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SHARP RAMANUJAN TYPE INEQUALITIES WITH 1/(x+¢)

TAICHI KUSAMA, YUSUKE NISHIZAWA*, YUGO SUZUKI AND TAIYO YUASA

(Communicated by A. Witkowski)

Abstract. We establish the new Ramanujan type inequalities with — as follows: for x > 0, we

xtc
have
1 <°° k=2 _ 1
x+o S xRk x4+ p]

where the constants o = n% 22(.607927 and 3 =0 are the best possible.

1. Introduction

In 1914, Ramanujan [6] proposed the following question.

QUESTION 1. If x is positive, show that

Many mathematicians [1, 2, 3, 4, 7, 8] have proven this inequality and extended it.
Especially, Karamata [3] proved the following inequality.

THEOREM 2. The inequality

et oy <
x(x+5) Tx G ark)f T x(x+2)

holds for x > 0.

In the proof of our main theorems, Theorem 2 plays an important role. In this
paper, we prove the following double inequality.
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THEOREM 3. We have

1 <i Kk=2 _ 1
x+o S (x+kk x4+

for x > 0, where the constants o, = % 2 (0.607927 and 3 = 0 are the best possible.

It has been proven that the inequality Y e +k) e +B holds for § = 0, which

is Ramanujan’s problem. We show that § =0 is the best poss1ble constant. Moreover,

-2
no linear fractional functlon that evaluates Y);” | o F from below for x > 0 is known.

We show that o = = =2 0.607927 is the best poss1ble constant.

THEOREM 4. We have

— <
x  x(x+2) x4+

PIN| =N

for 0 <x < %.

From Theorem 4, we can see that Hl K3 approximates Y, 17 )k better than
i) when sufficiently close to x = 0. Using Theorem 2, we further obtain the
following result.

1 2¢*

THEOREM 5. If a is a positive real number, then we have

o0 kk 2

x+o ,Zf (x+k)k
for x > a, where o0 = W Also, if b is a positive real number with b > % then
we have

o k2 1

D <

1 —__6b
for 5 <x<b, where B = Tl

2. Proof of Theorems
Proof of Theorem 3. We consider the equation
oo kk72

2 (x+ k)

k=1

x+f1
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kk—2 -1
¥ = <k1 (x+k)k> -

Since it is clear that fj(x) > 0 holds for x > 0 and f;(0) = %, we will show that

limy— 1o f1(x) =0 and fi(x) < % for x > 0. First, we may show lim,_ ;. f1(x) =0.
From Theorem 2, we have

and we have

Mg

1 2\ 7! 2x
< PR —— —_ == — = .
fi() (x x(x—|—2)> —2+42e5+ e'x £
The derivative of f>(x) is
2(—242e"—28x—&x?)  2(—2+2¢"—2e'x) 2f3(x)

/
= < = .
£ (=2 +2e" + ex)? (—2+2e+ex)2 (=24 2e"+e*x)?
The derivative of f3(x) is f5(x) = —2¢*x < 0 for x > 0 and f3(x) is monotonically
decreasing for x > 0. By f3(x) < f3(0) =0 for x > 0, we have f}(x) <0 for x >0
and f>(x) is monotonically decreasing for x > 0. From fj(x) > 0 for x > 0 and
limy_ 4o f2(x) = 0, we can get lim,_ . fi(x) = 0. We next show fj(x) < % for

x>0. From ¢* > 1+x+7% = for x > 0, the following inequality holds for x >

105
15 3 3
i) <hrlx ><f2< ) - !
100 10 (Feh—2) 10(%5(1+ () +1(5)7) -2)
1600 800 6 _ 6
2649 1323 (@)2 n?’
100
Thus, we obtain fi(x) < S for x > - 100 The derivative of fj(x) is
k—1
Pl 1k—
fl(x) = il G R

2

kk 2
(Ek L (xt+k)k )
and we consider the sign of the following function f4(x).
2 2
o pk-2 ) o k-l o pk-2
(kzl (x+k)k fl('x)_ 2 (x+k)k+l - 2 (x+k)k _f4('x)'
Here, we have

S k! 1 2e* \° w2 (1 2%\
o (o) 5 (erg) =80

=l
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and the derivative of f5(x) is

2e (=24 2¢" + e x)(—4 + de* — 8x +detx — 2x? —i—exx)
x(2+x)3

f5(x) =
Since we have
2423 f(x) =27 (=24 26" + &x) (—4 + 4" — 8x + de“x — 2% + ¢*x)
> 2¢ (=2 426" 4 ¢*x) (—4 +4 (1 +x+ %2) — 8x+ 4% — 20 + eoxz)
=2¢7% >0,

f5(x) is monotonically increasing for 0 < x < 100 From ¢* > 14+x+ x2 for x >0, we
have

n (20 800 ) N 800
Z I\ 3 e ) <% 3 2
Ve A3 19en/) Ve 319 (14(3)+4(3))
_om 52980 M 52080 11336880

~ /6 39947 © LI T3 39947 — 324809057

129¢ 170,3/20
Sa(x) <0 for 0 <x < m and fi(x) is monotomcally decreasing for 0 < x <
Thus, we can get fi(x) < f1(0) = %
Theorem 3. [J

Hence, we have fs (100) = %2 - (23—0 — 800 ) <0 for 0 <x < . Therefore,

100
for 0 <x< 100 . This completes the proof of

Proof of Theorem 4. We consider the function

=t (b2
s1 = x+ 5 x  x(x+2)
s
and the derivative of g;(x) is

() = 123+7%)  22+4x+x)
f1% = X2 (6+m2x)2  ex2(2+x)?

Since the inequality e* < 2“ holds for 0 <x < 2 (see [5] in pp 269 ), we have
123+7%)  2(2+4x+x%) - 123+7%)  2(2+4x+x)
(64 72x)2 e(2+x)2 T (64 m2x)2 (2+") (2 +x)2

2x7g5(x)
212364 722
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where g5(x) = 180 — 47* 4 54x + 607%x — 67*x + 187%x% 4 27m*x® + *x3. Since we

have
e (x) <1804 314 4+54 oo 0 631 )
100 100) " 100) *

+ 18 315 x+2 ﬁ x+ ﬁ 4x
100 100 100

326323201 = 54005274579
326323201 = 54005274579 (i) 46831024903
10

1562500 + 100000000 *

1562500 + 100000000 ~ 1000000000
for 0 <x < 35, g2(x) <0 for 0 <x < ;5 and g;(x) is monotonically decreasing for
0<x< 13—0. From ¢* < % for 0 < x < 2, we have

a(x) > g ( 13 ) 1 100 . 20000
1X)z28 |\l =3 =3 T —
100 % + i 13 2769¢100
- 1 100 20000 237260000

—|
S

S + = >
Bt 13 2769<§+1oo> 82591406253

100

for 0 <x < 1100 Therefore, this completes the proof of Theorem 4. [

Proof of Theorem 5. We consider the functions fj(x) and f>(x) in the proof of
Theorem 3. Since the function f>(x) is monotonically decreasing for x > 0, we have

filx) < fola) = % for x > a. Also, from Theorem 2, we have
~1
1 2e % 2x
)= -—— —Xx=——=Nh(x
filx) (x x(x—l—%)) —2+§e"+exx 1)

and the derivative of & (x) is
6hs(x)

I (x) = (—6+ (84 3x)ex)?’

where /3 (x) = —6+ (8 — 8x—3x?)e*. Since the derivative of (x) is K (x) = —e*x(14+
3x) <0, hy(x) is monotonically decreasing for x > 0. From

174
h2<1>:13\/2—24<13\/§—24<1 124 69

2

——— <0

1 1 4 200 =

ha(x) <0 for x > 1 and hy(x) is monotonically decreasing for x > 5. Hence, we have
) =

hy(b < hy(x) for 3 <x < b. This completes the proof of Theorem
5. 0

—6+8eb+3beb
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