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ABSOLUTE MONOTONICITY OF FOUR FUNCTIONS INVOLVING

THE SECOND KIND OF COMPLETE ELLIPTIC INTEGRALS

FEI WANG AND FENG QI ∗

(Communicated by G. Nemes)

Abstract. In the study, the authors present absolute monotonicity of four functions involving the
inverse hyperbolic tangent function and the second kind of complete elliptic integrals, derive
four double inequalities for bounding the second kind of complete elliptic integrals, and acquire
an upper bound of the Hersch–Pfluger distortion function. These inequalities improve several
known ones. Moreover, the authors connect two of the four functions with normalized remain-
ders of the Maclaurin series of two functions involving the inverse hyperbolic tangent function
and the second kind of complete elliptic integrals.

1. Introduction and main results

For given complex numbers a,b,c ∈ C with c �= 0,−1,−2, . . ., the Gauss hyper-
geometric function 2F1 is defined by

2F1(a,b;c;z) =



n=0

(a)n(b)n

(c)n

zn

n!
, |z| < 1, (1)

where (z)n for z∈ C is the Pochhammer symbol, also known as the rising factorial and
the shifted factorial, which is defined by

(z)n =
n−1


k=0

(z+ k) =
(n+ z)
(z)

=

{
z(z+1) · · ·(z+n−1), n ∈ N;

1, n = 0,
(2)

where

(z) = lim
n→

n!nz

n
k=0(z+ k)

, z ∈ C\ {0,−1,−2, . . .}
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is the classical Euler gamma function, whose reciprocal 1
(z) is an entire function. For

more information on the Gauss hypergeometric functions 2F1 , please refer to [1, Chap-
ter 15], [6, Chapter 2], and the articles [22, 29, 40].

The complete elliptic integrals are the most important quasi-conformal mappings,
they can be represented in terms of the Gauss hypergeometric functions 2F1 , and they
have important applications in the theory of quasi-conformal mappings, the theory of
geometric functions, and engineering. For more information, please refer to [1, 6, 51,
53] and closely related references therein.

For given r ∈ (0,1) , the complete elliptic integrals of the first and second kinds
K (r) and E (r) can be represented [43, 46] respectively by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K (r) =

2 2F1

(
1
2
,
1
2
;1;r2

)
;

K (0) =

2

;

K (1) = 

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E (r) =

2 2F1

(
−1

2
,
1
2
;1;r2

)
;

E (0) =

2

;

E (1) = 1.

(3)

For more information on some properties and applications of K (r) and E (r) , please
refer to [2, 3, 4, 5, 10, 27, 41, 44, 45, 52, 55, 56, 60, 61, 62, 64, 65, 70] and closely
related references therein.

For r ∈ (0,1) , the conformal modular function of the Grötzsch extremum ring
B2\[0,r] can be represented by

(r) =

2

K
(√

1− r2
)

K (r)
. (4)

The classical Ramanujan modular equation is defined by

K
(√

1− s2
)

K (s)
= p

K
(√

1− r2
)

K (r)
, p > 0. (5)

By virtue of (4), we can rewritten (5) as

(s) = p(r), p > 0. (6)

Accordingly, the solution to the Ramanujan modular equation (6) is

s = (r) = −1(p(r)), p =
1

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and we call (r) the Hersch–Pfluger distortion function. It is well known that the
Hersch–Pfluger distortion function (r) has important applications in quasi-conformal
Schwarz lemma; see [21].

In 1970, Hübner [20] obtained the inequality

(r) < r1/ exp

{(
1− 1



)
[m(r)+ lnr]

}

for r ∈ (0,1) and  ∈ (1,) , where

m(r) =
2

(
1− r2)K (r)K

(√
1− r2

)
and we call m(r) + lnr the Hübner function. In 2008, Wang and her coauthors [58]
established the inequality

(r) < r1/ exp

{
4ln2
−2

(
1− 1



)
[E (r)−1]

}
, r ∈ (0,1). (7)

In 2011, Guo and Qi [13] acquired the double inequality


2
− 1

2
ln

(1+ r)r−1

(1− r)r+1 < E (r) <
−1

2
+

1− r2

4r
ln

1+ r
1− r

, r ∈ (0,1). (8)

In [54], Wang and his coathors obtained two double inequalities


2
−1

[
1− (1− r2)arctanhr

r

]
< E (r) <


2
−1

[
1− (1− r2)arctanhr

r

]
(9)

and


2
− rarctanhr− 2

2
ln
(
1− r2)< E (r) <


2
− rarctanhr− 2

2
ln
(
1− r2) (10)

for r ∈ (0,1) , where

1 =
3
16

= 0.589 · · ·, 1 =

2
−1 = 0.570 · · · ,

2 = 1, 2 = 2− 
4

= 1.214 · · ·

are the best possible constants. For more information on this kind of elementary in-
equalities, please refer to the articles [39, 41, 63] and closely related references therein.

Let I ⊆ R be an infinite or finite interval. A real infinitely differentiable function
f (x) defined on I is said to be absolutely monotonic in x ∈ I if and only if all of its
derivatives satisfy f (k)(x) � 0 for k ∈ N0 and x ∈ I . A real infinitely differentiable
function f (x) defined on I is said to be completely monotonic in x ∈ I if and only
if all of its derivatives satisfy (−1)k f (k)(x) � 0 for k ∈ N0 and x ∈ I . When I =
(0,) or I = [0,) , there have been plenty of classical investigations on absolutely (or
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completely, respectively) monotonic functions in [30, Chapter XIII], [59, Chapter IV],
and the monograph [48]. By the way, in the papers [8, 12, 38], the authors invented
the notions of logarithmically absolutely (or logarithmically completely, respectively)
monotonic functions.

In the study, we will present absolute monotonicity of four functions involving
the inverse hyperbolic tangent function arctanhr and the second kind of complete el-
liptic integrals E (r) , derive four double inequalities for bounding the second kind of
complete elliptic integrals E (r) , and acquire an upper bound of the Hersch–Pfluger
distortion function (r) ; see (45). These inequalities improve (7), (8), (9), and (10).
Moreover, we will connect two of the four functions with normalized remainders of
the Maclaurin series of two functions involving the inverse hyperbolic tangent function
arctanhr and the second kind of complete elliptic integrals E (r) ; see Remarks 2 and 4
below.

The main results of this paper can be stated in the following theorems.

THEOREM 1. For r ∈ (0,1) and

a0 =
3
8
, a1 = − 3

640
, a2 = − 171

89600
, a3 = − 30161

28672000
, (11)

define

H(r) =
1− 2F1

(− 1
2 , 1

2 ;1;r
)

1− (1− r)2F1
(

1
2 ,1; 3

2 ;r
) =

1− 2
 E (

√
r)

1+(r−1) arctanh
√

r√
r

=



n=0

anr
n.

Then the following conclusions are true:

1. The limits H(0+) = 3
8 and H(1−) = 1− 2

 are valid.

2. For n ∈ N , the coefficients an satisfy the recursive relation and the negativity

an = 3

{( 1
2

)
n

( 1
2

)
n+1

4[(n+1)!]2
−

n−1


k=0

ak

[2(n− k)+1][2(n− k)+3]

}
< 0. (12)

3. The functions −H ′(r) and H1(r) = 1
r

[ 3
8 −H(r)

]
are absolutely monotonic on

(0,1) , with the limits H1(0+) = 3
640 and H1(1−) = 2

 − 5
8 .

4. For r ∈ (0,1) ,

E (r) =

2
− 

2

[
1− (1− r2)arctanhr

r

]

×
(

3
8
− 3

640
r2− 171

89600
r4− 30161

28672000
r6 −·· ·

)
. (13)
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THEOREM 2. For r ∈ (0,1) and

b0 = 1− 
8

, b1 =
15−64

384
, b2 =

95−384
7680

, b3 =
69195−274432

1032190
, (14)

define

G(r) =

2

[
2F1
(− 1

2 , 1
2 ;1;r

)−1
]
+ r 2F1

(
1
2 ,1; 3

2 ;r
)

r 2F1(1,1;2;r)

=

2 −

√
r arctanh

√
r −E (

√
r)

ln(1− r)

=



n=0

bnr
n.

Then the following conclusions are true:

1. The limits G(0+) = 1− 
8 and G(1−) = 1

2 are valid.

2. For n ∈ N , the coefficients bn satisfy the recursive relation and the negativity

bn =

2

(− 1
2

)
n+1

(
1
2

)
n+1

[(n+1)!]2
+

1
2n+1

−
n−1


k=0

bk

n− k+1
< 0. (15)

3. The functions −G′(r) and G1(r) = 1
r

[
1− 

8 −G(r)
]

are absolutely monotonic
on (0,1) , with the limits G1(0+) = 64−15

384 and G1(1−) = 4−
8 .

4. For r ∈ (0,1) ,

E (r) =

2
− rarctanhr−

(
1− 

8
+

15−64
384

r2

+
95−384

7680
r4 +

69195−274432
1032190

r6 + · · ·
)

ln
(
1− r2). (16)

We will prove these main conclusions in Section 3 below.

2. A lemma

In the proofs of our main results, we will need the formulas

2F1(a,b;c;1) =
(c)(c−a−b)
(c−a)(c−b)

, c �= 0,−1,−2, . . . , (c−a−b) > 0 (17)

and

zb−a(z+a)
(z+b)

∼ 1+
(a−b)(a+b−1)

2z
+ · · · , z → . (18)

These two formulas can be found in [1, pp. 257 and 556, Entries 6.1.47 and 15.1.20]
and [49, pp. 66–68, Section 3.6.2], respectively.
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LEMMA 1. For n ∈ N , the sequence

Cn =
(2n+1)(2n+3)(4n+5)

n+2

( 1
2

)
n

( 1
2

)
n+1

[(n+1)!]2

is increasing in n ∈ N , with the limit limn→Cn = 16
 . Consequently, for n ∈ N ,

135
32

n+2
(2n+1)(2n+3)(4n+5)

�
(

1
2

)
n

(
1
2

)
n+1

[(n+1)!]2
<

16


n+2
(2n+1)(2n+3)(4n+5)

.

Proof. Due to 
(

1
2

)
=
√
 and the asymptotic formula (18), we obtain the limit

lim
n→

Cn = lim
n→

(2n+1)(2n+3)(4n+5)
(

1
2

)
n

(
1
2

)
n+1

(n+2)[(n+1)!]2

= lim
n→

(2n+1)(2n+3)(4n+5)
(
n+ 1

2

)

(
n+ 3

2

)
(n+2)

[

( 1

2

)]2[(n+2)]2

= lim
n→

(2n+1)(2n+3)(4n+5)

(n+2)
[

(

1
2

)]2
n2

=
16


.

By virtue of the definition in (2), we arrive at

Cn+1

Cn
=

(2n+3)(2n+5)(4n+9)
(

1
2

)
n+1

(
1
2

)
n+2

(2n+1)(2n+3)(4n+5)
(

1
2

)
n

(
1
2

)
n+1

(n+2)[(n+1)!]2

(n+3)[(n+2)!]2

=
(2n+5)(2n+3)(4n+9)
4(4n+5)(n+3)(n+2)

=
16n3 +100n2 +204n+135
16n3 +100n2 +196n+120

= 1+
8n+15

16n3 +100n2 +196n+120
> 1.

Accordingly, the sequence Cn is increasing in n ∈ N .

In light of the increasing property of the sequence Cn in n ∈ N and in view of the
limit limn→Cn = 16

 , we acquire 135
32 = C1 � Cn < 16

 . The proof of Lemma 1 is thus
complete. �



ABSOLUTE MONOTONICITY OF FUNCTIONS INVOLVING ELLIPTIC INTEGRALS 611

3. Proofs of main results

We are now in a position to prove Theorems 1 and 2.

3.1. Proof of Theorem 1

Let

h1(r) = 1− 2F1

(
−1

2
,
1
2
;1;r

)

and

h2(r) = 1− (1− r)2F1

(
1
2
,1;

3
2
;r

)
.

Then H(r) = h1(r)
h2(r)

= 
n=0 anrn . Making use of the definition in (1), we derive

h1(r) = 1−



n=0

(− 1
2

)
n

( 1
2

)
n

[(n)!]2
rn =

1
2




n=0

(
1
2

)
n

(
1
2

)
n+1

[(n+1)!]2
rn+1

and

h2(r) = 1− (1− r)



n=0

1
2n+1

rn =



n=0

2
(2n+1)(2n+3)

rn+1.

Accordingly, we deduce

H(r) =
1
4


n=0

( 1
2 )n( 1

2 )n+1

[(n+1)!]2 rn


n=0

1
(2n+1)(2n+3)r

n
=




n=0

anr
n,

which can be reformulated as

1
4




n=0

(
1
2

)
n

(
1
2

)
n+1

[(n+1)!]2
rn =




n=0

1
(2n+1)(2n+3)

rn



n=0

anr
n.

As a result, we arrive at(
1
2

)
n

(
1
2

)
n+1

4[(n+1)!]2
=

n


k=0

ak

[2(n− k)+1][2(n− k)+3]

=
an

3
+

n−1


k=0

ak

[2(n− k)+1][2(n− k)+3]
,

(19)

which is equivalent to the recursive relation in (12).
Let

A(1)
n =

(2n+1)(2n+3)
4

( 1
2

)
n

( 1
2

)
n+1

[(n+1)!]2
, n ∈ N.
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Then, by virtue of the definition in (2), we find

A(1)
n+1

A(1)
n

=
(2n+3)(2n+5)

4(n+2)2 =
4n2 +16n+15
4n2 +16n+16

< 1, n ∈ N.

Hence, the sequence A(1)
n decreases in n ∈ N .

On the other hand, let

A(2)
n = (2n+1)(2n+3)

n


k=0

ak

[2(n− k)+1][2(n− k)+3]
, n ∈ N.

Due to the last equation in (19), we see that A(1)
n = A(2)

n for n ∈ N . As a result, the

sequence A(2)
n decreases in n ∈ N . Furthermore, we have

A(2)
n+1−A(2)

n

2n+3
= (2n+5)

n+1


k=1

ak

[2(n− k)+3][2(n− k)+5]

− (2n+1)
n


k=1

ak

[2(n− k)+1][2(n− k)+3]

=
(2n+5)an+1

3
+

n


k=1

(
(2n+5)ak

[2(n− k)+3][2(n− k)+5]

− (2n+1)ak

[2(n− k)+1][2(n− k)+3]

)

=
(2n+5)an+1

3
−8

n


k=1

kak

[2(n− k)+1][2(n− k)+3][2(n− k)+5]

< 0.

Consequently, we conclude

an+1 <
24

2n+5

n


k=1

kak

[2(n− k)+1][2(n− k)+3][2(n− k)+5]
, n ∈ N. (20)

In view of the recursive relation in (12), it is easy to deduce the four values in (11). By
induction and with the aid of the inequality (20), it is not difficult to prove that an < 0
for n ∈ N .

It is clear that H(0+) = a0 = 3
8 . In light of the formula (17), we acquire

lim
r→1−

H(r) = lim
r→1−

1− 2F1
(− 1

2 , 1
2 ;1;r

)
1− (1− r)2F1

(
1
2 ,1; 3

2 ;r
)

= 1− 2F1

(
−1

2
,
1
2
;1;1

)

= 1− [(1)]2


(

3
2

)

(

1
2

)
= 1− 2


.
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Since an < 0 for n ∈ N , considering the series expansion H(r) = 
n=0 anrn , we

obtain

−H ′(r) = −



n=0

(n+1)an+1r
n =




n=0

|(n+1)an+1|rn

and

H1(r) =
1
r

[
3
8
−H(r)

]
= −




n=0

an+1r
n =




n=0

|an+1|rn.

Consequently, the functions −H ′(r) and H1(r) are absolutely monotonic on (0,1) .
It is ready that H1(0+) = |a1| = 3

640 and H1(1−) = 3
8 −H(1−) = 2

 − 5
8 .

In [11, p. 61], [34, p. 473, Eq. 83], and [49, p. 109], we find

arctanhr
r

= 2F1

(
1
2
,1;

3
2
;r2
)

.

Hence, we have

1− (1− r2)arctanhr
r

= 1− (1− r2)2F1

(
1
2
,1;

3
2
;r2
)

. (21)

Accordingly, we derive

H
(
r2)=

1− 2
 E (r)

1− (1− r2
) arctanh r

r

=



n=0

anr
2n.

Combining (12) and (21) yields (13). The proof of Theorem 1 is thus complete. �

3.2. Proof of Theorem 2

Let

g1(r) =

2

[
2F1

(
−1

2
,
1
2
;1;r

)
−1

]
+ r 2F1

(
1
2
,1;

3
2
;r

)
and

g2(r) = r 2F1(1,1;2;r).

Then G(r) = g1(r)
g2(r)

= 
n=0 bnrn . By the definition in (1), we have

g1(r) =



n=0

[

2

(− 1
2

)
n+1

( 1
2

)
n+1

[(n+1)!]2
+

1
2n+1

]
rn+1

and

g2(r) = r 2F1(1,1;2;r) =



n=0

1
n+1

rn+1.

Accordingly, we obtain

G(r) =


n=0

[

2

(− 1
2 )n+1( 1

2 )n+1

[(n+1)!]2 + 1
2n+1

]
rn


n=0

1
n+1rn

=



n=0

bnr
n,
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that is,



n=0

[

2

(− 1
2

)
n+1

( 1
2

)
n+1

[(n+1)!]2
+

1
2n+1

]
rn =




n=0

1
n+1

rn



n=0

bnr
n. (22)

In other words,


2

(− 1
2

)
n+1

(
1
2

)
n+1

[(n+1)!]2
+

1
2n+1

=
n


k=0

bk

n− k+1
= bn +

n−1


k=0

bk

n− k+1
. (23)

As a result, we derive the recursive relation in (15).
Set

B(1)
n = (n+1)

[

2

(− 1
2

)
n+1

(
1
2

)
n+1

[(n+1)!]2
+

1
2n+1

]
.

Making use of Lemma 1, we reveal

B(1)
n+1−B(1)

n =

2

[
(n+2)(−1/2,n+2)

(
1
2

)
n+2

[(n+2)!]2
− (n+1)

(− 1
2

)
n+1

(
1
2

)
n+1

[(n+1)!]2

]

− 1
(2n+1)(2n+3)

=

2

(− 1
2

)
n+1

(
1
2

)
n+1

[(n+1)!]2

[
(2n+1)(2n+3)

4(n+2)
− (n+1)

]

− 1
(2n+1)(2n+3)

=

16

(4n+5)
(

1
2

)
n

(
1
2

)
n+1

(n+2)[(n+1)!]2
− 1

(2n+1)(2n+3)
< 0.

This means that B(1)
n is decreasing in n ∈ N .

On the other hand, let

B(2)
n = (n+1)

n


k=0

bk

n− k+1
.

By the equations in (23), we see easily that B(1)
n = B(2)

n . Hence, the sequence B(2)
n is

decreasing in n ∈ N . As a result, we obtain

B(2)
n+1−B(2)

n = (n+2)
n+1


k=0

bk

n− k+2
− (n+1)

n


k=0

bk

n− k+1

= (n+2)bn+1 +
n


k=1

[
(n+2)bk

n− k+2
− (n+1)bk

n− k+1

]

= (n+2)bn+1−
n


k=1

kbk

(n− k+1)(n− k+2)

< 0.
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Consequently, we have

bn+1 <
1

n+2

n


k=1

kbk

(n− k+1)(n− k+2)
. (24)

By the equation (22), we have b0 = 1− 
8 . With the help of the recursive relation

in (15), we derive the rest values in (14). By induction and (24), it is not difficult to
verify that bn < 0 for n ∈ N .

By the L’Hôpital rule and dE (r)
dr = E (r)−K (r)

r , we acquire the limit

lim
r→1−

G(r) = lim
r→1−


2

[
2F1
(− 1

2 , 1
2 ;1;r

)−1
]
+ r 2F1

(
1
2 ,1; 3

2 ;r
)

r 2F1(1,1;2;r)

= lim
r→1−

(r−1)[K (
√

r )−E (
√

r )]+ (1− r)
√

r arctanh
√

r
2r

+
1
2

=
1
2
.

Since bn < 0 for n ∈ N , by the expression G(r) = 
n=0 bnrn , we arrive at

−G′(r) = −



n=0

(n+1)bn+1r
n =




n=0

|(n+1)bn+1|rn

and

G1(r) =
1
r

[
1− 

8
−G(r)

]
= −




n=0

bn+1r
n =




n=0

|bn+1|rn.

Accordingly, the funcitons −G′(r) and G1(r) are absolutely monotonic on (0,1) .
Moreover, it is obvious that the limits

G1(0+) = |b1| = 64−15
384

and

G1(1−) = 1− 
8
−G(1−) =

4−
8

are valid.
By the definition in (1), we acquire

− ln(1− r) =



n=0

1
n+1

rn+1 = r 2F1(1,1;2;r). (25)

Combining this with (3) gives

G
(
r2)=

E (r)− 
2 + rarctanhr

− ln(1− r2)
=




n=0

bnr
2n.

Consequently, we deduce the expansion (16). The proof of Theorem 2 is thus com-
plete. �
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4. Corolaries and remarks

In this section, we deduce several corollaries from Theorems 1 and 2, while we
list several remarks on our main results.

COROLLARY 1. Let the sequence an for n ∈ N0 be defined as in Theorem 1 and
let

n = |an+1|, n =
2

−1+

n


k=0

ak, Pn(r) =
n+1


k=0

akr
2k.

Then the function

H2,n(r) =
1

rn+1

[
n


k=0

akr
k −H(r)

]
(26)

is absolutely monotonic from (0,1) onto (n,n +n) . Consequently, the double in-
equalities


2

{
1−
[
1− (1− r2)arctanhr

r

][
Pn(r)−n+1r

2n+4]}< E (r)

<

2

{
1−
[
1− (1− r2)arctanhr

r

][
Pn(r)−n+1r

2n+4]} (27)

and


2

{
1−
[
1− (1− r2)arctanhr

r

](
3
8
− 3

640
r2 − 171

89600
r4− 179200−56591

89600
r6
)}

> E (r) >


2

{
1−
[
1− (1− r2)arctanhr

r

](
3
8
− 3

640
r2 − 171

89600
r4− 30161

28672000
r6
)}

(28)

are sound for r ∈ (0,1) .

Proof. Since H(r) = 
n=0 anrn , by Theorem 1, we arrive at

H2,n(r) =
1

rn+1

(
n


k=0

akr
k −




k=0

akr
k

)
= −




k=n+1

akr
k−n−1 =




k=0

|ak+n+1|rk.

Accordingly, the function H2,n(r) is absolutely monotonic on (0,1) .
By Theorem 1, we acquire

H2,n(0+) = |an+1|, H2,n(1−) =
n


k=0

ak −H(1−) =
2

−1+

n


k=0

ak.

Since H2,n(r) is increasing and convex on (0,1) , we discover

|an+1|+ |an+2|r < H2,n(r) < |an+1|+
[

n


k=0

ak −H(1−)−|an+1|
]
r

= |an+1|+n+1r.

(29)
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In view of (4), (21), and (29), we derive the double inequality (27).
Taking n = 1 in (27) leads to the double inequality (28). The proof of Corollary 1

is complete. �

REMARK 1. The double inequality (27) is better than (8) and (9).

REMARK 2. Suppose that a real infinitely differentiable function f (x) has a for-
mal Maclaurin power series expansion




j=0

f ( j)(0)
x j

j!
. (30)

If f (k+1)(0) �= 0 for some k ∈ N0 , then we call the function

Tk[ f (x)] =

⎧⎪⎨
⎪⎩

1

f (k+1)(0)
(k+1)!

xk+1

[
f (x)−

k


j=0

f ( j)(0)
x j

j!

]
, x �= 0

1, x = 0

(31)

the normalized remainder, or normalized tail, of the Maclaurin series expansion (30).
This concept was invented by the second author and his coworkers starting from April
2023. The first several articles implicitly discussed about the normalized remainders
are [23, 24, 25, 37]. The latest articles explicitly considered about the normalized re-
mainders are [7, 22, 26, 31, 32, 35, 50, 57, 66, 67, 68, 69], especially the review and
research article [36].

The Stirling numbers of the second kind S( j, �) can be analytically generated by(
ez−1

z

)�

=



j=0

S( j + �,�)( j+�
�

) z j

j!
, � � 0; (32)

see [28, Example 2.76] and [47, Eq. (9.59)]. The r -associate Stirling numbers of the
second kind Sr( j, �) for j � � � 0 and r � 0 are defined [17, p. 303, Eq. (1.2)] by(

ez−
r


j=0

z j

j!

)�

=

(



j=r+1

z j

j!

)�

= �!



j=(r+1)�

Sr( j, �)
z j

j!
; (33)

see also [42, Section 1.12]. The equation (33) can be reformulated as

(Tr[ez])� =

[
(r+1)!

zr+1

(
ez−

r


j=0

z j

j!

)]�

=
�![(r+1)!]�

[(r+1)�]!




j=0

Sr( j +(r+1)�,�)( j+(r+1)�
j

) z j

j!

(34)

for �,r ∈ N0 . The equation (32) is a special case r = 0 of (34). Consequently, the
integer powers of the normalized remainder Tr[ez] for r ∈ N0 , which was investigated
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in [7, 35] and [36, Section 1.7], can be regarded as the generating functions of the
Stirling numbers of the second kind S( j, �) and the r -associate Stirling numbers of the
second kind Sr( j, �) for j � � � 0 and r � 0.

The Bernoulli numbers and polynomials Bj and Bj(t)for j ∈ N0 = {0}∪N are
generated [49, p. 3] by

z
ez−1

=



j=0

Bj
z j

j!
= 1− z

2
+




j=1

B2 j
z2 j

(2 j)!
, |z| < 2 (35)

and
zezt

ez−1
=




j=0

Bj(t)
z j

j!
, |z| < 2 . (36)

In the thesis [16] and the papers [9, 14, 15, 18, 19], among other things, Carlitz and
Howard defined the sequences and polynomials Aj , Aj(t) , Ak, j , and Ak, j(t) by

z2

2
1

ez−z−1
=




j=0

Aj
z j

j!
, (37)

z2

2
ezt

ez−z−1
=




j=0

Aj(t)
z j

j!
, (38)

zk

k!
1

ez−k−1
j=0

z j

j!

=



j=0

Ak, j
z j

j!
, (39)

and
zk

k!
ezt

ez−k−1
j=0

z j

j!

=



j=0

Ak, j(t)
z j

j!
(40)

for k ∈ N , and they examined a lot of algebraic properties of these sequences and
polynomials. It is easy to see that Aj(0) = Aj , A1, j = Bj , A2, j = Aj , Ak, j(0) = Ak, j ,
A1, j(0) = Bj , A2, j(0) = Aj , and A1, j(t) = Bj(t) for j ∈ N0 . The sequence Aj for
j ∈ N0 was recently investigated in [7, Remark 2] and [42, Section 2]. In terms of the
notation Tk−1[ez] , the equation (40) can be reformulated as

ezt

Tk−1[ez]
=




j=0

Ak, j(t)
z j

j!
.

Meanwhile, the generating functions of the sequences and polynomials Bj , Bj(t) , Aj ,
Aj(t) , and Ak, j in (35), (36), (37), (38), and (39) can be respectively rewritten as 1

T0[ez] ,
ezt

T0[ez] ,
1

T1[ez] ,
ezt

T1[ez] , and 1
Tk−1[ez] for k ∈ N .

We say that the series 
j=0 a j envelops the number A if the relations

∣∣∣∣∣A−
n


j=0

a j

∣∣∣∣∣< |an+1|, n ∈ N0
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are satisfied. For more detailed information, please refer to [33, Chapter 4]. The nor-
malized remainder defined in (31) has close connection to the well-known “enveloping
series”, a topic covered in [33, Chapter 4].

In terms of the notion of normalized remainders mentioned above, the function
H2,n(r) defined in (26) can be reformulated as

Tn[H(r)] = − 1
an+1

H2,n(r), r ∈ (0,1)

for n∈ N0 . Considering the negativity in (12) and employing Corollary 1, we conclude
that the normalized remainder Tn[H(r)] for n∈ N0 is absolutely monotonic from (0,1)
onto

(
1,1+ n

n

)
.

COROLLARY 2. Let the sequence bn for n ∈ N0 be defined as in Theorem 2. Set

n = |bn+1|, n = −1
2

+
n


k=0

bk, Qn(r) =
n+1


k=0

bkr
2k

for r ∈ (0,1) . Then the function

G2,n(r) =
1

rn+1

[
n


k=0

bkr
k −G(r)

]
(41)

is absolutely monotonic from (0,1) onto (n,n + n) . Consequently, for r ∈ (0,1) ,
the double inequalities


2
− rarctanhr− [Qn(r)−n+1r

2n+4] ln(1− r2)< E (r)

<

2
− rarctanhr− [Qn(r)− n+1r

2n+4] ln(1− r2) (42)

and (
8−

4
− 64−15

192
r2 − 384−95

3840
r4 − 2716−85

3840
r6
)

ln
(
1− r2

)
2

>

2
− rarctanhr−E (r) >(

8−
4

− 64−15
192

r2 − 384−95
3840

r4 − 274432−69195
516095

r6
)

ln
(
1− r2

)
2

(43)

are valid.

Proof. From Theorem 2, it follows that

G2,n(r) =
1

rn+1

(
n


k=0

bkr
k −




k=0

bkr
k

)
= −




k=n+1

bkr
k−n−1 =




k=0

|bk+n+1|rk.
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Consequently, the function G2,n(r) is absolutely monotonic on (0,1) and it is easy to
see that the limits G2,n(0+) = |bn+1| and

G2,n(1−) =
n


k=0

bk −G(1−) =
n


k=0

bk − 1
2

are valid.
Since the function G2,n(r) is increasing and convex on (0,1) , we deduce the dou-

ble inequality

|bn+1|+ |bn+2|r < G2,n(r) < |bn+1|+
[

n


k=0

bk −G(1−)−|bn+1|
]
r

= |bn+1|+n+1r.

(44)

Combining (4), (25), and (44) leads to (42).
Taking n = 1 in (42) results in (43). The proof of Coroillary 2 is complete. �

REMARK 3. The double inequality (42) is better than (10).

REMARK 4. As discussed in Remark 2, in terms of the notion of normalized re-
mainders defined by (31), the function G2,n(r) defined in (41) can be reformulated as

Tn[G(r)] = − 1
bn+1

G2,n(r), r ∈ (0,1)

for n ∈ N0 . Making use of the negativity in (15) and utilizing Corollary 2, we reveal
that the normalized remainder Tn[G(r)] for n∈ N0 is absolutely monotonic from (0,1)
onto

(
1,1+ n

n

)
.

Making use of (7) and Corollaries 1 and 2, we derive the following corollary.

COROLLARY 3. For r ∈ (0,1) and  ∈ (1,) ,

(r) < r1/ exp

{
4ln2
−2

(
1− 1



)
min{S(r),T (r)}

}
, (45)

where an and bn for n ∈ N0 are defined as in Theorems 1 and 2,

S(r) =

2
−1− 

2

[
1− (1− r2)arctanhr

r

][n+1


k=0

akr
2k −

(
n+1


k=0

ak −1+
2


)
r2n+4

]
,

and

T (r) =

2
−1− rarctanhr−

(
n+1


k=0

bkr
2k +bn+2r

2n+4

)
ln
(
1− r2).

REMARK 5. The upper bound in (45) is better than the corresponding one in (7).
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