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Abstract. In this paper, we establish two integral inequalities arising in the study of weighted
norm estimates. First, we consider a sequence of measurable sets forming a partition of R

m and
derive an upper bound for a sum involving weighted integrals of a function g , controlled by a se-
quence of positive numbers. Second, we prove an integral inequality involving a non-decreasing
function h with sup(h(x)/x) <  and a power-weighted integral of f . Higher dimensional
analogue of this inequality are also established.

1. Introduction

In the course of investigations in the theory of integral equations, Hilbert proved
that the series




m,n=1

aman

m+n

is convergent whenever a2
m is convergent [5]. Hilbert also showed that




m,n=1

aman

m+n
� 2




m=1

a2
m.

This result was proved using the theory of Fourier series. In the process of giving
a simpler proof of this inequality, Hardy observed that Hilbert’s theorem is an easy
corollary of the fact that, if 

n=1 a2
n is convergent, then




n=1

(
a1 + · · ·+an

n

)2

is also convergent [4]. Marcel Riesz generalized this theorem by proving that [4]




n=1

(
a1 +a2 + · · ·+an

n

)p

�
(

p2

p−1

)p 


n=1

ap
n , for p > 1 and an � 0. (1)
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The fact that the constant
(

p
p−1

)p
replaces

(
p2

p−1

)p
in (1) as the best possible was

subsequently proved by E. Landau [8]. This inequality is now called Hardy’s inequality
in the literature and its integral version is given by

∫ 

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p ∫ 

0
f (x)pdx, for p > 1 and f (x) � 0.

Numerous generalizations and variations of Hardy’s inequality above have been
developed. The modern form of the Hardy’s original inequality is(∫ 

0

(∫ x

0
f (t)dt

)q

u(x)dx

)1/q

� C

(∫ 

0
f p(x)v(x)dx

)1/p

, (2)

where f (x) � 0, u and v are weights and 1 < p � q <  [10]. Then, inequality (2)
holds if and only if

sup
x

(∫ 

x
u(t)dt

)1/q(∫ x

0
v1−p′(t)dt

)1/p

< .

For power weights we have,
∫ 

0
x−r
(∫ x

0
f (t)dt

)p

dx �
(

p
r−1

)p ∫ 

0
f (x)pxp−rdx, r > 1 (3)

and the constant is optimal in this case. The inequality (3) is a special case of our result
proved in Corollary 1. The sequence of functions used to demonstrate the sharpness of
inequality (6) in Corollary 1 also applies directly to inequality (3), thereby establishing
its optimality. More types of the Hardy’s inequalities and its applications can be found
in [1, 6, 7, 9].

In [2], L. Bouthat et al. established the following discrete Hardy type inequality
in which the arithmetic means of a sequence are replaced by the weighted means over
nested subsets of the sequence.

THEOREM 1. [2] Let N denote the set of positive integers, and let {N1,N2, . . .}
be a partition of N . Denote

Nn := N1 ∪·· ·∪Nn, n � 1.

Let (mn)n�1 be a sequence of positive numbers and p > 1 and p′ > 1 be such that
1
p + 1

p′ = 1. Define

wn :=

(

j∈Nn

mp′
j

)1/p′

and Mn :=
n


j=1

wj, n � 1.

Suppose that

 := sup
n�1

(
wn




j=n

1
Mj

)1/p

< .
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Let (an)n�1 be a sequence of complex numbers. Then,

(



n=1

∣∣∣∣∣ 1
Mn


j∈Nn

m ja j

∣∣∣∣∣
p)1/p

� 

(



n=1

|an|p
)1/p

.

Our first result in this note is an integral version of Theorem 1 in which the operator

f �→
(

1
Mn

∫
Bn

g(x) f (x)dx

)
n�1

is considered, where Bn = A1 ∪ ·· · ∪ An and {A1,A2, . . .} is a partition of R
m . In

Theorem 2, we show that for appropriate choice of Mn , this operator is bounded from
Lp(Rm) → �p . This generalizes Theorem 1 and, in Remark 1, we obtain Theorem 1 as
a corollary of our result. Our second result is motivated by the following problem.

Given a non-decreasing function h on (0,) , with h(0) = 0, let g and u be
positive functions on (0,) , and consider the operator T given by

T f (x) :=
1

u(x)

∫ h(x)

0
g(t) f (t)dt, x > 0.

We are interested in finding the conditions on u,h and g so that T is bounded on

Lp(0,) . When u(x) = x−r/p and g(x) = x
r−p

p , r > 1, we show in Theorem 3 that T

is bounded on Lp(0,) whenever supx
h(x)
x is bounded.

Let B(0,r) denote the ball centered at 0 with radius r and |B(0,r)| be its measure.
In [3], Grafakos et al. proved the following higher dimensional version of the Hardy’s
inequality.

(∫
Rn

(
1

|B(0, |x|)|
∫

B(0,|x|)
| f (y)|dy

)p

dx

)1/p

� p
p−1

(∫
Rn

| f (y)|pdy

)1/p

,

and the constant p/(p− 1) is the best possible. Motivated by this, in Theorem 4 we
discuss the higher dimensional analogue of Theorem 3, where we consider the operator

f �→ 1

|B(0, | · |)|r/p

∫
B(0,h(|·|))

f (t)dt.

2. Main results

In this section, we present our main results along with their proofs.

THEOREM 2. Let A1,A2, . . . be a partition of R
m such that each Ai is measur-

able. Let Bn = ∪n
i=1Ai and p, p′ ∈ (1,) be such that 1

p + 1
p′ = 1 . For g > 0 defined

on R
m , define

wi =
(∫

Ai

g(x)p′dx

)1/p′

.
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If Mn is a sequence of positive numbers such that

 p := sup
i




n=i

wi(n
j=1 wj)p/p′

Mp
n

< .

Then (



n=1

∣∣∣∣ 1
Mn

∫
Bn

g(x) f (x)dx

∣∣∣∣
p
)1/p

� 
(∫

Rm
| f (x)|Pdx

)1/p

. (4)

Proof. Write ∫
Bn

|g(x) f (x)|dx =
n


i=1

∫
Ai

|g(x) f (x)|dx.

By using the definition of wi and Hölder’s inequality, we find

∫
Bn

|g(x) f (x)|dx �
n


i=1

wi

(∫
Ai

| f (x)|pdx

)1/p

.

Write wi = w1/p′
i w1/p

i and use once again Hölder’s inequality to obtain

∫
Bn

|g(x) f (x)|dx �
(

n


i=1

wi

)1/p′( n


i=1

wi

∫
Ai

| f (x)|p dx

)1/p

.

Therefore,

∣∣∣∣ 1
Mn

∫
Bn

g(x) f (x)dx

∣∣∣∣
p

�
(

1
Mn

)p
(

n


j=1

wj

)p/p′ n


i=1

wi

∫
Ai

| f (x)|p dx

=
n


i=1

Wi,n

∫
Ai

| f (x)|pdx,

where,

Wi,n :=
wi

(
n

j=1 wj

)p/p′

Mp
n

.

Hence,



n=1

∣∣∣∣ 1
Mn

∫
Bn

g(x) f (x)dx

∣∣∣∣
p

�



n=1

n


i=1

Wi,n

∫
Ai

| f (x)|pdx

=



i=1




n=i

Wi,n

∫
Ai

| f (x)|pdx

�



i=1

 p
∫

Ai

| f (x)|pdx

=  p
∫

Rm
| f (x)|pdx.
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Therefore, (



n=1

∣∣∣∣ 1
Mn

∫
Bn

g(x) f (x)dx

∣∣∣∣
p
)1/p

� 
(∫

Rm
| f (x)|pdx

)1/p

. �

REMARK 1. Theorem 1 can be obtained from Theorem 2. To see this, let N =
N1∪N2 ∪·· · be a partition of N and define An := ∪i∈Nn [i−1, i). Corresponding to the
sequences (an)n�1 and (mn)n�1 , define

f (x) =

{
0, if x ∈ (−,0),
an, if x ∈ [n−1,n).

and

g(x) =

{
0, if x ∈ (−,0),
mn, if x ∈ [n−1,n).

Therefore, from (4) we get(



n=1

∣∣∣∣∣ 1
Mn


j∈N1∪···∪Nn

mja j

∣∣∣∣∣
p)1/p

� 

(



n=1

|an|p
)1/p

.

THEOREM 3. Let h be a non-decreasing function on (0,) such that h(0) = 0 .
Fix p > 1 and r > 1 . Then∫ 

0
x−r
(∫ h(x)

0
t

r−p
p f (t)dt

)p

dx � cr−1
(

p
r−1

)p ∫ 

0
f (x)pdx, (5)

for all f : R → [0,) , where c = supx
h(x)
x .

Proof. Note that, setting f (x)x1−r/p instead of f (x) , inequality (5) is equivalent
to ∫ 

0
x−r
(∫ h(x)

0
f (t)dt

)p

dx � cr−1
(

p
r−1

)p ∫ 

0
f (x)pxp−rdx.

Observe that(∫ 

0
x−r
(∫ h(x)

0
f (t)dt

)p

dx

)1/p

=
(∫ 

0
xp−r

(∫ h(x)

0

f (t)
x

dt

)p

dx

)1/p

�
(∫ 

0

(∫ c

0
x1−r/p f (sx)ds

)p

dx

)1/p

.

Using Minkowski’s integral inequality and the change of variable sx �→ y , we get(∫ 

0
x−r
(∫ h(x)

0
f (t)dt

)p

dx

)1/p

�
∫ c

0

(∫ 

0
xp−r f (sx)pdx

)1/p

ds

=
∫ c

0

(∫ 

0

(y
s

)p−r
f (y)p dy

s

)1/p

ds = c(r−1)/p p
r−1

(∫ 

0
yp−r f (y)pdy

)1/p

,
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which proves our assertion. �
Note that, when h(x) = x this result gives the weighted Hardy’s inequality (3)

with the sharp constant p/(r−1) . In the following corollary, we show that for h(x) =
kx, k � 0, the above inequality is sharp.

COROLLARY 1. For k > 0 ,∫ 

0
x−r
(∫ kx

0
f (t)dt

)p

dx � kr−1
(

p
r−1

)p∫ 

0
f (x)pxp−rdx, (6)

in which the constant is optimal.

Proof. For h(x) = kx , we trivially have supx
h(x)
x = k . Using Theorem 3, we get

∫ 

0
x−r
(∫ kx

0
f (t)dt

)p

dx � kr−1
(

p
r−1

)p ∫ 

0
f (x)pxp−rdx.

To show that the constant is optimal, it is enough to show that there exist a sequence of
functions ( fn) such that the quotient

∫ 
0 x−r

(∫ kx
0 fn(t)dt

)p
dx∫ 

0 fn(x)pxp−rdx
→ kr−1

(
p

r−1

)p

as n → .

Let A denote the characteristic function of the set A . Consider

fn(x) = x
−1
p + 1

n x
r−p

p (0,a)(x), for some a > 0.

Then ∫ 

0
fn(x)pxp−rdx =

na
p
n

p

and ∫ 

0
x−r
(∫ kx

0
f (t)dt

)p

dx =
nkr−1+ p

n pp

(r−1+ p
n )pp

(a
k

)p
n
.

Therefore,

∫ 
0 x−r

(∫ kx
0 f (t)dt

)p
dx∫ 

0 yp−r f (y)pdy
=

kr−1+ 1
n pp

(r−1+ 1
n p)p

→ kr−1
(

p
r−1

)p

as n → . �

We now give the higher dimensional analogue of Theorem 3.

THEOREM 4. Let h be a non-decreasing function on (0,) satisfying h(0) = 0

and supx
h(x)
x = c <  . Fix n > 1 and let f : R

n → [0,) . Then

∫
Rn

1
|B(0, |x|)|r

(∫
B(0,h(|x|))

f (t)dt

)p

dx � k
∫

Rn
f (x)p|x|n(p−r)dx,
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where

k =

(
2n/2

(n/2)

)p−r

nr−2pcr−1
(

p
r−1

)p

.

Proof. Using polar coordinates (see [11]), write

∫
Rn

1
|B(0, |x|)|r

(∫
B(0,h(|x|))

f (t)dt

)p

dx

= m(Sn−1)
∫ 

0

1
|B(0,s)|r

(∫ h(s)

0

∫
Sn−1

f (l )d ln−1dl

)p

sn−1ds.

Now, apply Hölder’s inequality in the variable  to get

∫
Rn

1
|B(0, |x|)|r

(∫
B(0,h(|x|))

f (t)dt

)p

dx

� m(Sn−1)p
∫ 

0

1
|B(0,s)|r

(∫ h(s)

0

(∫
Sn−1

f (l )pd
)1/p

ln−1dl

)p

sn−1ds.

Applying Theorem 3 to the function

F(l) :=
(∫

Sn−1
f (l )pd

)1/p

ln−1,

we finally obtain

∫
Rn

1
|B(0, |x|)|r

(∫
B(0,h(|x|))

f (t)dt

)p

dx

�
(

2n/2

(n/2)

)p−r

nr−2pcr−1
(

p
r−1

)p ∫ 

0

∫
Sn−1

f (l )pd ln−1ln(p−r)dl

=

(
2n/2

(n/2)

)p−r

nr−2pcr−1
(

p
r−1

)p ∫
Rn

f (x)p|x|n(p−r)dx. �
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