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Abstract. In this paper, we establish two integral inequalities arising in the study of weighted
norm estimates. First, we consider a sequence of measurable sets forming a partition of R™ and
derive an upper bound for a sum involving weighted integrals of a function g, controlled by a se-
quence of positive numbers. Second, we prove an integral inequality involving a non-decreasing
function A with sup (h(x)/x) < eo and a power-weighted integral of f. Higher dimensional
analogue of this inequality are also established.

1. Introduction

In the course of investigations in the theory of integral equations, Hilbert proved
that the series

=

Amdn
m,n=1 m+n

is convergent whenever ¥ a2, is convergent [5]. Hilbert also showed that
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DIECOREED Wt
m-+n
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This result was proved using the theory of Fourier series. In the process of giving
a simpler proof of this inequality, Hardy observed that Hilbert’s theorem is an easy
corollary of the fact that, if 7, a2 is convergent, then

5 <a1+~~~+an)2

n=1 n

is also convergent [4]. Marcel Riesz generalized this theorem by proving that [4]

2(w> <<_p ) Yab, forp>landa,>0. (1)
n=1 n p_l n=1
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p 2\P . _
The fact that the constant ﬁ replaces ﬁ in (1) as the best possible was

subsequently proved by E. Landau [8]. This inequality is now called Hardy’s inequality
in the literature and its integral version is given by

/Om (%/Oxf(t)dt)pdx < (p%l)p/owf(x)l’dx, for p>1and f(x) >0

Numerous generalizations and variations of Hardy’s inequality above have been
developed. The modern form of the Hardy’s original inequality is

(/ (/ f(t dt) u(x dx)l/q<C</wa1’(x)v(x)dx)l/p7 )

where f(x) > 0,u and v are weights and 1 < p < g < oo [10]. Then, inequality (2)

holds if and only if
oo 1/q X , 1/p
sup (/ u(t)dt) (/ yi=p (t)dt) < 0.
X x 0

For power weights we have,

/wa_’ (/()xf(t)dt>pdx < (%)p /wa(x)pxp_rdx, r>1 3)

and the constant is optimal in this case. The inequality (3) is a special case of our result
proved in Corollary 1. The sequence of functions used to demonstrate the sharpness of
inequality (6) in Corollary 1 also applies directly to inequality (3), thereby establishing
its optimality. More types of the Hardy’s inequalities and its applications can be found
in[1,6,7,9].

In [2], L. Bouthat et al. established the following discrete Hardy type inequality
in which the arithmetic means of a sequence are replaced by the weighted means over
nested subsets of the sequence.

THEOREM 1. [2] Let N denote the set of positive integers, and let {Ny,N,...}
be a partition of N. Denote

N, =N U---UN,, n=>1.
Let (my)n>1 be a sequence of positive numbers and p > 1 and p' > 1 be such that

1 1 _
;—FF—IDeﬁne
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, 1/p' "
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= 1 1/p
p :=sup — < oo,

Suppose that
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Let (an)u>1 be a sequence of complex numbers. Then,

(21 )Up <p (f}l an|”>l/p~

Our first result in this note is an integral version of Theorem | in which the operator

(i /. ng(X)f(X)dX)@l

is considered, where B, = A; U---UA, and {A],A;,...} is a partition of R™. In
Theorem 2, we show that for appropriate choice of M, , this operator is bounded from
LP(R™) — ¢P. This generalizes Theorem 1 and, in Remark 1, we obtain Theorem 1 as
a corollary of our result. Our second result is motivated by the following problem.

Given a non-decreasing function i on (0,c0), with ~(0) =0, let g and u be
positive functions on (0,e0), and consider the operator T given by

2 mjaj

T jEN,

1
u(x)
We are interested in finding the conditions on u,2 and g so that 7 is bounded on
LP(0,0). When u(x) =x"/? and g(x) = xTI, r > 1, we show in Theorem 3 that T

is bounded on L?(0,°) whenever sup, @ is bounded.

Let B(0,r) denote the ball centered at 0 with radius » and |B(0, r)| be its measure.
In [3], Grafakos et al. proved the following higher dimensional version of the Hardy’s
inequality.

</R" <|B 0, |x[) |/O|x| |dy>p )l/p < I,L ( - f(y )pdy>1/p7

and the constant p/(p — 1) is the best possible. Motivated by this, in Theorem 4 we
discuss the higher dimensional analogue of Theorem 3, where we consider the operator

1
_-—_— dr.
/ 1B(0, |- \)I’/P/Ohumﬂt)t

2. Main results

h(x)
Tf(x) = /0 g()f()dt, x> 0.

In this section, we present our main results along with their proofs.

THEOREM 2. Let Ay,Az,... be a partition of R™ such that each A; is measur-
able. Let B, = U!_|A; and p,p’ € (1,e0) be such that %—1—1% = 1. For g > 0 defined
on R™, define
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If M,, is a sequence of positive numbers such that

< (S )
p? :=sup ), A
1

P\ /P » 1/p
J— < .
| <p ( [ 1) dx)

[, e riar=3 [ s

By using the definition of w; and Holder’s inequality, we find

|, e < Son ([ 17 wrar) "

P and use once again Holder’s inequality to obtain

" v s, 1/p
)|dx w; wi x)|? dx .
18 <<,-21> (2 /17 )

< oo,

Then

8(x)f (x)dx

P

Proof. Write

Write w; = wl/p 1/

Therefore,
p L\ [ p/v ,
— dx| < | — ) ) d
‘Mn Bng(x)f(x) . (Mn> jZZIWJ ;Wl/Ai |f(x)|” dx
= 3 W [ £,
i=1 Aj
where,
p/v
. Wi <2?:1 Wj)
Win = ——pr——
Hence,
o | 1
S [ ewrwa] <3 3w / )P
n=1 M" By

8 T8 ||M8
||M8 ||M=

Wi / F(0)|Pdx
< i:zlpp / el
o [ 17lrax.

)
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p Y eo )

REMARK 1. Theorem 1 can be obtained from Theorem 2. To see this, let N =
NiUN, U--- be apartition of N and define A, := Ujen, [i — 1,i). Corresponding to the
sequences (ay)p>1 and (my)n>1, define

{0, if x € (—o0,0),

an, ifxé€n—1,n).

Therefore,

1

W, 8@

and

my, ifx€n—1,n).

m/p - I/p
) < p <2 an|p> .
n=1

THEOREM 3. Let h be a non-decreasing function on (0,°) such that h(0) = 0.
Fix p>1andr>1. Then

- —r h(x) Lt 2 g r—1 P r «
/0 X </0 t f(t)dt) dx<c (:) /0 f(x)Pdx, (5)

h(x)

x °

o) = {0, if x € (—o0,0),

Therefore, from (4) we get

1

(2

— Y mja
. jeN{U---UN,

Jorall f:R —[0,), where ¢ = sup,

Proof. Note that, setting f(x)x'~"/? instead of f(x), inequality (5) is equivalent

o X P o
/0 x ' (/Oh( )f(t)dt> dx < ¢! (rf;l)p/o S (x)PxP"dx.

Observe that

(/O“’x_,< Oh(X) f(t)dt>pdx>l/p: ( /O e ( /Oh<x> @ dt>pdx>1/p
(F(fomme o)

Using Minkowski’s integral inequality and the change of variable sx — y, we get

( /O°°x4 ( /O " f(t)dt)p dx)l/p < /0 ) ( /0 Ea (sx)”dX)l/p ds
LGy ror) ety ([osora)

to

N
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which proves our assertion. [

Note that, when h(x) = x this result gives the weighted Hardy’s inequality (3)
with the sharp constant p/(r— 1). In the following corollary, we show that for &(x) =
kx, k > 0, the above inequality is sharp.

COROLLARY 1. For k>0,

/wx_r kxf(t)dt pd)c<k’_1 . p/wf(X)pxp_’dx (6)
0 0 = r—=1/ Jo '

in which the constant is optimal.

Proof. For h(x) = kx, we trivially have sup, @ = k. Using Theorem 3, we get

[ ([ areer (5] [ e

To show that the constant is optimal, it is enough to show that there exist a sequence of
functions (f;,) such that the quotient

Jox" <f0kxfn(t)df>pdx . bV
Jo fu(x)PxP—rdx -k (:) as n — oo,

Let x4 denote the characteristic function of the set A. Consider

Su(x) — X7 T X(0.a)(x), for some a > 0.

Then
| furarrax ="
and X
o ke r nk™ apP rank
- t)dt | dx= ( )
/ox (0 S) ) T 1 Drp \k
Therefore,

oo —r [ rkx p 1
Jox T (f0de) dx et (o
)P r

P
R = — asn—oo, [
Jo v f(y)rdy (r—1+1ip 1)

We now give the higher dimensional analogue of Theorem 3.

THEOREM 4. Let h be a non-decreasing function on (0,0) satisfying h(0) =0
and supx@ =c<eo. Fixn>1andlet f:R" — [0,%). Then

1 P
—— n(p—r)
/R" B(O, [x[)|" </B(O,h(x))f(t)dt) dr s k/Rn FOOP AP dx,



GENERALIZED HARDY’S INEQUALITIES WITH NONLINEAR INTEGRATION LIMITS 655

p—r
k= 277:"/2 nr—2pcr—l p !
['(n/2) r—1)°
Proof. Using polar coordinates (see [11]), write

/R" m <~/B(O,h(X))f(t>dt>p “

=m(s"! L (M 16)dor"'dl ’ n—lq
_m( )/0 ‘B(OJ)" /0 Sn—lf( ) N S.

Now, apply Holder’s inequality in the variable O to get

1 V4
fo mE T </B<o,h<|xmf “"”) &

o =1 h(s) 1/p . P .
< m(s" P/ - / 10yae ) 1 lar| slas.
m( ) 0 ‘B(O,S)‘r 0 ( -1 f( ) ) S S

Applying Theorem 3 to the function

where

we finally obtain

1 / P
- f(t)dt) dx
/R" |B(O, [x])|" ( B(0(|x)
277,'"/2 p=r ) p P oo
< == r=2p =1 _F / p n—1n(p—r)
(F(n/Z)) e <r—1) [, raeyaortrea

277,'"/2 p=r ) p p
_ = r=2p r—1( _F P y|n(p=r) 0
() e () fsroe
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