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APPROXIMATE ADDITIVE (p;,p,)-RANDOM
OPERATOR INEQUALITY IN MENGER BANACH SPACES

ZHIHUA WANG

(Communicated by I. Rasa)

Abstract. In this paper, we attempt to solve an additive (p;,p2)-random operator inequality.
We also obtain the Hyers-Ulam stability of such random operator inequality in Menger Banach
spaces by using two different approaches.

1. Introduction

In 1940, Ulam [22] formulated the problem of stability for homomorphisms of
metric groups which motivated the study of the stability problems of functional equa-
tions, and its solutions (for Banach spaces) was published a year later by Hyers [8].
The stability of functional equations has been also known as Hyers-Ulam stability. It
was later generalized by Aoki [1], Gdvrutd [6] and Rassias [14] for additive mappings
and linear mappings, respectively. We refer the interested readers for more information
on such problems to the papers (see [2, 3, 9, 10, 12, 13, 15, 17, 18, 23] and references
therein).

In 2017, Yun and Shin [21] introduced and solved the following additive (p;,02)-
functional inequality

xX+y

12022~ £ = O < lor (FGe+3) + £ =) = 2 @)

+lo2(f (x+y) = f() = FODII, (1.1)

where p; and p, are fixed nonzero complex numbers with v/2|p;| + |p1| < 1. They
established the Hyers-Ulam stability of the functional inequality (1.1) for mappings
f:X — Y, where X is a real or complex normed space, and Y is a complex Banach
space.

In this article, let (Q, %, 1) be a probability measure space. Assume that U and V
are Menger Banach spaces (briefly, MB-spaces), (U, %y ) and (V,%y) are Borel mea-
surable spaces, and 7 : Q x U — V is a random operator. We first study the following
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additive (p1,p,)-random operator inequality

ézr(w,%)—T(uu)—T(w,v)
!

2%\4( 1 (T (000 +T Orai—) 2T (0.0). tpz(T(w,quv)T(w,u)T(w,v))>’ (12)

in which p;,p, are fixed and max{v/2|p;|,|p2|} < 1. And we obtain a random ap-
proximation of the additive (py,0,)-random operator inequality (1.2) in Menger Ba-
nach spaces by employing the direct and fixed point methods. The results improve
and extend some stability results of the additive (p1,0)-functional inequality (1.1) in
complex Banach spaces.

2. Preliminaries

Following [7, 16, 19, 20], we present some definitions and preliminary results,
which will help to investigate the Hyers-Ulam stability in Menger Banach spaces.

Let AT be the space of all probability distribution mappings, i.e., the space of
all mappings G : RU {—oo, e} — [0,1], writing G, for G(r), such that G is left
continuous and non-decreasing on R. &% C A™ includes all mappings G € A" for
which {~G... = 1, where ¢~ g, denotes the left limit of the mapping g at the point
x, that is, £~ g, = lim g;,. AT is partially ordered by the usual point-wise ordered of

o

1—.
mappings, i.e., F < G if and only if F; < G; for all s € R. Note that the function 4"
defined by

B =

S

0,ifs <u,
1,ifs>u

is an element of AT and 9Y is the maximal element in this space(see [16, 19, 20]).

DEFINITION 2.1. (cf. [7, 19]). A function % : [0,1] x [0,1] — [0,1] is a con-
tinuous triangular norm (briefly, a continuous #-norm) if % satisfies the following
conditions:

(@) #(g,7)=#(t,6) and H (g, % (1,v)) =# (A (g,7),v) forall g,7,v €[0,1];
(b) # is continuous;

(c) A (g,1)=¢ forall ¢ €0,1];

(d) #(g,7) < #(v,1) whenever ¢ < v and T <1 forall g,7,v,1 € [0,1].

Typical examples of continuous 7-norms are the Lukasiewicz 7-norm 27, where
1(g,7) = max(¢ + 7 —1,0),Y5,7 € [0,1] and the 7-norms #p, %y, #p, where
Hp(6,T) =67, Hu(g, 1) :=min(g, 7),

min(g, 1), if max(g,7) =1,

‘%/D(gar) = {

0, otherwise.
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DEFINITION 2.2. (cf. [20]). A Menger normed space (briefly, MN -space) is an
ordered tuple (V,&,. %), where V is a linear space, ¢ is a continuous #-norm and &
is a mapping from V to & such that the following conditions hold:

(MN1) &’ =90 forall ¢ > 0 if and only if v=0;

(MN2) £* = 5" forallveV, >0 and o € C with ot £ 0;

(MN3) 41V > (5;‘7&;) forall u,v €V and t,5 > 0.
A Menger Banach space is a complete Menger normed space.

EXAMPLE 2.1. (cf. [L1]). Let (7,|| - ||) be a linear normed space. Define

0, if s <O,
&=
* exp( Ll ) if s > 0.

Then & is a Menger norm on V' and the ordered tuple (V, &, %)) is an MN -space.

Let (Q,% ,u) be a probability measure space. Assume that (U, By ) and (V, By)
are Borel measurable spaces, where U and V are MB-spaces. A mapping 7 : Qx U —
V is said to be a random operator if {w: T(w,u) € B} € % forallu € U and B € By .
Also, T is a random operator if 7(w,u) = v(®) is a V -valued random variable for
all u € U. A random operator T : Q x U — V is called linear if T(w, cu; + Puy) =
oT (w,u;)+ BT (w,uz) forall uy,up € U and o, are scalars and Menger random
bounded (briefly, MR-bounded) if there exists a nonnegative real-valued random vari-
able M(w) such that

é:[gz-jl;l)*T(wuz > gl

forall uy,up € U and t > 0.

3. Stability of additive (p;,0;)-random operator inequality: Direct method

From now on, let (V,&,. %)) be an MB-space. In this section, we investigate
the Hyers-Ulam stability of the additive (p;,p2)-random operator inequality (1.2) in
MB-spaces by using the direct method. At first, we solve the additive (p1,0,)-random
operator inequality (1.2) as follows:

LEMMA 3.1. Let T : Q x U — V be a random operator satisfying T(®,0) =0
and

§2T(w,%)fT(w,u)7T(w,v)
r

> Ay (;g,tpl(T(w,u+v)+T(w,u—v)—2T(w,u))7 tpz(T(w,u+v)—T(w,u)—T(w,v))) 3.1)

forall uyve U, w € Q and t > 0. Then the random operator T : Q x U — 'V is
additive.
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Proof. Letting v =0 in (3.1), we obtain

§IZT(w,%)—T(w,u) > 19[0

forall u e U, w € Q and ¢t > 0. Then, we have

T(w;) - %T(w,u) 3.2)

forall u € U and w € Q.
It follows from (3.1) and (3.2) that

gng(w,quv)fT(w,u)fT(w,v) o ,g,ZT(w,%)—T(w,u)—T(w,v)
! - o

1 1
1] o2 ]

S A (géiw,u+v)+T(w,u—v)—2T(Lo,u)7 ;éiw,u+v)—T(w,u)—T(w,v)> (33)

and so

éT(w,quv)fT(w,u)fT(w,v) > §QT7M+V)+T(Q)7M7V)72T(w7u) (3.4)
Pl

forall u,ve U, w € Q and ¢t > 0.
Putting z =u+v and w = u—v in (3.4), we obtain

;g,tT(w,z+w)+T(w,z—w)—2T(w.,z) > éy,z+w)—T(w,z)—T(w,w) (3.5)
2]pq]

forall u,ve U, w € Q and ¢ > 0. It follows from (3.4) and (3.5) that

> 5T(tw,u+v)—T(w,u)—T(w,v) (3.6)

2lpy 2

5tT(w,u+v)—T(w,u)—T(w,v)

forall u,ve U, w € Q and ¢ > 0. Since |p|| < @,wehave
T(w,u+v)=T(w,u)+T(w,v)

forall u,v € U and w € Q, which implies that the random operator 7 : Q x U — V is
additive. This completes the proof of the lemma. [

THEOREM 3.1. Assume that ¢ : U> — O is a distribution function such that
there exists 0 < 3 < 1 with

07 =0 (3.7)
Vi
and

lim (pz’z” =) (3.8)
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forall u,v e U and t > 0. Suppose that T : Q x U — V is a random operator satisfying
T(w,0) =0 and

§2T(w, YT (w,u)—T(w,v)
t

<§p1 (24T (0.0-) 2T (0.10) fﬂTumu+ﬂTUmu)YTwyD,¢?N) (3.9)

forallu,yveU, w € Q and t > 0. Then there exists a unique additive random operator
A:QxU—V such that

T(w,u)—A(w,u) u, 0
glomaen 5 gu (3.10)

forallue U, w € Q andt > 0.
Proof. Letting v =0 in (3.9), we get

§IZT(w,%)—T(w,u) )

Z Q0 (3.11)

forall ue U, w € Q and ¢ > 0. Replacing u by 2% in (3.11) and applying (3.7), we
have

25T (0, 1) 2T (o 20
?g’t ( 2 ) (o 2[+1) 2 (sz[ 2 (puL,O’ (312)
2l [3[
which implies that
20T (0, 24)—T(w,u) Y
[T g0 (3.13)
3 BEl
k=1
forall uce U, meQ and t > 0.
Replacing u by 5 in (3.13), we get
22+mT omy ’% "
gl eI e (3.14)
éEm ﬁk*l
k=m+1

which tends to © when m, ¢ tend to o, and so the sequence {2/T (w, 5r)} is Cauchy
in MB-space (V,&, %) and converges to a point A(w,u) € V. Now, for ¢ >0, we
obtain

u )=2!T (o, ) Alw,u)-2'T(0,2)
éti(g) w)=A fM (ét 7§g . )

Alwu)=2'T (0w, %
>%M<¢”’°t ,5g(w e 2"’)). (3.15)

é ﬁk—l
k=1
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When /£ tends to o in (3.15), we obtain

5[74;(5)714)714((07“) u, 0 ) (3.16)

Since ¢ > 0 is arbitrary in (3.16), we get

;g,tT(w,u)—A(w,u) > o 0

foralluce U, meQ and t > 0.
It follows from (3.9) that

utvy _ 2m+lT u+v _IMT (@ , _omr ’I_;n
5t2A(w, ) -A(wu)-A(@y) _ lim & (@,55537)—2"T (0,57 ) (@,5mr)
m—oo
> lim %M< P2"T (@, %) +2"T (0, ) 2" T (0, 7))
p2(2’”T( ©,%55)=2"T (0, 57 ) ~2"T (0, 57)) (pz%,z%
:J{M< tpl(A(w,u+V)+A(w,u—V)—2A(w~,u))7 tpz(A(w,u+V)—A(w~,u)—A(w,v))> (3.17)
forall u,y €U, ® € Q and t > 0, since lim (pj_m—ﬂo So

2A(0, 42 )—A(w.u)—A(w,v)
&

> JfM( 1A ) +A(0.0-) =24 (0.) tpz(A(w.,u+v)—A(w,u)—A(Lo,v)))
for all u,y € U, w € Q and tr > 0. According to Lemma 3.1, the random operator
A:Qx U —V is additive.
Next, let A’ be another additive random operator satisfying (3.10). For arbitrary
ueU and o € Q, we have that 2"A(®, 557) = A(w,u) and 2"A' (@, 557 ) = A'(w,u)
for all natural numbers m € N. Using (3.10), we get

Alw.u)—A'( 2MA(0, 347 ) —2"A (0,
ét ((l),u) (l) )_ hm ét 2'71) ( zm)

m—oco
2MA (@, ) —2"T (0 (0,5%)—2"A" (0,4
(g )
m—oco
0 . u, 0 0
lim lim ¢@,; — 1 3.18
m_wo(p 1 ﬁ) m-»oo(p("ﬁ)t t ( )

2.pm

which implies that A(@,u) = A’(®,u) shows the uniqueness. This completes the proof
of the theorem. [
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COROLLARY 3.1. Let p> 1 and 0 >0. Supposethat T : Qx U — 'V is a random
operator satisfying T(»,0) =0 and

t ’

§2T(w,%)7T(w,u)7T(w,v) >%M< P1(T(00400)+T (00— =27 (00)

£PAT (@) =T (@) T (@) t )
t+ O ([[ul[P+[]v|[7)
(3.19)

forallu,yveU, w € Q and t > 0. Then there exists a unique additive random operator
A:QxU—V such that

T(wu)-A(wu) - (2P —=2)t 390
S = 2021 200l (5:20)
forallue U, w € Q andt > 0.
. . . u,v __ t
Proof. The proof follows immediately by taking ¢, = TFOEIP T for all

u,v €U, t >0 and choosing B = 2'~7 in Theorem 3.1. This completes the proof
of the corollary. [

THEOREM 3.2. Assume that ¢ : U> — O% is a distribution function such that
there exists 0 < 3 < 1 with

q%fv > " (3.21)
and
lim @3, %" = 90 (3.22)

n—oo

forall u,v €U and t > 0. Suppose that T : Q x U — V is a random operator satisfying
T(w,0) =0 and (3.9). Then there exists a unique additive random operator A : Q x
U — 'V such that

,g,tT(w,u)—A(w,u) > o 0 (3.23)

forallueU, w € Qandt>0.
Proof. Letting v =0 in (3.9), we obtain

TO2) 1 (w.u) 0

& Z0 (3.24)

u,
s
B
forall uc U, o € Q and 1 > 0. Replacing u by 2%u in (3.24) and applying (3.21), we
get

T2 ) (w2

T 0 20u, 0 0
g oz e (3.25)
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which implies that

T(0.2"1) _r
o T g (3.26)

(-1
M Bk+l[
k=0

forall uce U, me Q and ¢t > 0.
Replacing u by 2™u in (3.26), we have

T2 T(02M)

T+ T om 0
& ¥ ", (3.27)
S gt
k=m+1

which tends to 9 when m, ¢ tend to oo, and so the sequence { (@, 2 “) } is Cauchy

in MB-space (V, é ) and converges to a point A(w,u) € V. Next for ¢ >0, we
obtain

T(w,20u) T(w,2%)
w.u)—A(w,u) 0,u)=—==7 Alou)—==;
g e I CAEE

w0 A(w,u)—”“’z‘f—f"“)
> 90 & . (3.28)

When ¢ tends to = in (3.28), we obtain

gllon=aon 5 guo (3.29)

Since ¢ > 0 is arbitrary in (3.29), we get

éT(w,u) —A(w,u) >

foralluce U, meQ and t > 0.
It follows from (3.9) that

T(02" Lt T(02My)  T(w2My
A0, "5 )—A(w,u)—A(w,v) . — 2m,1(M D) (mz'm OR (ﬂ;m )
5, = lim &

m-—oo

o1( T(0,2" (u+v)) + T(2"(u—v)) 2T (®.2™u)
> m T
> lim %4( 2 U
m—boo
2m 3 2m 2m
p2( (o, zm(qu‘)) - T(a;m “)_ T(wzm ) 2y 2y
t s Pomy

) ot

:%M< 1A ) +A(0.0-)=24(0.0)) pz(A(w.,u+v)—A(w,u)—A(w,v))) (3.30)
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2y 2My 0
forall u,vc U, w € Q and ¢ > 0, since hmq)zmt =14’. So

2A(0, 42 )—A(w.u)—A(w,v)
&

) of

> %M< 1A ) +A(0.0-)=24(0.0)) pz(A(w.,u+v)—A(w,u)—A(w,v)))
for all u,y € U, w € Q and tr > 0. According to Lemma 3.1, the random operator
A:Qx U —V is additive.
Next, let A’ be another additive random operator satisfying (3.23). For arbitrary
ueU and o € Q, we have that A(wz’,%m“) =A(w,u) and M =A'(w,u) for all
natural numbers m € N. Using (3.23), we get

Al2Mw)  Al(w,2Mu)

Ll) u —A (w M) 2m om
5: = lim &
m—oo
A@2M)  T(02Mu)  T(@2") A(0.2M)
2m 2’71 2’71 2’71

> lim )y (é, 75L )

m—>oo bl
0

> lim (pz,,, 1 ﬁ) > lim (p — U,

n’l—> m—?oo

which implies that A(w,u) = A’(@,u) shows the uniqueness. This completes the proof
of the theorem. [

COROLLARY 3.2. Let p<1 and 0 >0. Supposethat T : Qx U — 'V is a random
operator satisfying T(®,0) =0 and (3.19). Then there exists a unique additive random
operator A : Q x U — V such that

gT(wvu)fA(wvu) > (2 — Zp)t
! ~(2-2P)t 4200 ||ul|P
forallue U, w € Q andt > 0.
. . . u,v __ t
Proof. The proof follows immediately by taking ¢," = RO PP for all

u,v €U, t >0 and choosing B = 2P~! in Theorem 3.2. This completes the proof
of the corollary. [

4. Stability of additive (p;,p;)-random operator inequality: Fixed point method

In this section, we prove the Hyers-Ulam stability of the additive (p;, p2)-random
operator inequality (1.2) in MB-spaces by using the fixed point method. For explicitly
later use, we first recall the next lemma is due to Diaz and Margolis [5], which is
extensively applied to the stability theory of functional equations and inequalities.
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LEMMA 4.1. ([5]). Let (E,d) be a complete generalized metric space. Further
let J: E — E be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each fixed element x € E, either

d(J"x, J"x) = oo

for all nonnegative integers n or there exists a positive integer ngy such that
() d(J"x,J"x) < oo, ¥n=ngp;

(ii) the sequence {J"x} is convergent to a fixed point y* of J;

(iil) y* is the unique fixed point of J in the set E* := {y € E
(iv) d(y,y*) < 2z d(y,Jy), Yy €E".

d(J™x,y) < +oo};

THEOREM 4.1. Assume that ¢ : U> — O% is a distribution function such that
there exists 0 < 3 < 1 with

NI~ o

027 > b @.1)
B

forall u,v €U and t > 0. Suppose that T : Q x U — V is a random operator satisfying
T(w,0) =0 and (3.9). Then there exists a unique additive random operator A : Q X
U — 'V such that

grioaaen > gt 0 (42)
forallueU, w € Qandt>0.

Proof. Putting v =0 in (3.9), we get

§I2T(w,%)7T(w,u) > (ptm() (4.3)

foralue U, w € Q and ¢ > 0.

Consider the set S := {F|F : Qx U — V,F(®,0) =0}, and introduce the gener-
alized metric 6 on S as follows:

O(F,K) ::inf{,u eRy

gron=Kou 5 ot vy cU,weQ, t > O}.
m

It is easy to prove that (S,8) is a complete generalized metric space (cf. [4]). Now we
define the mapping 7 : S — S by

JIF(w,u) :=2F (wg) forall F €S, uc Uand o € Q. (4.4)

Let F,K € S and let u € R be an arbitrary constant with §(F,K) < u. From the
definition of &, we get

;g,tF(w,u)—K(w,u) > o
m
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forallu e U, w € Q and ¢ > 0. Therefore, using (4.1), we get

g/ Flow=J Ko _ g2Fo3)=2Ko 5, Ky <p”,° 4.5)

forall ue U, w € Q and ¢ > 0. Hence, it holds that §(_7F, #K) < Bu, that is,
0(FF, 7K) < BO(F,K) for all F,K € S. Thus, ¢ is a strictly contractive self-
mapping on S with Lipschitz constant L =3 < 1.

Furthermore, by (4.3), we obtain §(T, #T) < 1. Therefore, it follows from
Lemma 4.1 that the sequence {_#"T} converges to a fixed point A of ¢, that is,

n—o0

A:QxU—V, lim2'T <w1> — A(w,u)
2"
forall u e U, w € Q and
A(w,u) =24 (wg) (4.6)

forall u € U and w € Q. Meanwhile, A is the unique fixed point of ¢ in the set
S*={F €S8:0(T,F) <eo}. Thus there exists a 4 € R such that

;g,tT(w,u)—A(a),u) > (plz,O
m
forall u € U and w € Q. Also,
1 1
6(T,A O(T, #T) .
(T.4) < =5 8(T. ) < 1=

This means that the inequality (4.2) holds. By the same reasoning as in the proof
of Theorem 3.1, we can find the random operator A : Q x U — V is additive. This
completes the proof of the theorem. [J

COROLLARY 4.1. Let p>1and 0 >0. Supposethat T : Qx U — 'V is a random
operator satisfying T(®,0) =0 and

£ T(0,"2) T (0.u)~T(w,v) > %/M< 1T ()T (.-0) 2T (00)

)

(T (0.00) T T(03) o (_ G(HMH”tJr VIl”)> )
4.7)

forallu,yve U, w € Q and t > 0. Then there exists a unique additive random operator
A:QxU—YV such that

T(0.u0)-A(0.u) - 270 |ul|?
& > exp ( 2 (4.8)

forallueU, w € Qandt > 0.
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Proof. The proof follows immediately by taking ¢,"" = exp(—w)) for
all u,v €U, t >0 and choosing 8 = 2!~ in Theorem 4.1. This completes the proof

of the corollary. [l

THEOREM 4.2. Assume that ¢ : U> — O is a distribution function such that
there exists 0 < 3 < 1 with

0 > 0y (4.9)

forall u,v e U andt > 0. Suppose that T : Q x U — V is a random operator satisfying
T(w,0) =0 and (3.9). Then there exists a unique additive random operator A : Q x
U — 'V such that

groen > g1g 4.10)
B
forallue U, w € Q andt > 0.
Proof. According to (3.9) and (4.9), we obtain

T(a)z,Zu) 7T(w,u)

& > t? (4.11)

=~ =

forall ue U, w € Q and r > 0. And we introduce the definitions for S and & as in
the proof of Theorem 4.1 such that (S, ) becomes complete generalized metric space.
Now we consider the mapping ¢ : § — S defined by

Flw,2
JF(w,u):= M,forallF eS,ueUand w € Q.
Therefore, using (4.9), we get
éjF(w,u)—/K(w,u) _ 5tF(a§2u)7K(a£2u) _ 521;:((07214)—K(a),2u) > (piu,o > QDI;LO
W m

forall ue U, w € Q and t > 0. Hence, it holds that §(_#F, #K) < Bu, that
is, §( /F, #K) < BS(F,K) for all F,K € S. Furthermore, by (4.11), we obtain
o(T, FT)<PB.

The remaining assertion is similar to the corresponding part of Theorem 4.1. This
completes the proof of the theorem. [

COROLLARY 4.2. Let p<1 and 0 >0. Supposethat T : Qx U — 'V is a random
operator satisfying T(®,0) =0 and (4.7). Then there exists a unique additive random
operator A: Q x U — V such that

T(wu)~A(0u) 2P0 ||u”
5[ /exp< (2—21’)1‘

forallueU, w € Qandt>0.
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Proof. The proof follows immediately by taking ¢,"" = exp(—w)) for

t

all u,v €U, t >0 and choosing 8 =27~! in Theorem 4.2. This completes the proof
of the corollary. [l
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