 �= 0, then
the common factor m−2

j=0 dk− j in (5) is not zero, since  ∈ W, and we can cancel it out
from both sides of (5). Now, if dk+1 = 0, then (6) also holds. Since dk+1 = 0 implies
ak+1 = 0, due to supp p′(x)⊆ suppd ′(x) . Finally, note that (6) is equivalent to (4). �

The following lemma shows that the shifted log-concave property is inherited by
subsequences whose indices belong to a fixed residue class.

LEMMA 2. Let p(x) = k akxk with p(x) ∈ WLC() , and d(x) the generating
function of  such that supp p′(x) ⊆ suppd ′(x) . If m,r ∈ N with m � 1 , then

(i) k akm+r xk ∈ WLC(0) , where 0 = (m
j=1 d(k−1)m+r+ j)k .

(ii) For 1 � k � l ,

akm+r alm+r

m


j=1

dlm+r+ j � a(k−1)m+ra(l+1)m+r

m


j=1

d(k−1)m+r+ j.

Proof.

(i) Assume that  p(x)+m � k �  p(x)−m . Then [k−m,k] ⊆ supp p(x) . Hence,
we can use (4) m times in order to get

dk+m . . .dk+2dk+1
ak

ak−m
� dk+m . . .dk+2dk+1−m

ak+1

ak+1−m

� dk+m . . .dk+3dk+1−mdk+2−m
ak+2

ak+2−m
� . . . � dk+1−mdk+2−m . . .dk

ak+m

ak
,

which implies

a2
k

m


j=1

dk+ j � ak−mak+m

m


j=1

dk+ j−m (7)
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for  p(x)+m � k �  p(x)−m . Also, (7) trivially holds for k <  p(x)+m and
k >  p(x)−m . Therefore, (7) holds for any k . Now, by substituting k with
mk+ r in (7), we get

a2
km+r

m


j=1

dkm+r+ j � a(k−1)m+ra(k+1)m+r

m


j=1

d(k−1)m+r+ j,

which leads to the result.

(ii) This follows from (i) and Lemma 1. �

3. From weighted to ultra log-concavity

In this section, we apply our results about weighted log-concavity to ultra-log
concavity. We recall from [9] that a sequence of nonnegative real numbers (ak)k∈N is
ultra log-concave of order  if it has no internal zeros, ak = 0 for k >  , and

− k
k+1

a2
k � − k+1

k
ak−1ak+1, k � 1. (8)

In this case, if p(x) is the generating function of the sequence (ak)k∈N , we write p(x)∈
ULC() . Note that (8) can be written as

a2
k �

(
1+

1
k

)(
1+

1
− k

)
ak−1ak+1, 1 � k �  p(x)−1. (9)

Therefore, it makes sense to call a sequence of nonnegative real numbers (ak)k∈N ultra
log-concave of order infinity if it has no internal zeros and satisfies:

a2
k �

(
1+

1
k

)
ak−1ak+1, k � 1. (10)

In this case, if p(x) is the related generating function, we write p(x) ∈ ULC() .

THEOREM 1. Let p(x) = k akxk . If p(x) ∈ ULC() , then

akal � (l +1)(− k+1)
k(− l)

ak−1al+1 (11)

for all 1 � k � l �  p(x)−1 .

Proof. Let = (dk)k∈N where

dk =

{
−k+1

k , if 1 � k �  p(x);
0, otherwise.

Then, the equation ULC() = WLC() holds due to (8). Thus, we can use Lemma 1,
and the result follows. �

Lemma 2 applied to subsequences of ultra log-concave sequences gives the fol-
lowing.
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THEOREM 2. If p(x) ∈ ULC() such that p(x) = k akxk , then

akm+r alm+r � a(k−1)m+r a(l+1)m+r

m−1


j=0

(
1+

m(l− k+1)
km+ r− j

)(
1+

m(l− k+1)
− lm− r− j

)
(12)

for 1 � k � l � ( p(x)− r)/m− 1 . In particular, the sequence (akm+r)k∈N is ultra
log-concave of order (−2r)/m.

Proof. From Lemma 2 (i), and the proof of Theorem 1, we get that k akm+rxk ∈
WLC(0) , where 0 = (m

j=1 d(k−1)m+r+ j)k∈N and dk = ( − k + 1)/k for 1 � k �
 p(x) . Assume 1 � k � l � ( p(x)− r)/m−1. From Lemma 2 (ii), we get,

akm+r alm+r

m


j=1

− lm− r− j +1
lm+ r+ j

� a(k−1)m+r a(l+1)m+r

m


j=1

− (k−1)m− r− j +1
(k−1)m+ r+ j

. (13)

We can see that:
lm+ r+ j

(k−1)m+ r+ j
= 1+

m(l− k+1)
(k−1)m+ r+ j

and
− (k−1)m− r− j +1

− lm− r− j +1
= 1+

m(l− k+1)
− lm− r− j +1

.

Additionally, since l � ( p(x)− r)/m− 1, then  − lm− r− j + 1 > 0 for any 1 �
j � m . Therefore (13) can be written as

akm+r alm+r �

a(k−1)m+r a(l+1)m+r

m


j=1

(
1+

m(l− k+1)
(k−1)m+ r+ j

)(
1+

m(l− k+1)
− lm− r− j +1

)

which is equivalent to (12). Note that in (12) the factors for j = r and l = k are(
1+

1
k

)(
1+

m
− km−2r

)
=
(

1+
1
k

)(
1+

1
−2r

m − k

)
.

Consequently, the sequence (akm+r)k is ultra log-concave of order ( −2r)/m due to
(9). �

As Liggett noted, the concept of ultra log-concavity is equivalent to that of log-
concavity.

DEFINITION 4. A sequence (ak)k∈N of nonnegative real numbers is log-concave
if it has no internal zeros and

a2
k � ak−1ak+1, k � 0.
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In this case, if p(x) is the generating function of (ak)k∈N , we write p(x) ∈ LC.

Thus, (ak)k∈N is ultra log-concave of order  if and only if
((

k

)−1
ak

)
0�k�n

is

log-concave, where n is the degree of the generating function of (ak)k∈N .
The following general property of log-concave sequence leads to Newton-like in-

equalities for some linear combinations, as defined in [17]. We prove this in Corollary
3.

THEOREM 3. Let (ak)1�k�n be a log-concave sequence and q(x)∈ LC . If q(x) =
k bkxk , then (

n


k=1

akbk

)2

�
(

n


k=1

akbk−1

)(
n


k=1

akbk+1

)
. (14)

Proof. Let p(x) = n
k=1 an+1−kxk . From the well-known fact that the product of

two log-concave polynomials is log-concave (see [8, p. 394], [12], [19, Proposition 2]),
it follows that p(x)q(x) ∈ LC, which implies

(
k+1


i=0

an+1−ibk+1−i

)2

�
(

k


i=0

an+1−ibk−i

)(
k+2


i=0

an+1−ibk+2−i

)
, k � 0. (15)

Setting k = n and noting that an+1 = 0, a0 = 0, and a−1 = 0 in (15) , we obtain

(
n


i=1

an+1−ibn+1−i

)2

�
(

n


i=1

an+1−ibn−i

)(
n


i=1

an+1−ibn+2−i

)
,

which is equivalent to (14). �

4. Ultra log-concavity and Newton-like inequalities

Building on the properties of ultra log-concave sequences established in the pre-
vious section, the following theorem from [9, Thm. 2] allows us to derive Newton-like
inequalities for complex numbers.

THEOREM 4. (Liggett) If p(x) ∈ ULC() and q(x) ∈ ULC( ) with , ∈ N∪
{} , then p(x)q(x) ∈ ULC( + ) .

This theorem serves as a foundation for deriving Newton-like inequalities when
applied to elementary symmetric polynomials. We show this in the following theorem
and its corollaries.

DEFINITION 5. A multiset Z of complex numbers is self-conjugate if for every
element z in Z , the complex conjugate of z (denoted by z∗ ) is also in Z .
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THEOREM 5. Let Z be a finite multiset of self-conjugate complex numbers in the
angular sector  = {z ∈ C : |argz| � /4} . If n = |Z| and

 = 
z∈Z

⌈



j=0

tan2 j(argz)

⌉
,

then:

(i) The sequence (en−k(Z))0�k�n is ultra log-concave of order  .

(ii) The sequence (ek(Z))0�k�n is ultra log-concave of order  . That is,

e2
k(Z) �

(
1+

1
k

)(
1+

1
 − k

)
ek−1(Z)ek+1(Z) (16)

for 1 � k � n−1 .

Proof. We can write Z = [r1, . . . ,rm,z1, . . . ,z�,z∗1, . . . ,z
∗
� ] , where 2� + m = n ,

r1, . . . ,rm ∈ R�0 and z1, . . . ,z� ∈ C−R . Let p(x) = z∈Z(x+ z) .

(i) We have the following decomposition:

p(x) = (x+ r1) · · · (x+ rm)(x2 +2Rez1 x+ |z1|2) . . . (x2 +2Rez� x+ |z�|2), (17)

where each linear factor x+ z j is ultra log-concave of order 1, 1 � j � m ; while
each quadratic factor x2 +2Rez� x+ |z�|2 is ultra log-concave of order  j , defined
as:

 j =

{
2

1−Im2 z j/Re2 z j
, if |argz j| < /4;

, if |argz j| = /4,

since the equation 4Re2 z j = 2(1 + 1/( j − 1))|z j|2 holds and (9), 1 � j � � .
Additionally, each quadratic factor on the right side of (17) has order 	 j
 (the
ceiling of  j) for 1 � j � � . This is because if a sequence is ultra log-concave
of order  j , it is also ultra log-concave of any higher order, including 	 j
 .
Liggett’s theorem implies that p(x) ∈ ULC(m + 	1
+ · · ·+ 	�
) . Now, the
result follows from the fact that the elementary symmetric polynomials are defined
by Equation (1).

(ii) The generating function of the sequence (sk(Z))0�k�n is the reflected polynomial
pR(x) of the polynomial p(x) . Since pR(x) = xnp(1/x) , we get

pR(x) = r1 . . . rm|z1|2 . . . |z�|2q(x),

where q(x) = z∈Z(x + z−1) . This implies that pR(x) is equal to q(x) in the
projective space W. Applying (i) to q(x) we get that q(x) ∈ ULC( ) , because
the angular sector  is closed under the inversion z �→ z−1 and

Im2(z−1)
Re2(z−1)

=
Im2 z

Re2 z
.

Therefore pR(x) ∈ ULC( ) . �
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5. On  –Newton inequalities

Several Newton-like inequalities valid on the complex semiplane Re z � 0 have
been found. In contrast, our proposed Newton-like inequalities (16) holds just in the
angular sector |argz| � /4. Thus, to facilitate comparisons, throughout the rest of
this paper, we shall assume that all the symmetric elementary polynomials and their
normalizations are evaluated over multisets Z in said angular sector. For instance,
Newton-type inequalities appeared in [13, Thm. 2.1]. For a multiset Z satisfying the
conditions of Theorem 5, these inequalities take the form:

e2
k(Z) � 

(
1+

1
k

)(
1+

1
n− k

)
ek−1(Z)ek+1(Z). (18)

Here, 1 � k � n−1 and  = cos2(max{argz : z ∈ Z}) . As we prove in the following
proposition, the inequalities (16) are stronger than (18) for some values of k but weaker
for others. This implies that neither set of inequalities universally implies the other.

PROPOSITION 1. Let  � n > k � 1 , 0 �  < 1 , and Mk = 1+ 1
−k −

(
1+ 1

n−k

)
for 1 � k � n− 1 . There exists an integer m0 such that 1 � m0 � n− 1 , which holds
Mk > 0 for 1 � k < m0 , while Mk � 0 for m0 � k � n−1 .

Proof. We have

Mk =
q , ,n(k)

(n− k)( − k)
,

where

q , ,n(k) = (1− ) k2 +( −1)( +n+1)k− (n+1)+n( +1).

The sign of Mk depends on q , ,n(k) . The discriminant of this quadratic polynomial in
k is equal to (1− )d ,n( ) , where

d ,n( ) = (1− ) 2 +2((n+1) −n+1)  +(n−1)2− (n+1)2 . (19)

This is another quadratic convex polynomial in  , which has its own larger root equal
to

(n+1) −2
√
 −n+1

 −1

which is lower or equal to n . Thus, for any number greater or equal than n , such as  ,
this quadratic polynomial in  is nonnegative. This implies that the roots of q , ,n(k)
are real. They are given by

r±( , ,n) =
(1− )( +n+1)±√

1−
√

d ,n( )
2(1− )

.

The middle point between r±( , ,n) is ( + n+ 1)/2, which is strictly greater than
n . Additionally, the inequality n−k < r−( , ,n) is equivalent to 0 < (1− )( −n+
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2k+1)2−d ,n( ) . But the right side of this inequality equals to −4(( −1)k2 +( −
1)( − n + 1)+ ( − n) ) . Thus, n− k < r−( , ,n) is equivalent to  < g ,n(k) ,
where

g ,n(k) =
1+( −n)/(k+1)

1+( −n)/k
.

Since g ,n(n−1) = 1−1/n
1−1/ � 1 and g ,n(k) is a strictly increasing function in k , there

exists an integer k0 such that 1 � k0 � n−1 and

0 < g ,n(1) < · · · < g ,n(k0) �  < g ,n(k0 +1) < · · · < g ,n(n−1) � 1,

which implies k < r−( , ,n) for 1 � k � n− k0−1 and k � r−( , ,n) for n− k0 �
k � n− 1. This leads to g ,n(k) > 0 for 1 � k � n− k0 − 1 and g ,n(k) � 0 for
n− k0 � k � n− 1, as q , ,n(k) is a convex quadratic polynomial in k . The result
follows. �

6. On generalized  –Newton inequalities

COROLLARY 1. Under the conditions of Theorem 5,

ek(Z)el(Z) � (l +1)( − k+1)
k( − l)

ek−1(Z)el+1(Z) (20)

for all 1 � k � l � n−1 .

Proof. Use Theorem 5 and Theorem 1. �

Additional Newton-like inequalities appear in [20, Thm. 2.13]. These are

ek(Z)el(Z) � 
(l +1)(n− k+1)

k(n− l)
ek−1(Z)el+1(Z) (21)

for all 1 � k � l � n− 1. These are quite similar to those in (20). The following
proposition shows that, in general, neither of these Newton-like inequalities implies the
other directly.

PROPOSITION 2. Let  � n > l � k � 1 , z ∈ C−{0} , and

Ml,k =
 − k+1
 − l

−
n− k+1

n− l
.

where  = cos2(argz) .

(i) If argz � /6 and l � n/4 , then Ml,k > 0 .

(ii) If  = m + 	2/(2 − 1)
 , 2/(2 − 1) �∈ N , l = n− 1 , and n = m + 2 , then
Ml,k < 0 .
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Proof.

(i) The condition l � n/4 implies that 3(l− k)+ l � n−3, which in turn implies

tan2 arccos

√
n− l

n− k+1
=

l− k+1
n− l

� 1
3
.

Thus,

arccos

√
n− l

n− k+1
� arctan

√
1
3

� argz.

So, by transitivity, √
n− l

n− k+1
� cosargz =

√
 ,

which implies 1 �  (n− k+1)/(n− l) . Therefore,

 − k+1
 − l

> 1 � 
n− k+1

n− l
.

(ii) Let us recall that a Moebius transformation of the form M(x) = (x−a)/(x−b) ,
with a,b ∈ R such that a < b , is decreasing when restricted to R . Thus

 − k+1
 −n+1

− (n−k+1)<
m+ 2

2−1 − k+1

m+ 2
2−1 −n+1

− (n−k+1)= (m−k+1)(−1).

This is, Ml,k < (m− k+1)( −1) � 0, because l � k implies m+1 > k . �

Therefore, from Proposition 2 (i), we get that, if we take a multiset Z of self-
conjugate complex numbers in the slices /6 � |argz| � /4 of the complex plane,
then the Newton-like inequalities (20) are stronger than those in (21) for l � n/4. How-
ever, it is the other way around if Z has m real numbers and two mutually conjugated
nonreal complex numbers z,z∗ such that 2/(1− tan2(argz)) /∈ N , according to Propo-
sition 2 (ii).

7. Subsequences

COROLLARY 2. Under the conditions of Theorem 5,

ekm+r(Z)elm+r(Z) �

e(k−1)m+r(Z)e(l+1)m+r(Z)
m−1


j=0

(
1+

m(l− k+1)
km+ r− j

)(
1+

m(l− k+1)
 − lm− r− j

)
(22)

for 1 � k � l � (n−r)/m−1 . In particular, the subsequence of (ek(Z))k made of terms
with indices in a residual class r modulo m is ultra log-concave of order ( −2r)/m.

Proof. Use Theorem 5 and Theorem 2. �
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7.1. Examples

Let Z be a self-conjugate multiset of complex numbers in the angular sector
|argz| � /4 such that |Z| = n . For m = 2 and r = 0 in Corollary 2, we get

e2k(Z)e2l(Z) �
(

1+
l− k+1

k

)(
1+

l− k+1
k−1/2

)
(

1+
l− k+1
/2− l

)(
1+

l− k+1
/2− l−1/2

)
e2k−2(Z)e2l+2(Z) (23)

for 1 � k � l � n/2−1; and for m = 2 and r = 1, we get

e2k+1(Z)e2l+1(Z) �
(

1+
l− k+1

k

)(
1+

l− k+1
k+1/2

)
(

1+
l− k+1

/2− l−1

)(
1+

l− k+1
/2− l−1/2

)
e2k−1(Z)e2l+3(Z) (24)

for 1 � k � l � (n− 1)/2− 1. However, Ellard and Šmigoc [4, Theorem 2.9] proved
the following Newton-like inequalities:

e2k(Z)e2l(Z) �
(

1+
l− k+1

k

)(
1+

l− k+1
�n/2�− l

)
e2k−2(Z)e2l+2(Z) (25)

for 1 � k � l � n/2−1; and

e2k+1(Z)e2l+1(Z) �
(

1+
l− k+1

k

)(
1+

l− k+1
	n/2
− l−1

)
e2k−1(Z)e2l+3(Z) (26)

for 1 � k � l � (n− 1)/2− 1. Note that, according to Theorem 1, these inequalities
are equivalent to the fact that the sequences (e2k(Z))k and (e2k+1(Z))k are ultra log-
concave with orders �n/2� and 	n/2
−1, respectively.

In the next proposition, we make comparisons between all these Newton-like in-
equalities.

PROPOSITION 3.

(i) If 1 � l < �n/2�/2+ 1/4 , then the inequalities (23) are stronger than those in
(25).

(ii) If 1 � l < 	n/2
/2− 3/4 , then the inequalities (24) are stronger than those in
(26).

(iii) For k > �n/2�/2+1/4 and sufficiently large  the inequalities (25) are stronger
than those in (23).

(iv) For k > 	n/2
/2−3/4 and sufficiently large  the inequalities (26) are stronger
than those in (24).
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Proof.

(i) If 1 � l < �n/2�/2+1/4 and k � l , then l+k < �n/2�+1/2, which implies that
the factor (

1+
l− k+1
k−1/2

)
in (23) is strictly larger than the factor(

1+
l− k+1
�n/2�− l

)

in (25).

(ii) Similarly, the condition 1 � l < 	n/2
/2−3/4 implies that(
1+

l− k+1
k+1/2

)
>

(
1+

l− k+1
	n/2
−1− l

)
.

(iii) Let

Dk,l,n( ) =
(

1+
l− k+1
k−1/2

)(
1+

l− k+1
/2− l

)(
1+

l− k+1
/2− l−1/2

)

−
(

1+
l− k+1
�n/2�− l

)
.

Then,

lim
→

Dk,l,n( ) = (l− k+1)
(

1
k−1/2

− 1
�n/2�− l

)

being this rational function negative if k > �n/2�/2+1/4. The condition l � k >
�n/2�/2+1/4 implies that l + k > �n/2�+1/2, i.e., k−1/2 > �n/2�− l .

(iv) Similar to (iii). �

8. Linear combinations

In [17], Ren asked for structural conditions on the coefficients (ak)1�k�n of the
linear combinations in (27) under which such inequality holds. In the following corol-
lary, we show that these structural conditions are log-concavity, together with Z being
a multiset of self-conjugate complex numbers in the angular sector |argz| � /4.

COROLLARY 3. Under the conditions of Theorem 5, if Ek(Z) = ek(Z)/
(

k

)
, 0 �

k � n, and (ak)1�k�n is a log-concave sequence, then

(
n


k=1

akEk(Z)

)2

�
(

n


k=1

akEk−1(Z)

)(
n


k=1

akEk+1(Z)

)
. (27)
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Proof. From Theorem 5 (ii), we obtain that the sequence (ek(Z))0�k�n is ultra
log-concave of order  . Consequently, the sequence (Ek(Z))0�k�n is log-concave.
Therefore, we can utilize Theorem 3 to derive (27). �

We elaborate on inequalities of the type shown in (27) in [3].
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Benemérita Universidad Autónoma de Puebla
14 sur y Av. San Claudio, CCO3-304, Ciudad Universitaria, Puebla,

72570, Puebla, Mexico
e-mail: cesar.bautista@correo.buap.mx

Carlos Guillén-Galván
Facultad de Ciencias Fı́sico-Matemáticas
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