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Abstract. In this paper, the upper bounds of non-real eigenvalues of indefinite p-Laplacian prob-
lems with general Sturm-Liouville (S-L) type separated boundary conditions are studied. The
upper bounds of imaginary parts and absolute values of non-real eigenvalues are given by using
the method of bounded variation.

1. Introduction

We study the following one-dimensional p-Laplacian eigenvalue problem

−py+q[y]p−1 = w[y]p−1, x ∈ [0,1], (1.1)

with the Sturm-Liouville type boundary conditions

B1y := cosy(0)− siny′(0) = 0,

B2y := cosy(1)− siny′(1) = 0,
(1.2)

where , ∈ [0,) , p � 2 is an integer, p is the p-Laplacian defined by py =
([y′]p−1)′ , [y]p−1 = |y|p−2y ,  is the spectral parameter, q is the potential function and
the weighted function w changes its sign on [0,1] in the sense that

mes{x ∈ [0,1] : w(x) > 0} > 0, mes{x ∈ [0,1] : w(x) < 0} > 0,

and q,w are real-valued functions satisfying

q,w ∈ L1[0,1], w(x) �= 0 a.e. on [0,1]. (1.3)

Let W 1,p
0 = W 1,p

0 (0,1) be the Sobolev space which is the completion of C
0 (0,1)

with respect to the norm ‖y‖1,p = (
∫ 1
0 |y′|p) 1

p . Set

Lq(y) =
∫ 1

0
(|y′|p +q|y|p)dx+(cot∗)p−1|y(0)|p− (cot∗ )p−1|y(1)|p,
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R(y) =
∫ 1

0
w(x)|y(x)|pdx.

If there exist nonzero g1,g2 ∈ W 1,p
0 such that Lq(g1) > 0 and Lq(g2) < 0, then the

problem (1.1)–(1.2) is called left-indefinite. The eigenvalue problem (1.1)–(1.2) is
right-indefinite if w changes its sign on [0,1]. The problem is called indefinite if it
is both left-indefinite and right-indefinite [3, 14].

The authors in [3] and [14] introduced the eigenvalue problem of the right defi-
nite p-Laplacian Sturm-Liouville problem in detail, which is real, discrete, and semi-
bounded. However, if the p-Laplacian problem is indefinite, then the upper and lower
bounds of the set of real eigenvalues are unbounded([3], Theorem 3.2), and non-real
eigenvalues may exist.

The study of non-real eigenvalues for Sturm-Liouville problems with indefinite
weights was first mentioned in the works of Haupt, Richardson et al. ([16]– [26]).
In 1986, Mingarelli proposed some open questions about non-real eigenvalues [22],
among which there are pre-estimates of the upper and lower bounds of the real and
imaginary parts of non-real eigenvalues, respectively. Determining a priori estimates
for non-real eigenvalues in indefinite Sturm-Liouville theory is a very interesting and
challenging problem. For the classical regular indefinite S-L problem (p = 2) , this
problem was solved by Xie and Qi in 2013, they gave an upper bound estimation of the
non-real eigenvalues of the indefinite S-L problem and obtained sufficient conditions
for the existence and nonexistence of the non-real eigenvalues [31]. Since then, such
problems have been obtained various generalizations under different conditions, for
regular indefinite S-L problems under different boundary conditions, see [7, 8, 18, 24,
25,28]. For singular indefinite S-L problems with limiting point type as well as limiting
circle type endpoints, see [9–12, 15, 29].

The p -Laplacian problem has important applications in many fields, such as in the
flow of highly viscous fluids (see Ladyzhenskaya [19], Lions [20]). For more applica-
tions of the p -Laplacian problem, please refer to ([2,4,6,21,30,33]). A priori estimation
of upper bounds on non-real eigenvalues for one-dimensional indefinite p-Laplacian
problems was not given until 2015 by Xie, Qi, and Chen in [32] with a more complete
research methodology and quantitative results. Using the method in ([23], [18]), Sun
in [27] provided an upper bound on the non-real eigenvalues of indefinite p-Laplacian
problems with Dirichlet boundary conditions. The existence of non-real eigenvalues for
this indefinite p-Laplacian has been studied through the eigencurve method and the two
parameter theory in [32]. For more studies on the one-dimensional p -Laplacian eigen-
value problem, including the prüfer transformation, eigenvalue existence, asymptotics,
and vibrationality of eigenvalues, etc., see ([1, 2, 5, 13, 17]).

Motivated by the above results, in this paper, we study the upper bounds of non-
real eigenvalues of indefinite p-Laplacian problems with general S-L type separated
boundary conditions (1.1)–(1.3). We will give a priori upper bounds on non-real eigen-
values of indefinite problem (1.1)–(1.3) without any additional restrictions to the stan-
dard conditions (1.3). The main method is Ganelius Lemma in [23] to estimate ‖‖p

1,p
in Lemma 4 along with bounded variation function, where  is the eigenfunction of this
indefinite p-Laplacian problem (1.1). It should be noted that this paper also employs
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the Ganelius lemma and utilizes the method of bounded variation to estimate the upper
bounds of non-real eigenvalues compared with [28]. However, in contrast to [28], we
generalize the Dirichlet boundary conditions to general separated boundary conditions.
Although the boundary conditions in [31] are consistent with those in our work, the
operators is different. Therefore, inspired by [31] and leveraging the research methods
of [28], we further investigate and generalize the estimation of non-real eigenvalues for
one-dimensional indefinite p -Laplacian problems.

An outline of this paper is as follows. In Section 2, we will provide upper bounds
on non-real eigenvalues when the weight function changes sign once and multiple
times. In Section 3, we prove Theorem 1 and Theorem 2 through some lemmas.

2. Main results

Consider the one dimensional p-Laplacian problem with indefinite weight

−py(x)+q(x)[y(x)]p−1 = w(x)[y(x)]p−1, x ∈ (0,1). (2.1)

B1y := cosy(0)− siny′(0) = 0,

B2y := cosy(1)− siny′(1) = 0,
(2.2)

where , ∈ [0,) , p � 2 is an integer, q , w are real-valued functions satisfying

q,w ∈ L1[0,1], w(x) �= 0 a.e. on [0,1], q±(x) = max{±q,0}, ‖q‖1 =
∫ 1

0
|q|. (2.3)

cot∗  =

{
cot ,  ∈ (0,),
0,  = 0,

where  =  or  . (2.4)

If w(x) changes sign only once on [0,1], that is, there exists a point x0 ∈ (0,1)
such that

(x− x0)w(x) > 0 a.e. on [0,1]. (2.5)

We choose  > 0 so small such that

() = {x ∈ [0,1] : (x− x0)w(x) � }, 0 < m() = mes() � 1
2
. (2.6)

Now, we state the first estimate result of non-real eigenvalues for problem (2.1)
and (2.2).

THEOREM 1. Let  be a non-real eigenvalue of (2.1). If there exists x0 ∈ (0,1)
such that (2.5) and (2.6) hold. Then the upper bounds of  satisfy

|Im | � 2

Q

p−1
p ,

| | � 2

(|cot∗|p−1 +2|cot∗ |p−1 +Q+‖q‖1 +Q

p−1
p ),

(2.7)

where Q = 2M +2‖q−‖1(p−1+2‖q−‖1), M = |cot∗|p−1 + |cot∗ |p−1 .
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If w(x) is allowed to have more than one turning points, since w(x) �= 0 a.e. x ∈
[0,1] , we choose  > 0 so small such that

() = {x ∈ [0,1] : w2(x) � }, 0 < m() = mes() � 1
2
. (2.8)

Then we can state the second result of a priori bounds on the non-real eigenvalues
for problem (2.1)–(2.2) as follows.

THEOREM 2. Assume that w ∈ W 1,p
0 . If there exist w0 > 0 such that |w(x)| �

w0 a.e. on [0,1] and (2.8) holds for  > 0 . Then for any non-real eigenvalue  of
problem (2.1), it holds that

|Im | � 2

‖w‖1,pQ

p−1
p ,

| | � 2

{w0(M +Q+‖q‖1)+‖w‖1,pQ

p−1
p },

(2.9)

where Q is consistent with the above description.

3. The proof of Theorem 1 and Theorem 2

In order to prove the main results (Theorems 1 and 2), we firstly introduce some
concepts and prepare some lemmas. Let f be a real-valued function defined on the
closed, bounded interval [a,b] and  : a = x0 < x1 < .. . < xn−1 < xn = b be a partition
of [a,b] . We define the variation of f with respect to  by [18]

Var =
n


i=1

| f (xi)− f (xi−1)|,

and the total variation of f on [a,b] by

b∨
a

( f ) = sup{Var :  is an any partition o f [a,b]}.

A real-valued function f is said to be of bounded variation on the closed and
bounded interval [a,b] if

∨b
a( f ) <  . Now we prepare some lemmas in the following.

LEMMA 1. ([23]) Let f � 0 and  be functions of bounded variation on the
closed interval J . Then ∫

J
fd � (inf

J
f +VarJ f )(sup

K⊂J

∫
K

d), (3.1)

where VarJ f =
∫
J |d f (x)| and the sup is taken over all compact subsets of J.

With the help of Lemma 1, we have the following result.
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LEMMA 2. ([27]) Let f ∈W 1,p
0 and g be of bounded variation over all of [0,1] ,

that is, g satisfies the inequality
∫ x
0 |dg(x)| <  . Then for all x ∈ (0,1] and any  > 0

we have∫ x

0
| f (t)|p|dg(t)|� 

(
1
x

+ p−2+



)∫ x

0
| f (t)|pdt +

∫ x

0
| f ′(t)|pdt, (3.2)

where 0 <  =
∫ 1
0 |dg(x)| .

Let  be a non-real eigenvalue of (2.1)–(2.2) and  ∈W 1,p
0 be the corresponding

eigenfunction with
∫ 1
0 |(x)|pdx = 1. That is B1 = 0,B2 = 0 and

−p +q(x)[ ]p−1 = w(x)[ ]p−1. (3.3)

LEMMA 3. ([27]) Let q− = max{−q,0} and  ,  be defined as above. Then

∫ 1

0
q−(x)|(x)|pdx �‖q−‖1

(
p−1+

‖q−‖1



)∫ 1

0
|(x)|pdx+

∫ 1

0
| ′(x)|pdx. (3.4)

In what follows, we give the estimate of ‖‖p
1,p =

∫ 1
0 | ′(x)|p .

LEMMA 4. Let  be a non-real eigenvalue with the corresponding eigenfunction
 defined as above. Assuming  satisfies ‖‖ = 1 . Then

‖‖p
1,p =

∫ 1

0
| ′(x)|pdx � Q. (3.5)

where Q = 2M +2‖q−‖1(p−1+2‖q−‖1), M = |cot∗|p−1 + |cot∗ |p−1 .

Proof. Multiplying both sides of (3.3) by  and integrating by parts over the in-
terval [0,1] , then according to B1 = 0,B2 = 0, we have

−
∫ 1

0
d([ ′]p−1)+

∫ 1

0
q| |pdx = 

∫ 1

0
w| |pdx. (3.6)

That is

(cot∗)p−1|(0)|p − (cot∗ )p−1|(1)|p +
∫ 1

0
| ′|pdx+

∫ 1

0
q(x)| |pdx

= 
∫ 1

0
w(x)| |pdx. (3.7)

Since Im �= 0, q , w are real-valued, one sees that
∫ 1
0 w(x)|(x)|pdx = 0,

∫ 1

0
| ′(x)|pdx = (cot∗ )p−1|(1)|p− (cot∗)p−1|(0)|p−

∫ 1

0
q(x)|(x)|pdx.

And because , ∈ [0,) , we’re going to have a classified discussion:
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(1) If , ∈ [0, 2 ] , then (cot∗ )p−1|(1)|p − (cot∗)p−1|(0)|p � (cot∗ )p−1 .

(2) If , ∈ [2 ,) , then (cot∗ )p−1|(1)|p−(cot∗)p−1|(0)|p �−(cot∗)p−1 .

(3) If  ∈ [0, 2 ], ∈ [2 ,) , then (cot∗ )p−1|(1)|p− (cot∗)p−1|(0)|p � 0.

(4) If  ∈ [2 ,), ∈ [0, 2 ] , then

(cot∗ )p−1|(1)|p− (cot∗)p−1|(0)|p � (cot∗ )p−1− (cot∗)p−1.

By the definition of M , it can be seen that

(cot∗ )p−1|(1)|p − (cot∗)p−1|(0)|p � |cot∗|p−1 + |cot∗ |p−1 = M. (3.8)

And q−(x) = max{−q(x),0} , so −∫ 1
0 q(x)|(x)|pdx �

∫ 1
0 q−(x)|(x)|pdx . By

Lemma 3 and (3.8), we have∫ 1

0
| ′(x)|pdx � M−

∫ 1

0
q| |pdx � M +

∫ 1

0
q−(x)|(x)|pdx

� M+‖q−‖1(p−1+
‖q−‖1


)
∫ 1

0
|(x)|pdx+

∫ 1

0
| ′(x)|pdx.

(3.9)

Setting  = 1
2 in (3.9) and from

∫ 1
0 |(x)|pdx = 1, one can verity that

∫ 1

0
| ′(x)|pdx � 2M +2‖q−‖1(p−1+2‖q−‖1) = Q. (3.10)

The proof of Lemma 4 is finished. �
With the help of the above results, we next prove Theorem 1 and Theorem 2.

The proof of Theorem 1. Multiplying both sides of (3.3) by (x− x0) and inte-
grating by parts over the interval [0,1]. By (2.2), we get

−(x)[ ′(x)]p−1(x− x0)|10 +
∫ 1

0
[ ′(x)]p−1 ′(x)(x− x0)dx

+
∫ 1

0
[ ′(x)]p−1 (x)dx+

∫ 1

0
q(x)|(x)|p(x− x0)dx

= 
∫ 1

0
(x− x0)w(x)|(x)|pdx.

(3.11)

that is,

x0[(cot∗ )p−1|(1)|p− (cot∗)p−1|(0)|p]− (cot∗  )p−1|(1)|p

+
∫ 1

0
(x− x0)| ′(x)|pdx+

∫ 1

0
| ′(x)|p−2 ′(x) (x)dx+

∫ 1

0
q(x)|(x)|p(x− x0)dx

= 
∫ 1

0
(x− x0)w(x)|(x)|pdx. (3.12)
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Separating the imaginary parts yields

Im
∫ 1

0
(x− x0)w(x)|(x)|pdx = Im

(∫ 1

0
| ′(x)|p−2 ′(x) (x)dx

)
. (3.13)

It follows from (3.5) in Lemma 4,
∫ 1
0 |(x)|pdx = 1 and Cauchy-Schwarz inequality

that ∣∣∣∣
∫ 1

0
| ′(x)|p−2 ′(x) (x)dx

∣∣∣∣ �
∫ 1

0
| ′(x)|p−1| (x)|dx

�
(∫ 1

0
| ′(x)|p

) p−1
p

(∫ 1

0
| (x)|p

) 1
p

� Q
p−1
p .

(3.14)

Choosing  as in (2.6), one can verify that∫ 1

0
(x− x0)w(x)|(x)|pdx �

∫
[0,1]\()

(x− x0)w(x)|(x)|pdx

� 
(∫ 1

0
|(x)|pdx−

∫
()

|(x)|pdx

)
= 

(
1−

∫
()

|(x)|pdx

)

� (1−‖‖p
m()) � 

(
1− 1

2

)
=


2
.

(3.15)

This together with (3.13), (3.14) and (3.15) indicates that


2
|Im | � |Im |

∫ 1

0
(x− x0)w(x)| |pdx �

∣∣∣∣Im
(∫ 1

0
| ′(x)|p−2 ′(x) (x)dx

)∣∣∣∣ � Q
p−1
p .

(3.16)
Due to x0 ∈ (0,1) and ‖‖ = 1,

|x0[(cot∗ )p−1|(1)|p− (cot∗)p−1|(0)|p]− (cot∗ )p−1|(1)|p|
� x0[|cot∗ |p−1|(1)|p + |cot∗|p−1|(0)|p]+ |cot∗ |p−1|(1)|p
� |cot∗|p−1 +2|cot∗ |p−1.

(3.17)

This fact yields that∣∣∣∣
∫ 1

0
(x− x0)(| ′(x)|p +q(x)| |p)dx

∣∣∣∣ �
∫ 1

0
| ′(x)|pdx+‖‖p



∫ 1

0
|q(x)|dx � Q+‖q‖1

(3.18)
by (3.5) in Lemma 4. This together with (3.12), (3.14), (3.15), (3.17), (3.18) yields that


2
| | � | |

∫ 1

0
(x− x0)w(x)|(x)|pdx

� |x0[(cot∗ )p−1|(1)|p − (cot∗)p−1|(0)|p]

− (cot∗  )p−1|(1)|p +
∫ 1

0
(x− x0)| ′(x)|pdx+

∫ 1

0
| ′|p−2 ′dx

+
∫ 1

0
q(x)| |p(x− x0)dx|

� |cot∗|p−1 +2|cot∗  |p−1 +Q+‖q‖1 +Q
p−1
p .

(3.19)
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Hence the inequalities in (2.7) hold through (3.16) and (3.19) immediately. �

The proof of Theorem 2. Multiplying both sides of (3.3) by w and integrating by
parts over the interval [0,1], we get

−w [ ′]p−1|10 +
∫ 1

0
w| ′|p +

∫ 1

0
w′| ′|p−2 ′ +

∫ 1

0
wq| |p

= 
∫ 1

0
w2| |p.

(3.20)

It follows from |w(x)| � w0 and (3.5) in Lemma 4, B1 = 0,B2 = 0 and w ∈ W 1,p
0

that

w(0) (0)[ ′(0)]p−1−w(1)(1)[ ′(1)]p−1

= (cot∗)p−1|(0)|pw(0)− (cot∗ )p−1|(1)|pw(1). (3.21)

Therefore,

|w(0)(0)[ ′(0)]p−1−w(1)(1)[ ′(1)]p−1|
� |cot∗|p−1|(0)|p|w(0)|+ |cot∗  |p−1|(1)|p|w(1)|
� w0(|cot∗|p−1 + |cot∗ |p−1) = w0M.

(3.22)

∫ 1

0
w| ′|p +

∫ 1

0
wq| |p � w0

(∫ 1

0
| ′|p +

∫ 1

0
q| |p

)

� w0

(∫ 1

0
| ′|p +‖‖p



∫ 1

0
|q|

)
� w0(Q+‖q‖1). (3.23)

By using the Cauchy-Schwarz inequality, it can be obtained that
∫ 1

0
w′| ′|p−2 ′ � ‖‖

∫ 1

0
|w′|| ′|p−1

�
(∫ 1

0
|w′|p

) 1
p
(∫ 1

0
| ′|p

) p−1
p

� ‖w‖1,pQ
p−1
p .

(3.24)

Choosing  as in (2.8), one sees that the right hand of (3.20) satisfies
∫ 1

0
w2| |p �

∫
[0,1]\()

w2| |p

� 
(∫ 1

0
| |p −

∫
()

| |p
)

(3.25)

� (1−‖‖p
m()) � 1

2
 .
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This fact together with (3.22), (3.23), (3.24) and (3.25) yields


2
| | � | |

∫ 1

0
w2| |p

� |w(0) (0)[ ′(0)]p−1−w(1)(1)[ ′(1)]p−1 +
∫ 1

0
w| ′|p

+
∫ 1

0
w′| ′|p−2 ′ +

∫ 1

0
wq| |p|

� w0(M +Q+‖q‖1)+‖w‖1,pQ
p−1
p .

(3.26)

Note that

Im
∫ 1

0
w2| |p = Im

(∫ 1

0
w′| ′|p−2 ′

)
(3.27)

by (3.20). Therefore, (3.24) and (3.25) lead to


2
|Im | � |Im |

∫ 1

0
w2| |p �

∣∣∣∣Im
(∫ 1

0
w′| ′|p−2 ′

)∣∣∣∣ � ‖w‖1,pQ
p−1
p . (3.28)

As a result, (3.26) and (3.28) yields the inequalities in (2.9). The proof is completed. �
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