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APPROXIMATE ADDITIVE (1,2)–RANDOM

OPERATOR INEQUALITY IN MENGER BANACH SPACES

ZHIHUA WANG

(Communicated by I. Raşa)

Abstract. In this paper, we attempt to solve an additive (1,2) -random operator inequality.
We also obtain the Hyers-Ulam stability of such random operator inequality in Menger Banach
spaces by using two different approaches.

1. Introduction

In 1940, Ulam [22] formulated the problem of stability for homomorphisms of
metric groups which motivated the study of the stability problems of functional equa-
tions, and its solutions (for Banach spaces) was published a year later by Hyers [8].
The stability of functional equations has been also known as Hyers-Ulam stability. It
was later generalized by Aoki [1], Găvruţă [6] and Rassias [14] for additive mappings
and linear mappings, respectively. We refer the interested readers for more information
on such problems to the papers (see [2, 3, 9, 10, 12, 13, 15, 17, 18, 23] and references
therein).

In 2017, Yun and Shin [21] introduced and solved the following additive (1,2)-
functional inequality

‖2 f (
x+ y

2
)− f (x)− f (y)‖ � ‖1( f (x+ y)+ f (x− y)−2 f (x))‖

+‖2( f (x+ y)− f (x)− f (y))‖, (1.1)

where 1 and 2 are fixed nonzero complex numbers with
√

2|1|+ |1| < 1. They
established the Hyers-Ulam stability of the functional inequality (1.1) for mappings
f : X → Y , where X is a real or complex normed space, and Y is a complex Banach
space.

In this article, let (,U ,) be a probability measure space. Assume that U and V
are Menger Banach spaces (briefly, MB-spaces), (U,BU) and (V,BV ) are Borel mea-
surable spaces, and T : ×U →V is a random operator. We first study the following
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additive (1,2)-random operator inequality

 2T(, u+v
2 )−T(,u)−T (,v)

t

� KM

(
1(T (,u+v)+T (w,u−v)−2T(,u))
t ,2(T (,u+v)−T(,u)−T(,v))

t

)
, (1.2)

in which 1,2 are fixed and max{√2|1|, |2|} < 1. And we obtain a random ap-
proximation of the additive (1,2)-random operator inequality (1.2) in Menger Ba-
nach spaces by employing the direct and fixed point methods. The results improve
and extend some stability results of the additive (1,2)-functional inequality (1.1) in
complex Banach spaces.

2. Preliminaries

Following [7, 16, 19, 20], we present some definitions and preliminary results,
which will help to investigate the Hyers-Ulam stability in Menger Banach spaces.

Let + be the space of all probability distribution mappings, i.e., the space of
all mappings G : R∪ {−,+} → [0,1] , writing Gt for G(t) , such that G is left
continuous and non-decreasing on R . O+ ⊆ + includes all mappings G ∈ + for
which �−G+ = 1, where �−gx denotes the left limit of the mapping g at the point
x , that is, �−gx = lim

t→x−
gt . + is partially ordered by the usual point-wise ordered of

mappings, i.e., F � G if and only if Fs � Gs for all s ∈ R . Note that the function  u

defined by

 u
s =

{
0, if s � u,

1, if s > u

is an element of + and  0 is the maximal element in this space(see [16, 19, 20]).

DEFINITION 2.1. (cf. [7, 19]). A function K : [0,1]× [0,1] → [0,1] is a con-
tinuous triangular norm (briefly, a continuous t -norm) if K satisfies the following
conditions:
(a) K ( ,) = K (,) and K ( ,K (,)) = K (K ( ,),) for all  ,, ∈ [0,1] ;
(b) K is continuous;
(c) K ( ,1) =  for all  ∈ [0,1] ;
(d) K ( ,) � K (, ) whenever  �  and  �  for all  ,,,  ∈ [0,1] .

Typical examples of continuous t -norms are the Lukasiewicz t -norm KL , where
KL( ,) = max( +  − 1,0),∀ , ∈ [0,1] and the t -norms KP,KM,KD , where
KP( ,) :=  , KM( ,) := min( ,) ,

KD( ,) :=

{
min( ,), if max( ,) = 1,

0, otherwise.
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DEFINITION 2.2. (cf. [20]). A Menger normed space (briefly, MN -space) is an
ordered tuple (V, ,K ) , where V is a linear space, K is a continuous t -norm and 
is a mapping from V to O+ such that the following conditions hold:

(MN1)  v
t =  0

t for all t > 0 if and only if v = 0;
(MN2) v

t =  v
t
||

for all v ∈V , t > 0 and  ∈ C with  	= 0;

(MN3)  u+v
t+s � K ( u

t , v
s ) for all u,v ∈V and t,s > 0.

A Menger Banach space is a complete Menger normed space.

EXAMPLE 2.1. (cf. [11]). Let (T,‖ · ‖) be a linear normed space. Define

 v
s =

⎧⎪⎨
⎪⎩

0, if s � 0,

exp

(
− ‖v‖

s

)
, if s > 0.

Then  v
s is a Menger norm on V and the ordered tuple (V, ,KM) is an MN -space.

Let (,U ,) be a probability measure space. Assume that (U,BU) and (V,BV )
are Borel measurable spaces, where U and V are MB-spaces. A mapping T :×U →
V is said to be a random operator if { : T ( ,u)∈ B} ∈U for all u∈U and B∈BV .
Also, T is a random operator if T ( ,u) = v() is a V -valued random variable for
all u ∈U . A random operator T : ×U → V is called linear if T ( ,u1 +u2) =
T ( ,u1)+T ( ,u2) for all u1,u2 ∈U and , are scalars and Menger random
bounded (briefly, MR-bounded) if there exists a nonnegative real-valued random vari-
able M() such that

 T (,u1)−T(,u2)
M()t �  u1−u2

t

for all u1,u2 ∈U and t > 0.

3. Stability of additive (1,2)-random operator inequality: Direct method

From now on, let (V, ,KM) be an MB-space. In this section, we investigate
the Hyers-Ulam stability of the additive (1,2)-random operator inequality (1.2) in
MB-spaces by using the direct method. At first, we solve the additive (1,2)-random
operator inequality (1.2) as follows:

LEMMA 3.1. Let T : ×U → V be a random operator satisfying T ( ,0) = 0
and

 2T(, u+v
2 )−T (,u)−T(,v)

t

� KM

(
1(T (,u+v)+T (,u−v)−2T(,u))
t ,2(T (,u+v)−T(,u)−T(,v))

t

)
(3.1)

for all u,v ∈ U ,  ∈  and t > 0 . Then the random operator T : ×U → V is
additive.
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Proof. Letting v = 0 in (3.1), we obtain

 2T(, u
2 )−T (,u)

t �  0
t

for all u ∈U ,  ∈ and t > 0. Then, we have

T
(
 ,

u
2

)
=

1
2
T ( ,u) (3.2)

for all u ∈U and  ∈ .
It follows from (3.1) and (3.2) that

 T(,u+v)−T (,u)−T(,v)
t =  2T(, u+v

2 )−T(,u)−T (,v)
t

� KM

(
 T (,u+v)+T(,u−v)−2T(,u)

t
|1|

, T (,u+v)−T(,u)−T(,v)
t

|2|

)
(3.3)

and so

 T (,u+v)−T(,u)−T(,v)
t �  T(,u+v)+T (,u−v)−2T(,u)

t
|1|

(3.4)

for all u,v ∈U ,  ∈ and t > 0.
Putting z = u+ v and w = u− v in (3.4), we obtain

 T(,z+w)+T(,z−w)−2T(,z)
t �  T(,z+w)−T(,z)−T (,w)

t
2|1|

(3.5)

for all u,v ∈U ,  ∈ and t > 0. It follows from (3.4) and (3.5) that

 T(,u+v)−T(,u)−T (,v)
t �  T(,u+v)−T(,u)−T (,v)

t
2|1|2

(3.6)

for all u,v ∈U ,  ∈ and t > 0. Since |1| <
√

2
2 , we have

T ( ,u+ v) = T ( ,u)+T( ,v)

for all u,v ∈U and  ∈ , which implies that the random operator T : ×U →V is
additive. This completes the proof of the lemma. �

THEOREM 3.1. Assume that  : U2 → O+ is a distribution function such that
there exists 0 <  < 1 with


u
2 , v

2
 t
2

� u,v
t (3.7)

and

lim
n→


u
2n , v

2n
t

2n
=  0

t (3.8)
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for all u,v∈U and t > 0 . Suppose that T :×U →V is a random operator satisfying
T ( ,0) = 0 and

 2T(, u+v
2 )−T(,u)−T (,v)

t

� KM

(
1(T (,u+v)+T(,u−v)−2T (,u))
t ,2(T(,u+v)−T (,u)−T(,v))

t ,u,v
t

)
(3.9)

for all u,v∈U ,  ∈ and t > 0 . Then there exists a unique additive random operator
A :×U →V such that

 T (,u)−A(,u)
t � u, 0

(1− )t (3.10)

for all u ∈U ,  ∈ and t > 0 .

Proof. Letting v = 0 in (3.9), we get

 2T(, u
2 )−T(,u)

t � u, 0
t (3.11)

for all u ∈U ,  ∈  and t > 0. Replacing u by u
2� in (3.11) and applying (3.7), we

have


2�+1T (, u

2�+1 )−2�T (, u
2�+1 )

t � 
u
2� , 0
t
2�

� u, 0
t
�

, (3.12)

which implies that


2�T (, u

2� )−T(,u)
�


k=1
 k−1t

� u, 0
t (3.13)

for all u ∈U ,  ∈ and t > 0.
Replacing u by u

2m in (3.13), we get


2�+mT (, u

2�+m )−2mT (, u
2m )

t � u, 0
t

�+m


k=m+1
k−1

, (3.14)

which tends to  0
t when m, � tend to  , and so the sequence {2�T ( , u

2� )} is Cauchy
in MB-space (V, ,KM) and converges to a point A( ,u) ∈ V . Now, for  > 0, we
obtain

 T (,u)−A(,u)
t+ � KM

(


T (,u)−2�T (, u
2� )

t ,
A(,u)−2�T (, u

2� )


)

� KM

(
u, 0

t
�


k=1
k−1

,
A(,u)−2�T (, u

2� )


)
. (3.15)
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When � tends to  in (3.15), we obtain

 T(,u)−A(,u)
t+ � u, 0

(1− )t. (3.16)

Since  > 0 is arbitrary in (3.16), we get

 T (,u)−A(,u)
t � u, 0

(1− )t

for all u ∈U ,  ∈ and t > 0.
It follows from (3.9) that

 2A(, u+v
2 )−A(,u)−A(,v)

t = lim
m→


2m+1T (, u+v

2m+1 )−2mT (, u
2m )−2mT (, v

2m )
t

� lim
m→

KM

(
1(2mT(, u+v

2m )+2mT (, u−v
2m )−2m+1T (, u

2m ))
t ,

2(2mT (, u+v
2m )−2mT (, u

2m )−2mT (, v
2m ))

t ,
u

2m , v
2m

t
2m

)

= KM

(
1(A(,u+v)+A(,u−v)−2A(,u))
t ,2(A(,u+v)−A(,u)−A(,v))

t

)
(3.17)

for all u,v ∈U ,  ∈ and t > 0, since lim
m→


u

2m , v
2m

t
2m

=  0
t . So

 2A(, u+v
2 )−A(,u)−A(,v)

t

� KM

(
1(A(,u+v)+A(,u−v)−2A(,u))
t ,2(A(,u+v)−A(,u)−A(,v))

t

)

for all u,v ∈ U ,  ∈  and t > 0. According to Lemma 3.1, the random operator
A :×U →V is additive.

Next, let A′ be another additive random operator satisfying (3.10). For arbitrary
u ∈ U and  ∈  , we have that 2mA( , u

2m ) = A( ,u) and 2mA′( , u
2m ) = A′( ,u)

for all natural numbers m ∈ N . Using (3.10), we get

A(,u)−A′(,u)
t = lim

m→
 2mA(, u

2m )−2mA′(, u
2m )

t

� lim
m→

KM

(
 2mA(, u

2m )−2mT (, u
2m )

t
2

, 2mT (, u
2m )−2mA′(, u

2m )
t
2

)

� lim
m→


u

2m , 0
(1−)
2·2m t

� lim
m→

u, 0
(1−)
2·m t

→  0
t , (3.18)

which implies that A( ,u) = A′( ,u) shows the uniqueness. This completes the proof
of the theorem. �
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COROLLARY 3.1. Let p > 1 and  > 0 . Suppose that T :×U →V is a random
operator satisfying T ( ,0) = 0 and

 2T(, u+v
2 )−T(,u)−T (,v)

t � KM

(
1(T(,u+v)+T (,u−v)−2T(,u))
t ,

2(T (,u+v)−T (,u)−T(,v))
t ,

t
t + (‖u‖p +‖v‖p)

)
(3.19)

for all u,v∈U ,  ∈ and t > 0 . Then there exists a unique additive random operator
A :×U →V such that

 T(,u)−A(,u)
t � (2p−2)t

(2p−2)t +2p‖u‖p (3.20)

for all u ∈U ,  ∈ and t > 0 .

Proof. The proof follows immediately by taking u, v
t = t

t+(‖u‖p+‖v‖p) for all

u,v ∈ U , t > 0 and choosing  = 21−p in Theorem 3.1. This completes the proof
of the corollary. �

THEOREM 3.2. Assume that  : U2 → O+ is a distribution function such that
there exists 0 <  < 1 with

2u,2v
2 t � u,v

t (3.21)

and

lim
n→

2nu, 2nv
2nt =  0

t (3.22)

for all u,v∈U and t > 0 . Suppose that T :×U →V is a random operator satisfying
T ( ,0) = 0 and (3.9). Then there exists a unique additive random operator A : ×
U →V such that

 T (,u)−A(,u)
t � u, 0

(1−)
 t

(3.23)

for all u ∈U ,  ∈ and t > 0 .

Proof. Letting v = 0 in (3.9), we obtain


T (,2u)

2 −T (,u)
t � u, 0

t


(3.24)

for all u ∈U ,  ∈ and t > 0. Replacing u by 2�u in (3.24) and applying (3.21), we
get


T (,2�+1u)

2�+1 − T (,2�u)
2�

t � 2�u, 0
2�t· 1


� u, 0

t
�+1

, (3.25)
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which implies that


T (,2�u)

2� −T(,u)
�−1


k=0
 k+1t

� u, 0
t (3.26)

for all u ∈U ,  ∈ and t > 0.
Replacing u by 2mu in (3.26), we have


T (,2�+mu)

2�+m − T(,2mu)
2m

t � u, 0
t

�+m


k=m+1
k+1

, (3.27)

which tends to  0
t when m, � tend to  , and so the sequence { T (,2�u)

2� } is Cauchy
in MB-space (V, ,KM) and converges to a point A( ,u) ∈ V . Next, for  > 0, we
obtain

 T(,u)−A(,u)
t+ � KM

(


T (,u)− T(,2�u)
2�

t ,
A(,u)− T(,2�u)

2�


)

� KM

(
u, 0

t
�−1


k=0
k+1

,
A(,u)− T(,2�u)

2�


)
. (3.28)

When � tends to  in (3.28), we obtain

 T(,u)−A(,u)
t+ � u, 0

(1−)
 t

. (3.29)

Since  > 0 is arbitrary in (3.29), we get

 T (,u)−A(,u)
t � u, 0

(1−)
 t

for all u ∈U ,  ∈ and t > 0.
It follows from (3.9) that

 2A(, u+v
2 )−A(,u)−A(,v)

t = lim
m→


T (,2m−1(u+v))

2m−1 − T (,2mu)
2m − T (,2mv)

2m

t

� lim
m→

KM

(
1(

T (,2m(u+v))
2m + T (,2m(u−v))

2m − 2T(,2mu)
2m

t ,

2(
T (,2m(u+v))

2m − T (,2mu)
2m − T (,2mv)

2m
t ,2mu,2mv

2mt

)

= KM

(
1(A(,u+v)+A(,u−v)−2A(,u))
t ,2(A(,u+v)−A(,u)−A(,v))

t

)
(3.30)
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for all u,v ∈U ,  ∈ and t > 0, since lim
n→

2mu,2mv
2mt =  0

t . So

 2A(, u+v
2 )−A(,u)−A(,v)

t

� KM

(
1(A(,u+v)+A(,u−v)−2A(,u))
t ,2(A(,u+v)−A(,u)−A(,v))

t

)

for all u,v ∈ U ,  ∈  and t > 0. According to Lemma 3.1, the random operator
A :×U →V is additive.

Next, let A′ be another additive random operator satisfying (3.23). For arbitrary

u ∈ U and  ∈  , we have that A(,2mu)
2m = A( ,u) and A′(,2mu)

2m = A′( ,u) for all
natural numbers m ∈ N . Using (3.23), we get

A(,u)−A′(,u)
t = lim

m→


A(,2mu)
2m − A′(,2mu)

2m
t

� lim
m→

KM

(


A(,2mu)
2m − T (,2mu)

2m
t
2

,
T (,2mu)

2m − A′(,2mu)
2m

t
2

)

� lim
m→

2mu, 0
2m(1−)

2 t
� lim

m→
u, 0

(1−)
2 ·m t

→  0
t ,

which implies that A( ,u) = A′( ,u) shows the uniqueness. This completes the proof
of the theorem. �

COROLLARY 3.2. Let p < 1 and  > 0 . Suppose that T :×U →V is a random
operator satisfying T ( ,0) = 0 and (3.19). Then there exists a unique additive random
operator A : ×U →V such that

 T(,u)−A(,u)
t � (2−2p)t

(2−2p)t +2p‖u‖p

for all u ∈U ,  ∈ and t > 0 .

Proof. The proof follows immediately by taking u, v
t = t

t+(‖u‖p+‖v‖p) for all

u,v ∈ U , t > 0 and choosing  = 2p−1 in Theorem 3.2. This completes the proof
of the corollary. �

4. Stability of additive (1,2)-random operator inequality: Fixed point method

In this section, we prove the Hyers-Ulam stability of the additive (1,2)-random
operator inequality (1.2) in MB-spaces by using the fixed point method. For explicitly
later use, we first recall the next lemma is due to Diaz and Margolis [5], which is
extensively applied to the stability theory of functional equations and inequalities.
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LEMMA 4.1. ([5]). Let (E,d) be a complete generalized metric space. Further
let J : E → E be a strictly contractive mapping with Lipschitz constant L < 1 . Then
for each fixed element x ∈ E , either

d(Jnx, Jn+1x) = 

for all nonnegative integers n or there exists a positive integer n0 such that
(i) d(Jnx,Jn+1x) < , ∀n � n0 ;
(ii) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(iii) y∗ is the unique fixed point of J in the set E∗ := {y ∈ E | d(Jn0x,y) < +} ;
(iv) d(y,y∗) � 1

1−L d(y,Jy), ∀y ∈ E∗ .

THEOREM 4.1. Assume that  : U2 → O+ is a distribution function such that
there exists 0 <  < 1 with


u
2 , v

2
t
2

� u,v
t


(4.1)

for all u,v∈U and t > 0 . Suppose that T :×U →V is a random operator satisfying
T ( ,0) = 0 and (3.9). Then there exists a unique additive random operator A : ×
U →V such that

 T (,u)−A(,u)
t � u, 0

(1− )t (4.2)

for all u ∈U ,  ∈ and t > 0 .

Proof. Putting v = 0 in (3.9), we get

 2T(, u
2 )−T(,u)

t � u, 0
t (4.3)

for all u ∈U ,  ∈ and t > 0.
Consider the set S := {F |F : ×U →V,F( ,0) = 0} , and introduce the gener-

alized metric  on S as follows:

 (F,K) := inf

{
 ∈ R+

∣∣∣∣F(,u)−K(,u)
t � u,0

t


,∀u ∈U, ∈, t > 0

}
.

It is easy to prove that (S, ) is a complete generalized metric space (cf. [4]). Now we
define the mapping J : S → S by

J F( ,u) := 2F
(
 ,

u
2

)
, for all F ∈ S, u ∈U and  ∈. (4.4)

Let F,K ∈ S and let  ∈ R+ be an arbitrary constant with  (F,K) �  . From the
definition of  , we get

F(,u)−K(,u)
t � u,0

t
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for all u ∈U ,  ∈ and t > 0. Therefore, using (4.1), we get

J F(,u)−J K(,u)
t =  2F(, u

2 )−2K(, u
2 )

t = F(, u
2 )−K(, u

2 )
t
2

� 
u
2 ,0
t

2
� u,0

t


(4.5)

for all u ∈ U ,  ∈  and t > 0. Hence, it holds that  (J F,J K) �  , that is,
 (J F,J K) �  (F,K) for all F,K ∈ S . Thus, J is a strictly contractive self-
mapping on S with Lipschitz constant L =  < 1.

Furthermore, by (4.3), we obtain  (T,J T ) � 1. Therefore, it follows from
Lemma 4.1 that the sequence {J nT} converges to a fixed point A of J , that is,

A :×U →V, lim
n→

2nT
(
 ,

u
2n

)
= A( ,u)

for all u ∈U ,  ∈ and

A( ,u) = 2A
(
 ,

u
2

)
(4.6)

for all u ∈ U and  ∈  . Meanwhile, A is the unique fixed point of J in the set
S∗ = {F ∈ S :  (T,F) < } . Thus there exists a  ∈ R+ such that

 T (,u)−A(,u)
t � u,0

t


for all u ∈U and  ∈ . Also,

 (T,A) � 1
1−

 (T,J T ) � 1
1−

.

This means that the inequality (4.2) holds. By the same reasoning as in the proof
of Theorem 3.1, we can find the random operator A : ×U → V is additive. This
completes the proof of the theorem. �

COROLLARY 4.1. Let p > 1 and  > 0 . Suppose that T :×U →V is a random
operator satisfying T ( ,0) = 0 and

 2T(, u+v
2 )−T (,u)−T(,v)

t � KM

(
1(T (,u+v)+T(,u−v)−2T(,u))
t ,

2(T(,u+v)−T (,u)−T(,v))
t ,exp

(
− (‖u‖p +‖v‖p)

t

))
(4.7)

for all u,v∈U ,  ∈ and t > 0 . Then there exists a unique additive random operator
A :×U →V such that

 T(,u)−A(,u)
t � exp

(
− 2p‖u‖p

(2p−2)t

)
(4.8)

for all u ∈U ,  ∈ and t > 0 .
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Proof. The proof follows immediately by taking u, v
t = exp(− (‖u‖p+‖v‖p

t )) for
all u,v ∈U , t > 0 and choosing  = 21−p in Theorem 4.1. This completes the proof
of the corollary. �

THEOREM 4.2. Assume that  : U2 → O+ is a distribution function such that
there exists 0 <  < 1 with

2u,2v
2t � u,v

t


(4.9)

for all u,v∈U and t > 0 . Suppose that T :×U →V is a random operator satisfying
T ( ,0) = 0 and (3.9). Then there exists a unique additive random operator A : ×
U →V such that

 T(,u)−A(,u)
t � u, 0

1−
 t

(4.10)

for all u ∈U ,  ∈ and t > 0 .

Proof. According to (3.9) and (4.9), we obtain


T (,2u)

2 −T (,u)
t � u, 0

t


(4.11)

for all u ∈U ,  ∈  and t > 0. And we introduce the definitions for S and  as in
the proof of Theorem 4.1 such that (S, ) becomes complete generalized metric space.
Now we consider the mapping J : S → S defined by

J F( ,u) :=
F( ,2u)

2
, for all F ∈ S, u ∈U and  ∈.

Therefore, using (4.9), we get

J F(,u)−J K(,u)
t = 

F(,2u)
2 − K(,2u)

2
t = F(,2u)−K(,2u)

2t � 2u,0
2t


� u,0
t


for all u ∈ U ,  ∈  and t > 0. Hence, it holds that  (J F,J K) �  , that
is,  (J F,J K) �  (F,K) for all F,K ∈ S . Furthermore, by (4.11), we obtain
 (T,J T ) �  .

The remaining assertion is similar to the corresponding part of Theorem 4.1. This
completes the proof of the theorem. �

COROLLARY 4.2. Let p < 1 and  > 0 . Suppose that T :×U →V is a random
operator satisfying T ( ,0) = 0 and (4.7). Then there exists a unique additive random
operator A : ×U →V such that

 T(,u)−A(,u)
t � exp

(
− 2p‖u‖p

(2−2p)t

)

for all u ∈U ,  ∈ and t > 0 .
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Proof. The proof follows immediately by taking u, v
t = exp(− (‖u‖p+‖v‖p

t )) for
all u,v ∈U , t > 0 and choosing  = 2p−1 in Theorem 4.2. This completes the proof
of the corollary. �
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