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Abstract. In this paper, we present a refinement of the triangle inequality for Schatten p -norm,
and specific example is given to compare our result with the triangle inequality for Schatten p -
norm. As an application, a new lower bound for p -numerical radius is obtained. In addition,
some bounds for p -numerical radius of 2× 2 operator matrices are established, which extend
the results of previous studies. Moreover, Schatten p -norm equalities of 2×2 operator matrices
are also given.

1. Introduction and preliminaries

Let B(H ) denote the C∗ -algebra of all bounded linear operators on a complex
separable Hilbert space H . Let P1, . . . ,Pn be a family of mutually orthogonal projec-
tions in H such that ⊕Pi = I . Given T in B(H ) , let Ti j = PiTPj , i, j = 1,2, . . . ,n .
Making the usual identification we can write T in a block-matrix form

T = [Ti j], 1 � i, j � n. (1)

For T ∈B(H ) , the adjoint, the real and imaginary parts of T are defined by T ∗ , (T )
and (T ) , respectively. And according to the Cartesian decomposition, T ∈B(H ) can
be presented as T =(T )+ i(T ) , where (T ) = 1

2 (T +T ∗) and (T ) = 1
2i (T −T ∗) .

Let N(.) be an arbitrary norm on B(H ) . For every T ∈ B(H ) and unitary
operators U,V ∈ B(H ) , the norm N(.) is self-adjoint if N(T ) = N(T ∗) , unitarily
invariant if N(T ) = N(U∗TV ) , and weakly unitarily invariant if N(T ) = N(U∗TU) .

A compact operator T ∈B(H ) belongs to the Schatten p -class Cp for 0 < p �

if ‖T‖p = (tr|T |p) 1
p = (



j=1

sp
j (T ))

1
p < , where s1(T ) � s2(T ) � . . . are the eigenval-

ues of |T | = (T ∗T )
1
2 , and tr(.) is the usual trace functional. Throughout this paper,

we assume T ∈ B(H ) is compact whenever T ∈Cp for 0 < p �  . It is known that
Cp is a two-sided ideal in B(H ) , and C is the ideal of compact operators in B(H ) .
For 1 � p � (0 < p < 1) , ‖.‖p defines a norm(a quasi norm) on Cp . It should be
mentioned here that for quasi norm does not satisfy the triangle inequality. For the
theory of the Schatten p -class, we refer to [8, 14, 20].
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For 0 < p � , define the p -numerical radius wp(.) by wp(T ) = sup
∈R

∥∥(eiT )
∥∥

p

= sup
∈R

∥∥(eiT )
∥∥

p . It can be seen that

max
{
‖(T )‖p ,‖(T )‖p

}
� wp(T ) � ‖T‖p .

For 0 < p � ,s > 0,

‖A‖s
sp = ‖|A|s‖p = ‖|A∗|s‖p . (2)

Besides, if T is self-adjoint, wp(T ) = ‖T‖p .

For p = 2, Hilbert-Schmidt numerical radius w2(.) has been given in [1]. In
particular, it has been shown that 1√

2
‖T‖2 � w2(T ) � ‖T‖2 , where T ∈C2 . For more

basic information about w2(.) , it is recommended that readers can see [2, 3, 5, 15, 19].

Further, it was also shown in [1] that the p -numerical radius is equivalent to the
Schatten p -norm, i.e., for every T ∈Cp ,

1
2
‖T‖p � p(T ) � ‖T‖p, where p ∈ [1,). (3)

The study of the numerical radius of operators has attracted a lot of interest due to
their widespread applications in many branches in mathematics and physics. In math-
ematics, the numerical radius is often used as a more reliable indicator of the conver-
gence rate of iterative methods, see [6, 11]. In physics, it has been successfully applied
to quantum computation and quantum information theory, especially in the field of
quantum error correction, see [7, 10, 18, 17]. Over the years, numerous outstanding
mathematicians have acquired various generalized numerical radius inequalities such
as w2(.) of operator. As the generalization of w2(.) of operator, it is necessary to in-
vestigate wp(.) of operator. As is known, computing the numerical radius is not easy
task. However, the operator norm computations are much easier. This urges the need
to find bounds of wp(.) in the terms of ‖.‖p . But, compared with ‖.‖2 , ‖.‖p is more
complex. Consequently, calculation problem of ‖.‖p urgently needs to be solved.

In this paper, we split our main results into two sections. In the first section, we
give a refinement of the triangle inequality for Schatten p -norm. As an application,
a new lower bound for p -numerical radius is obtained. In the second section, some
bounds for p -numerical radius of 2× 2 operator matrices, which extend the results
of previous studies and obtain several new lower bound estimates about special 2× 2
operator matrices. Two Schatten p -norm equalities of 2×2 operator matrices are also
given.
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2. Improvement of the triangle inequality for Schatten p -norm

LEMMA 2.1. ([12]) Let f : [a,b] → R be a convex function. Then

f
(a+b

2

)
� 1

2

(
f
(a+3b

4

)
+ f

(3a+b
4

))

� 1
b−a

∫ b

a
f (x)dx

� 1
2

(
f
(a+b

2

)
+

f (a)+ f (b)
2

)

� f (a)+ f (b)
2

.

Now, we give our first main result of this section, which is a refinement of the
triangle inequality for Schatten p -norm.

THEOREM 2.1. Let X ,Y ∈Cp , where p � 1 . Then

‖X +Y‖p � 1
4
(‖3X +Y‖p +‖X +3Y‖p)

� 2
∫ 1

0
‖tX +(1− t)Y‖pdt

� 1
2
(‖X +Y‖p +‖X‖p +‖Y‖p)

� ‖X‖p +‖Y‖p.

Proof. Let f (t) = ‖tX +(1− t)Y‖p for t ∈ R . It is easy to see that the function
f (t) is convex. By taking into consideration Lemma 2.1, we see that

f
(0+1

2

)
� 1

2

(
f
(3

4

)
+ f

(1
4

))

�
∫ 1

0
f (x)dx

� 1
2

(
f
(1

2

)
+

f (0)+ f (1)
2

)

� f (0)+ f (1)
2

.
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It follows that
∥∥∥1

2
X +

1
2
Y

∥∥∥
p
� 1

2

(∥∥∥3
4
X +

1
4
Y

∥∥∥
p
+

∥∥∥1
4
X +

3
4
Y

∥∥∥
p

)

�
∫ 1

0
‖tX +(1− t)Y‖pdt

� 1
2

(∥∥∥1
2
X +

1
2
Y

∥∥∥
p
+

‖X‖p +‖Y‖p

2

)

� ‖X‖p +‖Y‖p

2
.

Hence,

‖X +Y‖p � 1
4
(‖3X +Y‖p +‖X +3Y‖p)

� 2
∫ 1

0
‖tX +(1− t)Y‖pdt

� 1
2
(‖X +Y‖p +‖X‖p +‖Y‖p)

� ‖X‖p +‖Y‖p. �

REMARK 2.1. Here, we remark that our inequalities in Theorem 2.1 is a nontrivial

improvement of the triangle inequality for Schatten p -norm. Take X =
(

1 0
0 0

)
, and

Y =
(

0 0
1 0

)
. Easy computations show that

‖X‖p = ‖Y‖p = 1, ‖X +Y‖p =
√

2, ‖3X +Y‖p = ‖X +3Y‖p =
√

10,

and
∫ 1

0
‖tX +(1− t)Y‖pdt � 0.812.

Hence,

‖X +Y‖p � 1.414 <
1
4
(‖3X +Y‖p +‖X +3Y‖p) � 1.581

< 2
∫ 1

0
‖tX +(1− t)Y‖pdt � 1.624

<
1
2
(‖X +Y‖p +‖X‖p +‖Y‖p) � 1.707

< ‖X‖p +‖Y‖p = 2.

The following theorem provides a new lower bound for p -numerical radius of
operator.
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THEOREM 2.2. Let T ∈Cp , where p � 2 . Then

1
4
‖T ∗T +TT ∗‖p/2 � 1

8
(‖32(T )+2(T )‖p/2 +‖2(T )+32(T )‖p/2)

�
∫ 1

0
‖t2(T )+ (1− t)2(T )‖p/2dt

� 1
4

(‖2(T )+2(T )‖p/2 +‖2(T )‖p/2 +‖2(T )‖p/2
)

� 1
2
‖(T )‖2

p +
1
2
‖(T )‖2

p

� 2
p(T ).

Proof. For T ∈Cp , where p � 2, by calculation, we have

‖2(T )+2(T )‖p/2 =
1
2
‖T ∗T +TT ∗‖p/2. (4)

Put X = 2(T ) and Y = 2(T ) in Theorem 2.1, we obtain that

‖2(T )+2(T )‖p/2 � 1
4
(‖32(T )+2(T )‖p/2 +‖2(T )+32(T )‖p/2)

� 2
∫ 1

0
‖t2(T )+ (1− t)2(T )‖p/2dt

� 1
2

(‖2(T )+2(T )‖p/2 +‖2(T )‖p/2 +‖2(T )‖p/2
)

� ‖2(T )‖p/2 +‖2(T )‖p/2.

It follow from (4), we derive

1
2
‖T ∗T +TT ∗‖p/2 � 1

4
(‖32(T )+2(T )‖p/2 +‖2(T )+32(T )‖p/2)

� 2
∫ 1

0
‖t2(T )+ (1− t)2(T )‖p/2dt

� 1
2

(‖2(T )+2(T )‖p/2 +‖2(T )‖p/2 +‖2(T )‖p/2
)

� ‖(T )‖2
p +‖(T)‖2

p

� 22
p(T ).
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Hence,

1
4
‖T ∗T +TT ∗‖p/2 � 1

8
(‖32(T )+2(T )‖p/2 +‖2(T )+32(T )‖p/2)

�
∫ 1

0
‖t2(T )+ (1− t)2(T )‖p/2dt

� 1
4

(‖2(T )+2(T )‖p/2 +‖2(T )‖p/2 +‖2(T )‖p/2
)

� 1
2
‖(T )‖2

p +
1
2
‖(T )‖2

p

� 2
p(T ). �

3. The p -numerical radius of 2×2 operator matrices

To obtain the desired results of this paper, we first introduce some well-known
lemmas. The first lemma is the convexity(concavity) inequalities.

LEMMA 3.1. ([4]) Let a,b ∈ [0,) . Then

(1) 2p−1(ap +bp) � (a+b)p � ap +bp f or 0 � p � 1;

(2) ap +bp � (a+b)p � 2p−1(ap +bp) f or p � 1.

The second lemma is the basic properties of Schatten p -norm.

LEMMA 3.2. ([4]) Let A,B ∈Cp , and p ∈ (0,) . Then

∥∥∥∥
(

0 A
B 0

)∥∥∥∥
p
=

∥∥∥∥
(

A 0
0 B

)∥∥∥∥
p
= p

√
‖A‖p

p +‖B‖p
p and ‖A‖p = ‖A∗‖p .

R. Bhatia and F. Kittaneh [9] studied the relation between the norm of operator
matrix T and the norm of its block matrix entries Ti j . They acquired the following
result:

LEMMA 3.3. ([9]) Let T = [Ti j] , where Ti j ∈Cp , i, j = 1,2 . . . ,n. Then

(1)
n


i, j=1

∥∥Ti j
∥∥2

p � ‖T‖2
p � n

4
p−2

n


i, j=1

∥∥Ti j
∥∥2

p f or 1 � p � 2;

(2) n
4
p−2

n


i, j=1

∥∥Ti j
∥∥2

p � ‖T‖2
p �

n


i, j=1

∥∥Ti j
∥∥2

p f or 2 � p � .

LEMMA 3.4. ([13]) Let A ∈Cp , then for 0 < p �  , we have

2
2
p w2

p(A) � wp/2(A
2).
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LEMMA 3.5. ([16]) Let B,C ∈Cp , then for 0 < p <  ,

wp

[(
0 B
C 0

)]
� 2

1
p−1 max

{
wp(B+C),wp(B−C)

}
.

LEMMA 3.6. Let A,B ∈Cp , then for 0 < p �  ,

wp

[(
A B
B A

)]
�

(
wp

p(A+B)+wp
p(A−B)

) 1
p .

In particular, if A,B are self-adjoint, then

wp

[(
A B
B A

)]
=

(
wp

p(A+B)+wp
p(A−B)

) 1
p .

Proof. Let U = 1√
2

(
I I
−I I

)
, then U is a unitary operator. So, by using weakly

unitary invariance of wp(.) and [16], we have

wp

[(
A B
B A

)]
= wp

[
U

(
A B
B A

)
U∗

]

= wp

[(
A+B 0

0 A−B

)]

�
(
wp

p(A+B)+wp
p(A−B)

) 1
p for 0 < p � .

In particular, if A,B are self-adjoint, then by using Lemma 3.2, we get

wp

[(
A B
B A

)]
=

(
wp

p(A+B)+wp
p(A−B)

) 1
p . �

LEMMA 3.7. Let A,B,C,D ∈Cp , then for 1 � p �  , we have

(1) wp

[(
A B
C D

)]
� wp

[(
A 0
0 D

)]
;

(2) wp

[(
A B
C D

)]
� wp

[(
0 B
C 0

)]
.

Proof. The proof is similar to the technique used in [19]. �
Now, we give upper and lower bound estimates for p -numerical radius of 2× 2

operator matrices.

THEOREM 3.1. Let T =
(

A B
C D

)
, where A,B,C,D ∈Cp and  ∈ [0,1] . Then

(1) wp (T ) � 2
2
p−1

√
2
(
2 +(1−)2

)(
w2

p (A)+w2
p (D)

)
+‖B‖2

p +‖C‖2
p

f or 1 � p � 2;

(2) wp (T ) �
√

2
(
2 +(1−)2

)(
w2

p (A)+w2
p (D)

)
+‖B‖2

p +‖C‖2
p f or 2 � p � .
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Proof. For 1 � p � 2,

∥∥∥(eiT )
∥∥∥2

p
=

1
4

∥∥∥∥
(

2
(
eiA

)
eiB+ e−iC∗

eiC+ e−iB∗ 2
(
eiD

)
)∥∥∥∥

2

p

� 1
4

(∥∥∥(
2

(
eiA

)
eiB

e−iB∗ 2
(
eiD

)
)∥∥∥

p
+

∥∥∥(
2(1−)

(
eiA

)
e−iC∗

eiC 2(1−)
(
eiD

)
)∥∥∥

p

)2

� 1
2

(∥∥∥(
2

(
eiA

)
eiB

e−iB∗ 2
(
eiD

)
)∥∥∥2

p
+

∥∥∥(
2(1−)

(
eiA

)
e−iC∗

eiC 2(1−)
(
eiD

)
)∥∥∥2

p

)
(
by using the convexity of the function f(t) = t2 on [0,+)

)

� 2
4
p−3

(
(2)2

(∥∥∥(eiA)
∥∥∥2

p
+

∥∥∥(eiD)
∥∥∥2

p

)
+2‖B‖2

p

)

+2
4
p−3

(
(2(1−))2

(∥∥∥(eiA)
∥∥∥2

p
+

∥∥∥(eiD)
∥∥∥2

p

)
+2‖C‖2

p

)
(by Lemma 3.3)

= 2
4
p−2

[
2
(
2 +(1−)2)(∥∥∥(eiA)

∥∥∥2

p
+

∥∥∥(eiD)
∥∥∥2

p

)
+‖B‖2

p +‖C‖2
p

]
.

Therefore, by taking supremum to both sides of the above inequality over all real
numbers  , we have

wp (T ) � 2
2
p−1

√
2
(
2 +(1−)2

)(
w2

p (A)+w2
p (D)

)
+‖B‖2

p +‖C‖2
p.

Similarly, for 2 � p �  , we have

wp (T ) �
√

2
(
2 +(1−)2

)(
w2

p (A)+w2
p (D)

)
+‖B‖2

p +‖C‖2
p. �

REMARK 3.1. By taking  = 1
2 in Theorem 3.1, we obtain

(1) wp

[(
A B
C D

)]
� 2

2
p−1

√
w2

p (A)+w2
p (D)+‖B‖2

p +‖C‖2
p f or 1 � p � 2;

(2) wp

[(
A B
C D

)]
�

√
w2

p (A)+w2
p (D)+‖B‖2

p +‖C‖2
p f or 2 � p � .

Taking  = 1
2 and p = 2 in Theorem 3.1, we derive

w2

[(
A B
C D

)]
�

√
w2

2 (A)+w2
2 (D)+‖B‖2

2 +‖C‖2
2,

which has been given in [3].
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THEOREM 3.2. Let T =
(

A B
C D

)
, where A,B,C,D ∈Cp and  ∈ [0,1] . Then

(1) wp (T ) �2
2
p− 3

2
[√

22
(
w2

p (A)+w2
p (D)

)
+‖B‖2

p

+
√

2(1−)2
(
w2

p (A)+w2
p (D)

)
+‖C‖2

p

]
f or 1 � p � 2;

(2) wp (T ) �2−
1
2
[√

22
(
w2

p (A)+w2
p (D)

)
+‖B‖2

p

+
√

2(1−)2
(
w2

p (A)+w2
p (D)

)
+‖C‖2

p

]
f or 2 � p � .

Proof. For 1 � p � 2,

wp(T ) =
1
2

sup
∈R

∥∥∥∥
(

2
(
eiA

)
eiB+ e−iC∗

eiC+ e−iB∗ 2
(
eiD

)
)∥∥∥∥

p

� 1
2

sup
∈R

∥∥∥∥
(

2
(
eiA

)
eiB

e−iB∗ 2
(
eiD

)
)∥∥∥∥

p

+
1
2

sup
∈R

∥∥∥∥
(

2(1−)
(
eiA

)
e−iC∗

eiC 2(1−)
(
eiD

)
)∥∥∥∥

p

� 2
2
p− 3

2

[√
22

(
w2

p (A)+w2
p (D)

)
+‖B‖2

p

+
√

2(1−)2
(
w2

p (A)+w2
p (D)

)
+‖C‖2

p

]
(by Lemma 3.3) .

Similarly, for 2 � p �  , we have

wp (T ) � 2−
1
2

[√
22

(
w2

p (A)+w2
p (D)

)
+‖B‖2

p

+
√

2(1−)2
(
w2

p (A)+w2
p (D)

)
+‖C‖2

p

]
. �

REMARK 3.2. By taking  = 1
2 in Theorem 3.2, we have

(1) wp

[(
A B
C D

)]
� 2

2
p−2

[√
w2

p (A)+w2
p (D)+2‖B‖2

p +
√

w2
p (A)+w2

p (D)+2‖C‖2
p

]

for 1 � p � 2;

(2) wp

[(
A B
C D

)]
� 1

2

[√
w2

p (A)+w2
p (D)+2‖B‖2

p +
√

w2
p (A)+w2

p (D)+2‖C‖2
p

]

for 2 � p � .

REMARK 3.3. Using the concavity of the function f (t) = t
1
2 on [0,) , it follows

that Remark 3.2 is a refinement of Remark 3.1.
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REMARK 3.4. By taking p = 2 in Theorem 3.2, we can derive

w2

[(
A B
C D

)]
�

√
2(w2

2(A)+w2
2(D))+

1
2
‖B‖2

2

+

√
(1−)2(w2

2(A)+w2
2(D))+

1
2
‖C‖2

2,

which has been given in [2].

THEOREM 3.3. Let A,B,C,D ∈Cp , then for 1 � p <  , we have

wp

[(
A B
C D

)]
� 2

1
p−1 max

{
wp(A+D),wp(A−D),wp(B+C),wp(B−C)

}
.

Proof.

wp

[(
A 0
0 D

)]
= sup

∈R

∥∥∥∥
(
(eiA) 0

0 (eiD)

)∥∥∥∥
p

= sup
∈R

p
√
‖(eiA)‖p

p +‖(eiD)‖p
p

� 2
1
p−1 sup

∈R

(∥∥∥(eiA)
∥∥∥

p
+

∥∥∥(eiD)
∥∥∥

p

)
(by Lemma 3.1(a))

� 2
1
p−1wp(A+D).

Similarly, we get

wp

[(
A 0
0 D

)]
� 2

1
p−1wp(A−D).

Hence,

wp

[(
A 0
0 D

)]
� 2

1
p−1 max

{
wp(A+D),wp(A−D)

}
.

Finally, by using Lemma 3.5, Lemma 3.7 and the above inequality,

wp

[(
A B
C D

)]
� max

{
wp

[(
A 0
0 D

)]
,wp

[(
0 B
C 0

)]}

� 2
1
p−1 max

{
wp(A+D),wp(A−D),wp(B+C),wp(B−C)

}
. �

REMARK 3.5. By taking p = 2 in Theorem 3.3, we can obtain

w2

[(
A B
C D

)]
� 2−

1
2 max{w2(A+D),w2(A−D),w2(B+C),w2(B−C)} ,

which has been given in [2].
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In what follows, we obtain several new lower bound estimates for special 2× 2
operator matrices.

THEOREM 3.4. Let A,B ∈ Cp be such that AB,BA are self-adjoint. Then for
0 < p �  , we have

w2
p

[(
0 A
B 0

)]
� 2−

2
p

(
wp/2

p/2(AB)+wp/2
p/2(BA)

) 2
p
.

Proof. Let T =
(

0 A
B 0

)
, then by using Lemma 3.2 and Lemma 3.4, we have

2
2
p w2

p(T ) � wp/2(T
2)

= wp/2

[(
AB 0
0 BA

)]

=
(
wp/2

p/2(AB)+wp/2
p/2(BA)

) 2
p
,

thus we obtain the desired result. �

THEOREM 3.5. Let A,B ∈ Cp be such that A2 −B2 , AB−BA are self-adjoint.
Then for 0 < p �  , we have

wp

[(
A B
−B −A

)]
� 2−

1
p

(
wp/2

p/2((A−B)(A+B))+wp/2
p/2((A+B)(A−B))

) 1
p
.

Proof. Let T =
(

A B
−B −A

)
, by using Lemma 3.4 and Lemma 3.6, we have

2
2
p w2

p(T ) � wp/2(T
2)

= wp/2

[(
A2 −B2 AB−BA
AB−BA A2−B2

)]

=
(
wp/2

p/2((A−B)(A+B))+wp/2
p/2((A+B)(A−B))

) 2
p
,

thus we obtain

wp

[(
A B
−B −A

)]
� 2−

1
p

(
wp/2

p/2((A−B)(A+B))+wp/2
p/2((A+B)(A−B))

) 1
p
. �

Next results are Schatten p -norm equalities of 2×2 operator matrices.
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COROLLARY 3.1. Let A,B ∈Cp , then

(1)
∥∥∥∥
(

A B
−B −A

)∥∥∥∥
p
=

(
‖A+B‖p

p +‖A−B‖p
p

) 1
p
;

(2)

∥∥∥∥∥
(

A B
−B −A

)2
∥∥∥∥∥

p

=
(
‖(A−B)(A+B)‖p

p +‖(A+B)(A−B)‖p
p

) 1
p
.

Proof. Let T =
(

A B
−B −A

)
, by Lemma 3.6 and (2) , we get

‖T‖2
p = ‖TT ∗‖p/2

= wp/2(TT ∗)

= wp/2

[(
AA∗ +BB∗ −AB∗−BA∗
−AB∗ −BA∗ AA∗ +BB∗

)]

=
(
wp/2

p/2 ((A−B)(A−B)∗)+wp/2
p/2 ((A+B)(A+B)∗)

) 2
p

=
(
‖(A−B)(A−B)∗‖p/2

p/2 +‖(A+B)(A+B)∗‖p/2
p/2

) 2
p

=
(
‖(A−B)‖p

p +‖(A+B)‖p
p

) 2
p
.

Thus,
∥∥∥∥
(

A B
−B −A

)∥∥∥∥
p
=

(
‖A+B‖p

p +‖A−B‖p
p

) 1
p
.

Similarly,
∥∥∥∥∥
(

A B
−B −A

)2
∥∥∥∥∥

p

=
(
‖(A−B)(A+B)‖p

p +‖(A+B)(A−B)‖p
p

) 1
p
. �
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