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ON A RECURSIVE RELATION AND ITS

CONNECTIONS TO NUMBER THEORY

STEVO STEVIĆ

(Communicated by L. Mihoković)

Abstract. We give some theoretical explanations for solving the recursive relation

1+
d|n

(−1)
n
d ad = 0,

by finding its connections with number theory.

1. Introduction and preliminaries

Let N = {1,2,3, . . .}, i.e., the set of positive integers, Z be the set of whole num-
bers, R be the set of real numbers, and Nk = {n � k|n ∈ Z}, where k ∈ Z is fixed.

Recursive relations of various types have been studied for a long time. One of the
basic problems related to the relations is finding their solutions in closed form. First
nontrivial results in the topic were obtained in the beginning of the 18th century [6, 8].
For some later sources from the century see, for example, [12, 13, 14], where the in-
vestigation of solvability of linear recursive relations, that is, difference equations was
predominately done. In the classical books [9, 10, 15] can be found some later presenta-
tions of some results in the topic. Since it is not easy to obtain new general methods for
dealing with the problem of solvability of recursive relations, the interest in the topic
diminished during the 19th century. Nevertheless the fact, solvable recursive relations
have occurred from time to time in computational mathematics [7], combinatorics [25],
summations of some series [17], many problem books [4, 11, 16], as well as some pop-
ular journals for a wide audience, and various other research and educational domains.
Solvable recursive relations are also useful in getting some comparison results in the
theory of difference equations and systems of difference equations (see, for example,
[5, 20, 27, 28]). There have been also some exotic applications of the recursive rela-
tions, as it was the case, for example, in [29], where a recursive relation was used in
showing the nonexistence of solutions of an integral equation.

Use of the computer algebra packages, among other things, renewed a recent in-
terest in the topic. The use also caused some problems, since some authors do not give
any theoretical explanations for the formulas for solutions to the considered recursive
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relations in their papers (see, for example, some comments and theoretical explanations
of ours given in [31, 36]). For some recent results on finding solutions to recursive re-
lations and systems of recursive relations in closed form, and finding their invariants
see, for example, [3, 18, 19, 21, 22, 24, 26, 30, 32, 33, 34, 35, 37, 38] and the related
references therein, where many different methods, tricks and ideas can be found.

The following problem appeared in journalKvant in 1980 (see [1, Problem M624]):

PROBLEM 1. Find the sequence (an)n∈N , which is defined by the conditions
a1 = 1 ,

1+
d|n

(−1)
n
d ad = 0, (1)

where the sum is taken over all divisors of the number n ∈ N , including d = 1 and
d = n. For example, if n = p is a prime number, then (1) has the form

1+(−1)
p
1 a1 +(−1)

p
p ap = 0,

from which it follows that ap = 2 if p = 2 , and ap = 0 if p > 2 .

In [2] was published one of the typical high-school solutions to such type of prob-
lems. Namely, it was noticed therein that the relation in (1) can be written in the form

an = 1+ 
d|n,d<n

(−1)
n
d ad,

and were calculated first several members of the sequence (an)n∈N .
Based on the facts (obtained by the calculations) that

a1 = 1, a2 = 2, a3 = 0, a4 = 4, a5 = a6 = a7 = 0, a8 = 8, a9 = 0,

it was assumed that

an =
{

n, if n = 2m,
0, if n �= 2m,

(2)

where m ∈ N0, and the relations in (2) were confirmed by the method of mathematical
induction.

The fact that in (1) appears a summation over all divisors of a natural number,
which frequently appear in number theory [23, 39], has suggested us that the problem
has some connections with the multiplicative functions appearing in the theory. Here,
among other things, we present our original solution to the problem essentially obtained
in 1984, which has not been published so far.

Recall that the Möbius function  is the multiplicative function on N defined by:

(p) = −1, (p) = 0, if  > 1,

where p ∈ N is a prime number. Note that the function takes the values in the set
{−1,0,1}.

The following proposition is one of the basic results related to the function (see,
e.g., [39, p. 29]).
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PROPOSITION 1. Let  (n) be a multiplicative function and n = p1
1 p2

2 · · · pk
k be

the canonical representation of an n ∈ N . Then


d|n

(d) (d) = (1− (p1)) · · · (1− (pk)), (3)

(if n = 1 we regard that the right-hand side in (3) is equal to 1 ).

If we take the function
 (a) = 1, a ∈ N,

in (3), which is obviously multiplicative, we get:


d|n

(d) =
{

0, if n > 1,
1, if n = 1.

(4)

The following result is the Möbius inversion formula (see, e.g., [39, p. 37]).

LEMMA 1. Let f and g be two arithmetic functions such that

f (n) =
d|n

g(d), for n ∈ N.

Then
g(n) =

d|n
(d) f

(n
d

)
, for n ∈ N.

The purpose of this note is to give some theoretical explanations for the formulas
in (2). First, we present a detailed solution to Problem 1, which is based on our original
idea. Then, we present another solution based on generating functions.

2. First solution to Problem 1

In this section we give our original solution to Problem 1 which gives a theoretical
explanation for it. The solution has not been published so far.

First solution to Problem 1. Define a sequence (bn)n∈N , as follows:

bn := 1, n ∈ N. (5)

Then the relation in (1) can be written in the form

bn =
d|n

(−1)
n
d +1ad , n ∈ N. (6)

Note that each n ∈ N can be written in the form

n = 2km, (7)
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where k ∈ N0 and m ∈ N is an odd number.
First, assume that m = 1. Then, n = 2k, for some k ∈ N , and we have

b2k = 
d|2k

(−1)
2k
d +1ad = a2k − 

d|2k,d<2k

ad , (8)

that is
a2k = 1+ 

d|2k,d<2k

ad.

From this it follows that

a2k −a2k−1 =
(

1+ 
d|2k,d<2k

ad

)
−

(
1+ 

d|2k,d<2k−1

ad

)
= a2k−1 ,

that is,

a2k = 2a2k−1. (9)

From (9) it follows that

a2k = 2k−1a2. (10)

From (1) with p = 2, we have

a2 = a1 +1. (11)

Combining (10), (11) and the assumption a1 = 1, we get

a2k = 2k, k ∈ N0. (12)

Now, assume that n is odd, that is, k = 0 in (7), so that n = m . Then all its divisors
are also odd, so from (6) it follows that

bm = 
d|m

ad, m ∈ N.

By using Lemma 1 and (5), we get

am = 
d|m

(d)bm
d

= 
d|m

(d), (13)

for each odd m ∈ N.
From (4) and (13), we have

am = 0, (14)

for every odd m ∈ N3 .
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Now assume that n is even and such that (7) holds for some k ∈ N and m ∈ N3

odd. We have

b2km = 
d|2km

(−1)
2km
d +1ad . (15)

Let k = 1 and m ∈ N3 is odd. Then, from (15) we have

b2m = 
d|2m

(−1)
2m
d +1ad = 

d|2m,d=2l

(−1)
2m
d +1ad +

d|m
(−1)

2m
d +1ad ,

from which along with (14) it follows that

b2m = 
d|2m,d=2l

(−1)
2m
d +1ad −a1 = 

d|2m,d=2l

(−1)
m
l +1ad −1 =

l|m
a2l −1.

Let
c(2)
m := b2m +1 and a(2)

l = a2l,

then we have
2 = c(2)

m =
l|m

a(2)
l .

So, by Lemma 1 and (4), we have

a(2)
m =

l|m
(l)c(2)

m
l

= 2
l|m

(l) = 0,

for m ∈ N3 , that is,

a2m = 0, (16)

for every odd m ∈ N3 .
Let k = 2 and m ∈ N3. Then, we have

b4m = 
d|4m

(−1)
4m
d +1ad

= 
d|4m,d=4l

(−1)
4m
d +1ad + 

d|4m,d=2l

(−1)
4m
d +1ad +

d|m
(−1)

4m
d +1ad , (17)

where in the first two sums in (17), l is an odd number.
From (17) along with (12), (14) and (16) it follows that

b4m = 
d|4m,d=4l

(−1)
4m
d +1ad −a2−a1

= 
d|4m,d=4l

(−1)
m
l +1ad −3 =

l|m
a4l −3.
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Let
c(4)
m := b4m +3 and a(4)

l = a4l,

then we have
4 = c(4)

m =
l|m

a(4)
l .

So, by Lemma 1 and (4), we have

a(4)
m =

l|m
(l)c(4)

m
l

= 4
l|m

(l) = 0,

for each odd m ∈ N3 , that is,

a4m = 0, (18)

for every odd m ∈ N3 .
Assume that we have proved

a2sm = 0, (19)

for every odd m ∈ N3 and every 1 � s � k−1, for some fixed k ∈ N3 .
Then, we have

b2km = 
d|2km

(−1)
2km
d +1ad

= 
d|2km,d=2kl

(−1)
2km
d +1ad + 

d|2km,d=2k−1l

(−1)
2km
d +1ad + · · ·

· · · + 
d|2km,d=2l

(−1)
2km
d +1ad +

d|m
(−1)

2km
d +1ad , (20)

where l in the above sums is an odd number.
From (20) along with (12) and (19) it follows that

b2km = 
d|2km,d=2kl

(−1)
2km
d +1ad −a2k−1 −·· ·−a2−a1

= 
d|2km,d=2kl

(−1)
m
l +1ad −

k−1


j=0

2 j =
l|m

a2kl −2k +1.

Let

c(2k)
m := b2km +2k −1 and a(2k)

l = a2kl,

then we have

2k = c(2k)
m =

l|m
a(2k)

l .
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From this, Lemma 1 and (4) we get

a(2k)
m =

l|m
(l)c(2k)

m
l

= 2k
l|m

(l) = 0,

that is,

a2km = 0, (21)

for every odd m ∈ N3 .
The above inductive argument shows that

a2sm = 0, (22)

for every s ∈ N0 and odd m ∈ N3 .
The relations in (12) and (22) give the formulas for the recursive relation (1) with

the initial value a1 = 1. �

REMARK 1. The part of the above proof for the case k = 2 and m ∈ N3, could
have been omitted, but we left it for some presentational reasons, and the benefit of the
reader.

REMARK 2. Note that instead of the sequence (bn)n∈N defined in (5) we can
consider the sequence

bn := c, n ∈ N,

where c ∈ R\ {0} , that is, we can consider the recursive relation

c+
d|n

(−1)
n
d ad = 0,

(the sequence ân := an/c satisfies equation (1)).

REMARK 3. From formulas (10) and (11) we see that the initial value a1 need not
be specified if we assume that (1) holds for n ∈ N2 . In this case we have

a2k = 2k−1(a1 +1),

for k ∈ N.

REMARK 4. Note that unlike the recursive relations in other above-mentioned ref-
erences, relation (1) is of a quite different type. Namely, each member of the sequence
defined by (1) is obtained by several previous ones, but their number is not fixed (it can
vary from one value of the index n to another, and can also be arbitrary large).
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3. Solution to Problem 1 by using Dirichlet series

Here we present our second solution to Problem 1, which is based on a use of
generating functions. Namely, we use the Dirichlet series




n=1

an

ns , (23)

which are also useful tools in multiplicative number theory. We may assume that s > 1.
Recall that the Dirichlet product of the two Dirichlet series




k=1

ak

ks and



l=1

bl

ls

is




k=1

ak

ks ·



l=1

bl

ls
=




n=1

cn

ns , (24)

where

cn = 
kl=n

akbl =
d|n

adb n
d
, (25)

(see, e.g., [23, p. 119]).

Second solution to Problem 1. Let (an)n∈N be the sequence defined in Problem 1
and bn = (−1)n. Then from (24) we have




k=1

ak

ks ·



l=1

(−1)l

ls
=




n=1

d|n ad(−1)
n
d

ns . (26)

Note that




l=1

(−1)l

ls
= −

(
1− 1

2s−1

)
 (s). (27)

By using (1) and (27) in (26), we obtain

(
1− 1

2s−1

)
 (s)




k=1

ak

ks =  (s),

from which it follows that




k=1

ak

ks =
(
1− 1

2s−1

)−1
. (28)
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Using the formula
1

1−q
=




j=0

q j

for |q| < 1, in (28), we have




k=1

ak

ks =



l=0

1

2l(s−1) =



l=0

2l

2ls , (29)

from which the formulas for the sequence (ak)k∈N in (2) follow. �

Conclusion

Here we give two solutions to Problem 1, and present some theory which lies be-
hind the recursive relation in (1). The methods and ideas presented here could be useful
is solving some related recursive relations, and could motivate some investigations in
the direction.
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(in Serbian).
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