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ON STARLIKENESS OF THE GENERALIZED MARCUM Q–FUNCTION

KHALED MEHREZ AND ABDULAZIZ ALENAZI ∗

(Communicated by T. Burić)

Abstract. Our aim in this paper is to present sufficient conditions on the parameters of some
classes of analytic functions related to the generalized Marcum Q -function to belong to a certain
class of starlike functions. Furthermore, two classes of starlike functions related to the lower
incomplete generalized hypergeometric functions are derived. Applications of these are given
in the form of corollaries and examples. The key tool in the proofs of the main results are the
monotonicity property for the gamma function and an inequality of the lower incomplete gamma
function.

1. Preliminaries results

The celebrated and widely used the generalized Marcum Q-function is defined by

Q(a,b) =
1

a−1

∫ 

b
te−

t2+a2
2 I−1(at)dt, (1.1)

where I(z) stands for the modified Bessel function of the first kind of the order ,
which has the power series definition [31, p. 249, Eq. 10.25.2]

I(x) =



k=0

(x/2)2k+

k!(k++1)
, x ∈ R,  > −1. (1.2)

When  = 1, the function

Q(a,b) := Q1(a,b) =
∫ 

b
te−

t2+a2
2 I0(at)dt, (1.3)

is known in literature as Marcum Q-function. The Marcum Q-function and the general-
ized Marcum Q-function, defined above are important special functions in a number of
communication theory problems include the study of target detection by pulsed radars
with single or multiple observations, the error probability performance of noncoherent
digital communication, the outage probability of wireless communication systems, the
performance analysis and capacity statistics of uncoded multiple-input multiple-output
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systems. In this regard, notable contributions can be found in [13,22,34,35] and the rel-
evant titles therein. Also, we point out that the generalized Marcum Q-function has an
important interpretation in probability theory, namely that is the complement (with re-
spect to unity) of the cumulative distribution function of the non-central chi distribution
with 2 degrees of freedom.

The Geometric Function Theory is an important branches of complex analysis, it
deals with the geometric properties of analytic functions such as starlikeness, convex-
ity, and close-to-convexity in the open unit disk. In the last decades several researchers
have studied some classes of analytic functions and have presented several interesting
results with applications. The most known application is the solution of the famous
Bieberbach conjecture by L. de Branges [1]. Moreover, it is worth mentioning that the
researchers in the subject are interested nowadays in obtaining new theoretical method-
ologies and techniques with observational results together with their several applica-
tions. In recent decades, Geometric Function Theory for some special functions includ-
ing have attracted the attention of many mathematicians including Fox-Wright func-
tion [25, 26], Mittag-Leffler function [8, 12, 27–30], Struve and Lommel functions [7],
Modified Bessel function [24], Bessel functions and its q -analogues [2–6,9,36]. How-
ever, the geometric properties of a class of analytic functions related to the generalized
Marcum Q-function have not been studied previously in the literature. Motivated by the
above facts our main aim in this paper is to derive sufficient conditions on the param-
eters of the normalized form of analytic functions related to the generalized Marcum
Q-function to belong to a certain class of starlike functions. In what follows, the sym-
bol pq[.] and pq[.] stands for the incomplete generalized hypergeometric functions
were defined by means of the incomplete gamma functions as follows [33]:

pq
[ (a1,x),a2 · · · ,ap

b1, · · · ,bq

∣∣∣z]= pq
[ (a1,x),ap−1

bq

∣∣∣z]

=



k=0

(a1 + k,x)
p

l=2

(al)k

(a1)
q


l=1

(bl)k

zk

k!
,

(1.4)

and

pq

[ (a1,x),a2 · · · ,ap

b1, · · · ,bq

∣∣∣z]= pq

[ (a1,x),ap−1

bq

∣∣∣z]

=



k=0

(a1 + k,x)
p

l=2

(al)k

(a1)
q

l=1

(bl)k

zk

k!
,

(1.5)

where, as usual, we make use of the following notation:

(a)0 = 1,(a)k = a(a+1) · · ·(a+ k−1) =
(a+ k)
(a)

,
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to denote the shifted factorial or the Pochhammer symbol and (,x) and (,x)
stands for the lower and upper incomplete gamma functions, which integral expression
reads

(,x) =
∫ x

0
e−t t−1dt, x > 0, () > 0,

and

(,x) =
∫ 

x
e−t t−1dt, x > 0, () > 0.

These two functions satisfy the following decomposition formula:

(,x)+(,x) = (), () > 0. (1.6)

We note that
(1,x) = 1− e−x, x > 0. (1.7)

It is worth mentioning that the generalized Marcum Q-function can be represented in
terms of the lower incomplete gamma function, reads [11, p. 39]:

Q(a,b) = 1− e−
a2
2




�=0

( + �,b2/2)(a2/2)
�!(+ �)

. (1.8)

For b > 0 and z ∈ C, we set

Q(z,b) =



�=0

( + �,b)z�

�!( + �)

= ez
(
1−Q(

√
2z,

√
2b)
)

.

(1.9)

According to the Cauchy-Hadamard formula, Stirling’s asymptotic formula for the
gamma function and the following asymptotic formula for the lower incomplete gamma
function for large a [31, p. 180, Eq. (8.11.5)]:

(a,b)
(a)

∼
a→

(2a)−
1
2 (b/a)aea−b, (1.10)

we conclude that the function z �→ Q(z,b) defines an entire function (that is, it is
absolutely convergent for all z ∈ C).

Let us now recall some basic definitions and results related to the Geometric Func-
tion Theory. Let H denotes the class of all analytic functions in the unit disk

D =
{

z ∈ C : |z| < 1
}
.

Let A the class of analytic function f ∈ H satisfying f (0) = f ′(0)−1 = 0 such
that

f (z) = z+



�=2

a�z
�, ∀z ∈ D. (1.11)
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The function f ∈ A is called starlike function in D , if f is univalent in D and
f (D) is a starlike domain with respect to the origin. The analytic characterization of
the class of starlike functions is given below [14]:


(

z f ′(z)
f (z)

)
> 0, ∀z ∈ D.

An analytic function f (z) in A is said to be convex in D, if f (z) is a univalent
function in D with f (D) as a convex domain in C.

A function f in class A is called uniformly convex in D, if, for every circular
arc  contained in D with center  ∈ D, the image arc f () is convex. This class of
functions is denoted by UCV (see, for details, [32]). It was introduced by Goodman
(see [16, 17]). On the other hand, Ronning [32] considered a newly-defined class of
starlike functions Sp as follows:

Sp =
{

f : f (z) = zF ′(z) (F ∈UCV )
}
.

A function f ∈ A is said to be k -uniformly convex in D, if the image of every
circular arc , contained in D, with center  , where | |� k

(
k ∈ [0,)

)
, is convex. It

is worth to mention that 1-UCV = UCV. This class of functions is denoted by k−UCV.
The analytical description of k−UCV can be stated as follows [18]:

f ∈ k−UCV ⇐⇒ 
(

1+
z f ′′(z)
f ′(z)

)
> k

∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣ , (k � 0, z ∈ D) .

The class of k -starlike functions, denoted by k -ST, were also introduced and stud-
ied by Kanas et al. [19], as follows:

k−ST :=
{

f ∈ A : f (z) = zg′(z),g ∈ k−UCV
}
.

The characterization for the functions from the class k−ST can also be described as
follows [19, Theorem 2.1]:

f ∈ k−ST ⇐⇒ 
(

z f ′(z)
f (z)

)
> k

∣∣∣∣z f ′(z)
f (z)

−1

∣∣∣∣ , (k � 0, z ∈ D) .

For k = 0, we find the class of starlike functions and for k = 1 we obtain the class
of starlike functions Sp. Moreover, it is worth mention that if f ∈ A satisfies the
following condition [19, Theorem 2.3]:




�=2

[�+ k(�−1)]|a�| � 1, (1.12)

for some k (0 � k < ), then f is k -starlike in D.
The main objective of this research is to examine into a specific sufficiency cri-

terion for the starlikeness of some analytic functions related to the function Q(z,b),
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consult (1.9), for this we consider the following normalized forms:

Q(z;b) =
()z
(,b)

 [zQ (z,b)]
 z

=



�=1

v�(,b)z�,
(1.13)

where

v�(,b) =
�()( + �−1,b)

(�−1)!(,b)(+ �−1)
, � � 1. (1.14)

In order to prove our results the following preliminary results will be helpful. The
following two lemmas are due to Fejér [15].

LEMMA 1.1. If the function f (z) = z +



�=2
a�z�, where a� � 0 for all � � 2, is

analytic in D, and if the sequences (�a�)��1 and (�a�− (�+ 1)a�+1)��1 both are de-
creasing, then f is starlike in D.

LEMMA 1.2. If the function f (z) = 1+



�=2
a�z�−1 , where a� � 0 for all � � 2, is

analytic in D and if (a�)��1 is a convex decreasing sequence, i.e., a�−2a�+1+a�+2 � 0
and a�−a�+1 � 0 for all � � 1, then

( f (z)) >
1
2
, for all z ∈ D.

2. First set of main results

Here, we determined some sufficient conditions on the parameters of the normal-
ized form of the generalized Marcum Q-function Q(z;b) to belong to a certain class
of starlike functions and k -starlike functions.

THEOREM 2.1. Assume that the parameters  > 0 and b ∈ (0,b0) where b0 ≈
3.47401 . . . is the unique positive root of the equation (9x+1)e−x−1 = 0. Moreover,
if 7(,b) � 8be−b then the function z �→ Q(z;b) is starlike in D. Furthermore,
we have


(

Q(z;b)
z

)
>

1
2

for all z ∈ D.

Proof. First we prove that the sequence {�v�(,b)}��1 is decreasing. Let � � 2
be fixed. From the following functional equation:

( +1,x) = (,x)− xe−x, (2.15)
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it follows that

�v�(,b)− (�+1)v�+1(,b)

=
()

(�−1)!(,b)

[
�2( + �−1,b)
( + �−1)

− (�+1)2( + �,b)
� ( + �)

]

=
()

�!(,b)

[
(�3− (�+1)2)( + �−1,b)

( + �−1)
+

(�+1)2b+�−1e−b

( + �)

]

=
()

�!(,b)

[
(9�3−8(�+1)2)( + �−1,b)

9( + �−1)
+

(�+1)2b+�−1e−b

( + �)

− (�+1)2( + �−1,b)
9( + �−1)

]
.

(2.16)

Moreover, by using the following estimate [31, Eq. (8.10.2)]:

(,x) � x−1(1− e−x)


, ( � 1, x > 0) (2.17)

we obtain

( + �−1,b)
( + �−1)

� b+�−2(1− e−b)
( + �)

. (2.18)

Hence, by using the above inequality, we obtain

(�+1)2b+�−1e−b

( + �)
− (�+1)2( + �−1,b)

9( + �−1)
�

(�+1)2b+�−2
[(

9b+1
)
e−b−1

]
9( + �)

� 0,

(2.19)

under the hypothesis
(
9b+ 1

)
e−b − 1 � 0. Owing to the equations (2.16) and (2.19),

we establish that

�v�(,b) � (�+1)v�+1(,b), for all � � 2.

Moreover, the hypothesis 3(,b) � 4be−b implies that 2v2(,b) � v1(,b) = 1.
This in turn implies that the sequences {�v�(,b)}��1 is decreasing. Next, we show

that the sequence
{
�v�(,b)− (� + 1)v�+1(,b)

}
��1

is decreasing. Let � � 2. For

convenience, we denote

A�(,b) = �v�(,b)− (�+1)v�+1(,b), for all � � 1.
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Owing to the functional equation of the upper incomplete gamma function (2.15), we
get

�v�(,b)−2(�+1)v�+1(,b)+ (�+2)v�+2(,b)

=
()

(�−1)!(,b)

[
�2( + �−1,b)
( + �−1)

+

[
(�+2)2−2(�+1)3

]
( + �,b)

�(�+1)(+ �)

− (�+2)2b+�e−b

�(�+1)(+ �+1)

]

=
()

[
�3(�+1)+ (�+2)2−2(�+1)3

]
( + �−1,b)

(�+1)!(,b)(+ �−1)

− ()b+�−1e−b

(�+1)!(,b)

(
(�+2)2−2(�+1)3

( + �)
+

(�+2)2be−b

( + �+1)

)

=
()

[
�3(�+1)+ (�+2)2−2(�+1)3

]
( + �−1,b)

(�+1)!(,b)(+ �−1)

+
()b+�−1e−b

(�+1)!(,b)(+ �)

(
2(�+1)3− (�+2)2− b(�+2)2

+ �

)

=
()

[
27�3(�+1)+27(�+2)2−40(�+1)3

]
( + �−1,b)

27(�+1)!(,b)(+ �−1)

+
()

(�+1)!(,b)

[
b+�−1e−b

( + �)

(
2(�+1)3− (�+2)2− b(�+2)2

 + �

)

− 14(�+1)3( + �−1,b)
27( + �−1)

]
.

(2.20)

By using (2.18) we have

14(�+1)3( + �−1,b)
27(+ �−1)

� 14(�+1)3b+�−2(1− e−b)
27(+ �)

. (2.21)

Therefore, by using the above inequality, we establish that

b+�−1e−b

( + �)

(
2(�+1)3− (�+2)2− b(�+2)2

 + �

)
− 14(�+1)3( + �−1,b)

27(+ �−1)

� b+�−1e−b

( + �)

(
2(�+1)3− (�+2)2− b(�+2)2

 + �
− 14(�+1)3(1− e−b)

27b

)

� b+�−1(�+1)3e−b

( + �)

(
2− (�+2)2

(�+1)3 −
b(�+2)2

( + �)(�+1)3 −
14(1− e−b)

27b

)
.

(2.22)
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On the other hand, by using the fact that the function t �→ (t+2)2

(t+1)3 is decreasing on [2,) ,
we conclude that

(�+2)2

(�+1)3 +
b(�+2)2

( + �)(�+1)3 � 8(b+2)
27

. (2.23)

Hence, by combining (2.22) and (2.23), we obtain

2− (�+2)2

(�+1)3 −
b(�+2)2

( + �)(�+1)3 −
14(1− e−b)

27b
� −8b2 +38b+14(e−b−1)

27b
, (2.24)

and the last expression is non-negative by our assumption. This together with (2.20)
and by using the fact that

�3(�+1)+ (�+2)2−40/27(�+1)3 � 0

for � � 2, we conclude that the sequence {�v�(,b)}��2 is convex. Finally, we see that
the condition 7(,b) � 8be−b implies that 4v2(,b) � v1(,b). Therefore, the
sequence {�v�(,b)}��1 is convex. Thus, it follows by Lemma 1.2 that the function

Q(z;b) is starlike in D. Now, we apply Lemma 1.2 to prove that 
(

Q (z;b)
z

)
> 1

2 for

all z ∈ D. For this, we consider the function Q̃(z;b) defined by

Q̃(z;b) =
Q(z;b)

z

=



�=1

v�(,b)zn−1.
(2.25)

But {v�(,b)}��1 is a convex decreasing sequence, under the given conditions. Hence,
Lemma 1.2 allows us conclude the asserted property and this completes the proof. �

Upon setting  = 1 in Theorem 2.1, in view of (1.7), we compute the following
result.

COROLLARY 2.2. If b ∈ (0,b1) where b1 ≈ 0.261373 . . . is the unique positive
root of the equation

(8x+7)e−x−7 = 0,

then the function z �→ Q1(z;b) is starlike in D.

EXAMPLE 2.3. The function z �→ Q1(z;1/4) is starlike in D, see Figure 1.

THEOREM 2.4. Let  > 0 and b > 0 . The following assertions holds true:
(a). If the following inequality

b−1(1− e−b)[(b2 +3b+1)eb−1] � ( +1)(,b),

holds true, then the function z �→ Q(z;b) is starlike in D.
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Figure 1: Image of the open unit disk under the function Q1(z;1/4) .

(b). If the following inequality

b−1(1− e−b)
[
(b+1)eb−1

]
� ( +1)(,b),

holds true, then the function z �→ Q(z;b) is starlike in

D 1
2

=
{

z : z ∈ C and |z| < 1
2

}
.

Proof. (a). To show that the function z �→ Q(z;b) is starlike in D, it suffices to
establish that


(

z [Q(z;b)]′

Q(z;b)

)
> 0, for all z ∈ D.

For this objective in view, it suffices to establish that∣∣∣∣z [Q(z;b)]′ −Q(z;b)
Q(z;b)

∣∣∣∣< 1, for all z ∈ D.

Let z ∈ D . Bearing in mind the fact that the function t �→ 1
(t) is decreasing on [2,) ,

according to (1.13) and (2.17), we establish that∣∣∣∣ z [Q(z;b)]′ −Q(z;b)
z

∣∣∣∣< ()
(,b)




�=1

(�+1)(+ �,b)
(�−1)!(+ �)

� ()b−1(1− e−b)
(,b)




�=1

(�+1)b�

(�−1)!(+ �+1)

� b−1(1− e−b)
( +1)(,b)




�=1

(�+1)b�

(�−1)!

=
b(b+2)(eb−1)
( +1)(,b)

.

(2.26)
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Moreover, from (1.13) and (2.17), it follows that∣∣∣∣Q(z;b)
z

∣∣∣∣> 1− ()
(,b)




�=2

�(+ �−1,b)
(�−1)!(+ �−1)

� 1− ()b−1(1− e−b)
(,b)




�=1

(�+1)b�

�!(+ �+1)

� 1− b−1(1− e−b)
( +1)(,b)




�=1

(�+1)b�

�!

=
( +1)(,b)−b−1(1− e−b)[(b+1)eb−1]

( +1)(,b)
.

(2.27)

By virtue of relations (2.26) and (2.27), for any z ∈ D , we infer∣∣∣∣z [Q(z;b)]′ −Q(z;b)
Q(z;b)

∣∣∣∣< 1, for all z ∈ D,

where we have made use of the given hypothesis.
(b). Let z ∈ D. Again, from (1.13) and (2.17) and using the fact that the function

t �→ 1
(t) is decreasing on [2,) , we infer

∣∣∣∣Q(z;b)− z
z

∣∣∣∣< b(1− e−b)()
(,b)




�=2

�b�−1

(�−1)!(+ �)

� b(1− e−b)
( +1)(,b)




�=2

�b�−1

(�−1)!

=
b(1− e−b)

[
(b+1)eb−1

]
( +1)(,b)

� 1,

(2.28)

under the given hypothesis. On the other hand, according to MacGregor [20], if a
function f ∈ A such that ∣∣∣∣ f (z)− z

z

∣∣∣∣< 1, ∀z ∈ D,

then f is starlike in D 1
2
. Therefore we conclude the asserted result. �

Choosing  = 1 in part (a) of Theorem 2.4, in view of (1.7), we compute the
following result:

COROLLARY 2.5. If b ∈ (0,b2) where b2 ≈ 0.339950 . . . is the unique positive
root of the equation

3− (x2 +3x+1)ex = 0,

then the function z �→ Q1(z;b) is starlike in D.
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EXAMPLE 2.6. The function z �→ Q1(z;1/3) is starlike in D, see Figure 2.

Figure 2: Image of the open unit disk under the function Q1(z;1/3) .

Taking  = 1 in part (b) of Theorem 2.4, in view of (1.7), we obtain the following
result:

COROLLARY 2.7. If b ∈ (0,b3) where b3 ≈ 0.617642 . . . is the unique positive
root of the equation

3− (x+1)ex = 0,

then the function z �→ Q1(z;b) is starlike in D 1
2
.

EXAMPLE 2.8. The function z �→ Q1(z;61/100) is starlike in D 1
2
, see Figure 3.

Figure 3: Image of the open unit disk under the function Q1(z;61/100) .
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THEOREM 2.9. Assume that ,b > 0 and k � 0. If the following inequality

b−1(1− e−b)
[
(k+1)(b2 +2b)eb +(b+1)eb−1

]
� ( +1)(,b),

is valid, then the function z �→ Q(z;b) is k -starlike in D.

Proof. In order to establish the required result, it suffices to show that




�=2

(
�+ k(�−1)

)
v�(,b) < 1, for all k � 0.

Moreover, by virtue of (1.13) and (2.17), we establish that




�=2

(
�+ k(�−1)

)
v�(,b) =

()
(,b)




�=2

�
(
�+ k(�−1)

)
( + �−1,b)

(�−1)!(+ �−1)

� b−1(1− e−b)()
(,b)




�=2

�
(
�+ k(�−1)

)
b�−1

(�−1)!(+ �)

� b−1(1− e−b)
( +1)(,b)




�=2

�
(
�+ k(�−1)

)
b�−1

(�−1)!

=
b−1(1− e−b)
( +1)(,b)

(



�=2

�2b�−1

(�−1)!
+ k




�=2

�b�−1

(�−2)!

)
.

(2.29)

Moreover, straightforward calculation would yield




�=2

�b�−1

(�−2)!
= (b2 +2b)eb. (2.30)

Further, we have




�=2

�2b�−1

(�−1)!
=




�=2

�(�−1)b�−1

(�−1)!
+




�=2

�b�−1

(�−1)!

=



�=2

�b�−1

(�−2)!
+




�=2

�b�−1

(�−1)!

= (b2 +3b+1)eb−1,

(2.31)

Inserting (2.30) and (2.31) into (2.29), we establish that




�=2

(
�+ k(�−1)

)
v�(,b) �

b−1(1− e−b)
[
(k+1)(b2 +2b)eb +(b+1)eb−1

]
( +1)(,b)

� 1,

where we have made use of the given hypothesis. �
By taking k = 1 in Theorem 2.9, we compute the following result.
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COROLLARY 2.10. Let  > 0 and b > 0 . If the following inequality holds true:

b−1(1− e−b)
[
(2b2 +5b+1)eb−1

]
� ( +1)(,b),

then Q(z;b) ∈ Sp.

By setting  = 1 in the above Corollary, in view of (1.7), we obtain the following
results.

COROLLARY 2.11. Let b ∈ (0,b4) where b4 ≈ 0.245367 . . . is the unique posi-
tive root of the equation

3− (2x2 +5x+1)ex = 0,

then Q1(z;b) ∈ Sp.

EXAMPLE 2.12. The function Q1(z;24/100)∈ Sp.

REMARK 2.13. If we set k = 0 in Theorem 2.9, we re-obtain the result asserted
by part (a) of Theorem 2.4.

3. Second set of main results

In this section, we present one of our main results which gives a sufficient condi-
tion for the Alexander transform  f where f (z) = Q(,b)(z) to be in the family of
starlike functions. The Alexander transform of f is defined on D by

 f (z) =
∫ z

0

( f ∗ l)(t)
t

dt =
∫ z

0

f (t)
t

dt

= z+



�=2

a�

�
z� = ( f ∗ h)(z),

(3.32)

where the functions f , l and h are defined by

f (z) = z+



�=2

a�z
�, l(z) =

z
1− z

=



�=1

z�,

and

h(z) = − log(1− z) =



�=1

z�

�
.

We note that the convolution f ∗g, or Hadamard product (see, for instance, the book of
P.L. Duren [14]), of two power series

f (z) = z+



�=2

a�z
�,

g(z) = z+



�=2

b�z
�,
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is defined as the power series

( f ∗ g)(z) = z+



�=2

a�b�z
�.

Our first main results of this section is the following theorem.

THEOREM 3.1. Assume that the parameters  > 0 and b ∈ (0,b5) where b5 ≈
0.338462 . . . is the unique positive root of the equation

−12x2 +10x+7e−x−7 = 0.

If the following inequality

(,b) � 2be−b,

holds true, then the function z �→ Q (.,b)(z) is starlike in D. Moreover, we have


(Q(.,b)(z)

z

)
>

1
2
, for all z ∈ D.

Proof. From (1.13), the Alexander transform of the function Q(z;b) takes the
following form:

Q (.,b)(z) =



�=1

w�(,b)z�, (3.33)

where the sequence {w�(,b)}��1 is defined by

w�(,b) =
v�(,b)

�
, � � 1. (3.34)

The inequality w1(,b)−2w2(,b) � 0 holds because the parameters  and b satisfy
(,b) � 2be−b. Next, we show that the sequence {�w�(,b)}��2 is decreasing. Fix
any � � 2. From (2.15) it follows that

�w�(,b)−(�+1)w�(,b) =
(�)

�!(,b)

(
(�2−�−1)(+�−1,b)

(+�−1)
+

(�+1)b+�−1e−b

( + �)

)
,

and the last expression is non-negative for all � � 2.

Consequently, the sequence {�w�(,b)}��1 is decreasing. Next, we establish that
the sequence {�w�(,b)− (�+1)w�+1(,b)}��1 is decreasing. For convenience we
denote

B�(,b) = �w�(,b)− (�+1)w�+1(,b) for each � � 1.
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It follows from (2.15) and (2.17) that

B�(,b)−B�+1(,b) =
()

(
�3− �2−3�

)
( + �−1,b)

(�+1)!(,b)(+ �−1)
+

2(�+1)()b+�−1e−b

�!(,b)(+ �)

− (�+2)()b+�−1e−b

(�+1)!(,b)(+ �)
− (�+2)()b+�e−b

(�+1)!(,b)(+ �+1)

=
()

(
�3− �2−3�+7/2

)
( + �−1)

(�+1)!(,b)(+ �−1)
− 7()( + �−1)

2(�+1)!(,b)(+ �−1)

+
()b+�−1e−b

�!(,b)( + �)

(
2(�+1)− �+2

�+1
− b(�+2)

+ �

)

�
()

(
�3− �2−3�+7/2

)
( + �−1)

(�+1)!(,b)(+ �−1)

+
()b+�−1e−b

�!(,b)( + �)

(
2(�+1)− �+2

�+1
− b(�+2)

+ �
− 7(1− e−b)

2b(�+1)

)
.

(3.35)

On the other hand, by using the fact that the function t �→ t+2
t+1 + (t+2)

t + 
t+1 is decreas-

ing on [1,) for each , > 0 we conclude that

�+2
�+1

+
b(�+2)

�
+

7(1− e−b)
2(�+1)

� 12b2 +6b−7e−b+7
4b

, � � 1. (3.36)

Hence, by (3.35) and (3.36) we infer

B�(,b)−B�+1(,b) �
()

(
�3− �2−3�+7/2

)
( + �−1)

(�+1)!(,b)(+ �−1)

+
()b+�−1(−12b2 +10b+7e−b−7)e−b

4b�!(,b)(+ �)
,

(3.37)

where the last inequality is non-negative for all � � 1. Therefore, the sequence

{�v�(,b)− (�+1)v�+1(,b)}��1 ,

is decreasing. Thanks to Lemma 1.1 and Lemma 1.2, we deduce that Q is starlike

in D and 
(Q (.,b)

z

)
> 1

2 for all z ∈ D. �

Taking  = 1 in the above Theorem we compute the following result.

COROLLARY 3.2. Under the assumptions of Theorem 3.1, the function z �→
Q1(.,b)(z) is starlike in D. Moreover, we have


(Q1(.,b)(z)

z

)
>

1
2
, for all z ∈ D.
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EXAMPLE 3.3. The function z �→ Q1(.,1/3)(z) is starlike in D, see Figure 4.

Figure 4: Image of the open unit disk under the function Q1(.,1/3)(z) .

THEOREM 3.4. Let  > 0 and b > 0 . The following assertions are true:
(a). If the following inequality

b−1(1− e−b)[(b+1)eb−1] � ( +1)(,b),

is valid, then the function z �→ Q (.,b)(z) is starlike in D.

(b). If the following inequality

b−1(1− e−b)(eb −1) � ( +1)(,b),

is valid, then the function z �→ Q (.,b)(z) is starlike in D 1
2
.

Proof. (a). Let z ∈ D . From (3.33) and (2.17), we obtain∣∣∣∣∣z
[
Q(.,b)

]′ (z)−Q(.,b)(z)
Q (.,b)(z)

∣∣∣∣∣< ()
(,b)




�=1

( + �,b)
(�−1)!(+ �)

� b−1()(1− e−b)
(,b)




�=1

b�

(�−1)!(+ �+1)

� b−1(1− e−b)
( +1)(,b)




�=1

b�

(�−1)!

=
b(eb −1)

( +1)(,b)
.

(3.38)
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Furthermore, by applying the inequality (2.17), we establish that∣∣∣∣Q (.,b)(z)
z

∣∣∣∣> 1− ()
(,b)




�=1

( + �,b)
�!( + �)

� 1− b−1()(1− e−b)
(,b)




�=1

b�

�!(+ �+1)

� 1− b−1(1− e−b)
( +1)(,b)




�=1

b�

�!

=
( +1)(,b)−b−1(1− e−b)(eb −1)

( +1)(,b)
.

(3.39)

Therefore, by combining (3.38) and (3.39), we conclude∣∣∣∣∣z
[
Q (.,b)

]′ (z)−Q (.,b)(z)
Q (.,b)(z)

∣∣∣∣∣< 1, for all z ∈ D,

and the last expression is valid by our assumption.
(b). Let z ∈ D, with the help of (3.33) and (2.17), yields∣∣∣∣Q (.,b)(z)− z

z

∣∣∣∣< ()
(,b)




�=2

( + �−1,b)
(�−1)!(+ �−1)

� b−1(1− e−b)()
(,b)




�=2

b�−1

(�−1)!(+ �)

� b−1(1− e−b)
( +1)(,b)




�=2

b�−1

(�−1)!

=
b−1(1− e−b)(eb−1)

( +1)(,b)
� 1,

(3.40)

under the given condition (b). This ends the proof of Theorem 3.4. �
Specifying  = 1 in Theorem 3.4, thanks to (1.7), we compute the following corol-

laries.

COROLLARY 3.5. Let b ∈ (0,b6) where b6 ≈ 0.617642 . . . is the unique positive
root of the equation

3− (x+1)ex = 0,

then the function z �→ Q1(.,b)(z) is starlike in D.

COROLLARY 3.6. If b ∈ (0, log(3)) then the function z �→ Q1(.,b)(z) is starlike
in D 1

2
.

EXAMPLE 3.7. The function z �→ Q1(.,3/5)(z) is starlike in D and the function
z �→ Q1(.,log(2))(z) is starlike in D 1

2
, see Figure 5 and Figure 6.
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Figure 5: Image of the open unit disk under the function Q1(.,3/5)(z) .

Figure 6: Image of the open unit disk under the function Q1(.,log(2))(z) .

THEOREM 3.8. Assume that ,b > 0 and k � 0. If the following inequality

b−1(1− e−b)
[
(b+1+ kb)eb−1

]
� ( +1)(,b),

is valid, then the function z �→ Q (.,b)(z) is k -starlike in D.

Proof. According to the analytic characterizations of k -starlike functions, to prove
that the function Q(.,b)(z) is k -starlike in D it is enough to prove that the following
inequality




�=2

(
�+ k(�−1)

)
w�(,b) < 1,
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holds true for each k � 0. According to (3.33) and (2.17), we obtain




�=2

(
�+ k(�−1)

)
w�(,b) =

()
(,b)




�=2

(
�+ k(�−1)

)
( + �−1,b)

(�−1)!(+ �−1)

� b−1(1− e−b)()
(,b)




�=2

(
�+ k(�−1)

)
b�−1

(�−1)!(+ �)

� b−1(1− e−b)
( +1)(,b)




�=2

(
�+ k(�−1)

)
b�−1

(�−1)!

=
b(1− e−b)

( +1)(,b)

(



�=2

�b�−1

(�−1)!
+ k




�=2

b�−1

(�−2)!

)

=
b−1(1− e−b)

[
(b+1+ kb)eb−1

]
( +1)(,b)

� 1,

(3.41)

where we have made use of the given hypothesis. �

By taking k = 1 in Theorem 3.8, we compute the following result.

COROLLARY 3.9. Let  > 0 and b > 0 .
If the following inequality holds true:

b−1(1− e−b)
[
(2b+1)eb−1

]
� ( +1)(,b),

then Q (.,b)(z) ∈ Sp.

By setting  = 1 in the above Corollary, in view of (1.7), we obtain the following
results.

COROLLARY 3.10. Let b ∈ (0,b7) b7 ≈ 0.453295 . . . is the unique positive root
of the equation

3− (2x+1)ex = 0,

then Q1(.,b)(z) ∈ Sp.

EXAMPLE 3.11. The function Q1(.,45/10)(z) ∈ Sp.

REMARK 3.12. If we set k = 0 in Theorem 3.8, we easily get the result asserted
by part (a) of Theorem 3.4.
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4. The third set of main results

Our aim in this section is to find sufficient conditions for the function

z �→ zez(1−Q(
√

2z,
√

2b)),

to be starlike in the open unit disk. Furthermore, two classes of starlike functions related
to the lower incomplete hypergeometric function pp[z] are derived.

THEOREM 4.1. Under the hypotheses of part (a) of Theorem 3.4 or if Q(1;b) �
2, then the function z �→ zez(1−Q(

√
2z

1
2 ,
√

2b)) is starlike in D.

Proof. For convenience, let us write

Q̃(t;b) =
Q(t;b)

t
=




�=0

�(,b)t� where �(,b) = v�+1(,b).

A simple computation leads us to

∫ z

0
Q̃(t;b)dt =




�=0

�(,b)z�+1

�+1

= z+



�=2

v�(,b)z�

�

= z+



�=2

w�(,b)z�,

(4.42)

where the sequence {w�(,b)}��1 is given by (3.34). In view of the inequality (1.12)
(when k = 0) we need only show that




�=2

�w�(,b) < 1.

We note that



�=2

�w�(,b) =



�=2

v�(,b) = Q(1;b)−1 � 1

if Q(1;b) � 2. Moreover, taking k = 0 in (3.41), we establish that




�=2

�w�(,b) � 1,

if the following inequality

b−1(1− e−b)[(b+1)eb−1] � ( +1)(,b),
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is valid. Then, we conclude that the function z �→ ∫ z
0

Q (t;b)
t dt is starlike. Moreover, it

follows from (1.13) and (1.9) that

∫ z

0

Q(t;b)
t

dt =
()
(,b)

∫ z

0
[tQ(t,b))]′ dt

=
()
(,b)

zQ(z,b)

=
()
(,b)

[
zez(1−Q(

√
2z

1
2 ,
√

2b))
]
.

This completes the proof of Theorem 4.1. �

If we take  = 1, then the Theorem 4.1 yield.

COROLLARY 4.2. Under the assumptions of Corollary 3.5, the function z �→
zez(1−Q(

√
2z,

√
2b)) is starlike in D.

THEOREM 4.3. Consider that one of the following assertions is valid:
(a). The parameters ,b > 0 satisfy the conditions given by

2b−1(cosh(b)−1
)
� ( +1)(,b).

(b). The parameters ,b > 0 satisfy Q (.,b)(1) � 2.
Then the function

z �→ z · 22
[ (,b),1

,2

∣∣∣z],
is starlike in D.

Proof. For convenience, let us write

̃Q (.,b)(t) =
Q (.,b)(t)

t
=




�=0

̃�(,b)t� where ̃�(,b) = w�+1(,b).

A direct computation gives

∫ z

0
̃Q (.,b)(t)dt = z+




�=2

�(,b)z�, (4.43)

where {�(,b)}��1 is defined by

�(,b) =
w�(,b)

�
, for all � � 1.
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Owing to the inequality (2.17), we establish that




�=2

��(,b) =



�=2

w�(,b)

� b−1(1− e−b)()
(,b)




�=2

b�−1

(�−1)!(+ �)

� 2b−1(cosh(b)−1)
( +1)(,b)

� 1,

(4.44)

under the given hypothesis. Therefore, the function
∫ z
0
Q (.,b)(t)

t dt is starlike in D.
However, we have∫ z

0

Q (.,b)(t)
t

dt =
()z
(,b)




�=0

( + �,b)z�

(�+1)!(+ �)

=
()z
(,b)




�=0

( + �,b)(�+1)
(�+2)(+ �)

z�

�!

=
()z
(,b) 22

[ (,b),1
,2

∣∣∣z].
(4.45)

(b). In view of the first equation (4.44), we find that




�=2

��(,b) =



�=2

w�(,b) = Q (.,b)(1)−1 � 1,

where we have made use of the given hypothesis. �
Taking in the part (a) of the above Theorem the values  = 1, we obtain the

following corollary.

COROLLARY 4.4. If 0 < b < log(3) , then the function z �→ z · 11
[ (1,b)

2

∣∣∣z] is

starlike in D.

5. Conclusion

In our present paper, we have established some sufficient conditions so that some
classes of functions related to the generalized Marcum Q-function belong to the class
of starlike functions. Furthermore, two classes of starlike functions related to the upper
incomplete generalized hypergeometric function pp are derived. The various results,
which we have obtained in our present investigation, are believed to be new, and their
importance is illustrated by several interesting consequences and examples.

New research directions can be formulated for other special functions, which has
a power series expressed in terms of the lower or upper incomplete gamma functions.
However, these goals will be addressed and presented in future work.
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