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COMPLEMENTARY AND REFINED INEQUALITIES FOR THE

CAUCHY–SCHWARZ INEQUALITY INVOLVING MEANS

MOJTABA BAKHERAD, FUAD KITTANEH ∗ AND MARIO KRNIĆ

(Communicated by S. Furuichi)

Abstract. Let (H ,〈·, ·〉) be a complex Hilbert space. The well-known Cauchy-Schwarz in-
equality for the inner product asserts that

∣∣〈x,y〉∣∣ � ‖x‖‖y‖ for all x,y ∈ H . In this paper, by
using the consent of means, we obtain a refinement of the Cauchy-Schwarz inequality. Among
other results, it is shown that, if x,y ∈ H ,  , ∈ [0,1] , and p,q > 0 with 1

p + 1
q = 1 , then

∣∣〈x,y〉∣∣ � 1
p

∣∣〈x,y〉∣∣1−‖x‖‖y‖ +
1
q

∣∣〈x,y〉∣∣‖x‖(1−)‖y‖1− � ‖x‖‖y‖.

Moreover, we present a refinement of the classical Cauchy-Schwarz inequality. Furthermore, we
obtain some numerical radius inequalities for the product of operators, which are interpolations
of some earlier inequalities. For instance, if T is an operator on a Hilbert space H , then we
have

w2r(T ) � 1
2+1p

wr(1−)(T 2)
∥∥|T |2r + |T ∗|2r

∥∥
+

1
22− p

wr (T 2)
∥∥|T |2r + |T ∗|2r

∥∥1−
+

1
4

∥∥|T |2r + |T ∗|2r
∥∥

� 1
2

∥∥|T |2r + |T ∗|2r
∥∥

for r � 1 ,  , ∈ [0,1] , and p,q > 0 with 1
p + 1

q = 1 .

1. Introduction

A binary function  on [0,+) is called a mean if the following conditions are
satisfied:

(1) If a � b , then a � a b � b ;

(2) a � c and b � d imply a b � c d ;

(3)  is continuous in both variables;

(4) t(ab) � (ta)(tb) (t > 0) .
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For instance, if  ∈ (0,1) , then the weighted geometric mean is a� b = a1−b , the
weighted arithmetic mean is a b = (1−)a+b , and the weighted harmonic mean

is a ! b =
(
(1− )a−1 + b−1

)−1
, with

a ! b � a� b � a b for all a,b > 0 .

A mean  is symmetric if a b = b a for all positive numbers a,b . For more infor-
mation about means, see [8] and references therein.

For a symmetric mean  , a parametrized mean t , 0 � t � 1, is called an inter-
polational path for  if it satisfies

(1) a0 b = a , a1/2 b = a b , and a1 b = b ;

(2) (ap b)(aq b) = a p+q
2

b for all p,q ∈ [0,1] ;

(3) The map t ∈ [0,1] �→ at b is continuous for each a and b ;

(4) t is increasing in each of its components for t ∈ [0,1] .

It is easy to see that the set of all r ∈ [0,1] satisfying

(apb)r(aqb) = arp+(1−r)qb

for all p,q is a convex subset of [0,1] including 0 and 1. For instance, the power
means

amrb =
(

ar +br

2

) 1
r

(r ∈ [−1,1])

are some typical interpolational means. Their interpolational paths are

amr,tb = ((1− t)ar + tbr)
1
r (t ∈ [0,1] and r ∈ [−1,1]).

In particular, am1,t b = atb and am−1,tb = a!tb . By an easy calculation, we have

lim
r→0

((1− t)ar + tbr)
1
r = a1−tbt (a,b > 0),

and then am0,t b := lim
r→0

(
amr,tb

)
= a�t b for positive numbers a and b .

The classical Cauchy–Schwarz inequality asserts that

(
n


j=1

x jy j

)
�
(

n


j=1

x2
j

) 1
2
(

n


j=1

y2
j

) 1
2

,

where x j,y j (1 � j � n) are positive real numbers. One of the most basic, yet useful
inequalities, is the Cauchy-Schwarz inequality for the inner product as follows∣∣〈x,y〉∣∣� ‖x‖‖y‖ for all x,y ∈ H . (1)
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Buzano [5] showed an extension of the Cauchy-Schwarz inequality as follows∣∣〈x,e〉〈e,y〉∣∣� 1
2

(|〈x,y〉|+‖x‖‖y‖)� ‖x‖‖y‖ for all x,y,e ∈ H , (2)

where ‖e‖= 1. Recently, the author of [2] proved a refinement of the Cauchy-Schwarz
inequality as follows∣∣〈x,y〉∣∣� 

∣∣〈x,y〉∣∣ 1
2 ‖x‖ 1

2 ‖y‖ 1
2 +(1− )‖x‖‖y‖� ‖x‖‖y‖ (3)

for all x,y ∈ H and 0 �  � 1. During the last decades, several generalizations,
refinements, and applications of the Cauchy-Schwarz inequality in various settings have
been given, and some results related to integral inequalities are presented. For other
results and refinements of the Cauchy-Schwarz inequality, the reader can consult the
works [2, 5] and references therein.

Let (H ,〈·, ·〉) be a complex Hilbert space, and let B(H ) be the C∗ -algebra of
all bounded linear operators defined on H . For a bounded linear operator T on a
Hilbert space H , the numerical range W (T ) is the image of the unit sphere of H
under the quadratic form x → 〈Tx,x〉 associated with the operator T . More precisely,
W (T ) = {〈Tx,x〉 : x ∈ H ,‖x‖ = 1} . Moreover, the numerical radius is defined by

w(T ) = sup{| | :  ∈W (T )} = sup
‖x‖=1

|〈Tx,x〉|.

It is well known that w(·) defines a norm on B(H ) , which is equivalent to the usual
operator norm of the form

1
2
‖T‖ � w(T ) � ‖T‖. (4)

For more facts about the numerical radius, we refer the reader to [1, 4, 9, 10, 11, 13]
and references therein.

Kittaneh [10] proved a refinement of the second inequality in (4) as follows

w(T ) � 1
2
‖|T |+ |T∗|‖ for all T ∈ B(H ). (5)

Another refinement and improvement of the second inequality in (4) has been given by
the same author by showing that

w2(T ) � 1
2
‖|T |2 + |T ∗|2‖ for all T ∈ B(H ), (6)

which has been refined further in [12] as follows

w2(T ) � 1
6
‖|T |2 + |T ∗|2‖+

1
3
w(T )‖|T |+ |T ∗|‖ for all T ∈ B(H ). (7)

The inequality (7), was improved by Alomari [2] as follows:

w2(T ) � 1
12

‖|T |+ |T∗|‖2 +
1
3
w(T )‖|T |+ |T∗|‖

� 1
6
‖|T |2 + |T ∗|2‖+

1
3
w(T )‖|T |+ |T ∗|‖ for all T ∈ B(H ).
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Dragomir [6] obtained a numerical radius upper bound for the product of operators,
which asserts that for r � 1,

wr(S∗T ) � 1
2

∥∥ |T |2r + |S|2r
∥∥ for all S,T ∈ B(H ). (8)

The above inequality has been improved by the same author for r = 2 by showing that

w2(S∗T ) � 1
6
‖|T |4 + |S|4‖+

1
3
w(S∗T )‖|T |2 + |S|2‖ for all S,T ∈ B(H ). (9)

Recently, Alomari [2] presented an extension of the inequalities (8) and (9) of the form

w2r(S∗T ) � 1
4

∥∥ |T |2r + |S|2r

∥∥2
+

1
2
(1− )wr(S∗T )

∥∥ |T |2r + |S|2r
∥∥

� 1
2

∥∥ |T |4r + |S|4r

∥∥+
1
2
(1− )wr(S∗T )

∥∥ |T |2r + |S|2r
∥∥

� 1
2

∥∥ |T |4r + |S|4r
∥∥ (10)

for all S,T ∈ B(H ) , r � 1 and 0 �  � 1.
In the present paper, we establish new numerical radius upper bounds for Hilbert

space operators by providing a new generalization of the refined celebrated Cauchy-
Schwarz inequality. In particular, our results generalize and refine the inequalities (7),
(8), (9), and (10). Moreover, the obtained upper bounds have been compared with the
previously known bounds to demonstrate their reliability.

2. Main results

In this section, we establish a generalization of the refined celebrated Cauchy-
Schwarz inequality involving means. First, we obtain the following lemma involving
means.

LEMMA 1. Let  ,, be three arbitrary means on [0,+). Then

a � (a b)(a b) � b (11)

for all positive real numbers a,b such that a � b.

Proof. Using the definition of means, we get

a � a b � b and a � a b � b (12)

for all positive real numbers a,b such that a � b . Now, if a b � a b, then

(a �) a b � (a b)(a b) � a b (� b) (13)

and if a b � a b, then

(a �) a b � (a b)(a b) � a b (� b). (14)
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Combining the inequalities (12), (13) and (14), gives

a � (a b)(a b) � b,

as required. �
Now, we are in a position to present our first result that is a generalization of the

refined Cauchy-Schwarz inequality.

THEOREM 1. Let  ,, be three arbitrary means on [0,+). Then∣∣〈x,y〉∣∣� (∣∣〈x,y〉∣∣ ‖x‖‖y‖) (∣∣〈x,y〉∣∣ ‖x‖‖y‖)� ‖x‖‖y‖ (15)

for all x,y ∈ H .

Proof. Assume that x,y ∈ H . The desired inequalities follow from the Cauchy-
Schwarz inequality and replacing a by

∣∣〈x,y〉∣∣ and b by ‖x‖‖y‖ , respectively, in
Lemma 1. �

COROLLARY 1. Let x,y ∈ H . Then∣∣〈x,y〉∣∣� 1
p

∣∣〈x,y〉∣∣1−‖x‖‖y‖ +
1
q

∣∣〈x,y〉∣∣‖x‖1−‖y‖1− � ‖x‖‖y‖ (16)

for all  , ∈ [0,1] and p,q > 0 with 1
p + 1

q = 1 .

Proof. Assume that  , ∈ [0,1] and p,q > 0 with 1
p + 1

q = 1. If we take  = � ,
 = �1− , and  =  1

q
in the inequalities (15), then we get the desired result. �

REMARK 1. Note that the inequalities (15) and (16) lead to a refinement of the
Cauchy-Schwarz inequality (1) and a generalization of the inequality (3). To see this,
put  = 1

2 ,  = 0, and 1
p =  in (16). Then we have

∣∣〈x,y〉∣∣� 
∣∣〈x,y〉∣∣ 1

2 ‖x‖ 1
2 ‖y‖ 1

2 +(1− )‖x‖‖y‖� ‖x‖‖y‖
for all x,y ∈ H and 0 �  � 1.

REMARK 2. Utilizing the inequality (15) for two vectors x = (x1, · · · ,xn) and y =
(y1, · · · ,yn) , where xi,y j, ( j = 1, · · · ,n) are positive numbers,  = �s ,  =  1

p
, and

 = �t , we have

n


j=1

x jy j � 1
p

⎡
⎣( n


j=1

x jy j

)1−s( n


j=1

x2
j

) s
2
(

n


j=1

y2
j

) s
2
⎤
⎦

+
1
q

⎡
⎣( n


j=1

x jy j

)1−t( n


j=1

x2
j

) t
2
(

n


j=1

y2
j

) t
2
⎤
⎦

�
(

n


j=1

x2
j

) 1
2
(

n


j=1

y2
j

) 1
2
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for all 0 � s, t � 1 and p,q > 0 with 1
p + 1

q = 1, which is a refinement of the classical
Cauchy-Schwarz inequality.

REMARK 3. Note that if f is an increasing function on [0,+) , then the inequal-
ity (15) can be extended to the following result

f
(∣∣〈x,y〉∣∣)�

[
f
(∣∣〈x,y〉∣∣)  f (‖x‖‖y‖)] [ f (∣∣〈x,y〉∣∣)  f (‖x‖‖y‖)]

� f (‖x‖‖y‖) (17)

for all three arbitrary means  ,, and x,y ∈ H . To see this, observe that from
f (|〈x,y〉|)� f (‖x‖‖y‖) and Lemma 1, by replacing a by f (|〈x,y〉|) and b by f (‖x‖‖y‖) ,
we get the above inequality.

COROLLARY 2. Let x,y ∈ H be such that 〈x,y〉 	= 0 . Then

∣∣〈x,y〉∣∣� ((1−)|〈x,y〉|r +‖x‖r‖y‖r) 1
r �
((

1− )|〈x,y〉|s +‖x‖s‖y‖s) 1
s � ‖x‖‖y‖

(18)

for all , , ∈ [0,1] and s,r ∈ [−1,1] .
In particular,

∣∣〈x,y〉∣∣�
(∣∣〈x,y〉∣∣r +‖x‖r‖y‖r

2

) 1−
r
(∣∣〈x,y〉∣∣s +‖x‖s‖y‖s

2

) 
s

� ‖x‖‖y‖ (19)

for all  ∈ [0,1] and s,r ∈ [−1,1] .

Proof. Assume that , , ∈ [0,1] and s,r ∈ [−1,1] . Applying  = mr, ,  =
� , and  = ms, in Theorem 1, we have the first inequalities. For the second result,
put  =  = 1

2 in the first result. �

EXAMPLE 1. Assume that L2(R) is the Hilbert space with the inner product de-
fined by 〈 f ,g〉 =

∫
R

f (x)g(x)dx for two functions f ,g ∈ L2(R) . Utilizing the inequal-
ity (19) for two positive functions f ,g ∈ L(R) with 〈 f ,g〉 	= 0, we have a refinement
of the Cauchy-Schwarz inequality for integrals as follows

∫
R

f (x)g(x)dx �
(

(
∫
R

f (x)g(x)dx)r +
(∫

R
f 2(x)dx

) r
2
(∫

R
g2(x)dx

) r
2

2

) 1−
r

×
(

(
∫
R

f (x)g(x)dx)s +
(∫

R
f 2(x)dx

) s
2
(∫

R
g2(x)dx

) s
2

2

) 
s

�
(∫

R

f 2(x)dx

) 1
2
(∫

R

g2(x)dx

) 1
2

for all s,r, ∈ [0,1] .
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In the next results, we present some refinements of the Buzano inequality.

THEOREM 2. Let  ,, be three arbitrary means on [0,+) and f an increas-
ing convex function on [0,+) . Then

f
(∣∣〈x,e〉〈e,y〉∣∣)

� f

(
1
2

(|〈x,y〉|+‖x‖‖y‖))

� 1
2

([
f
(∣∣〈x,y〉∣∣)  f (‖x‖‖y‖)] [ f (∣∣〈x,y〉∣∣)  f (‖x‖‖y‖)]+ f (‖x‖‖y‖)

)
� f (‖x‖‖y‖)

for all three arbitrary means  ,, and x,y,e ∈ H with ‖e‖ = 1 .

Proof. Assume that f is an increasing convex function on [0,+) . Then

f
(∣∣〈x,e〉〈e,y〉∣∣)

� f

(
1
2

(|〈x,y〉|+‖x‖‖y‖))
(by the inequality (2))

� 1
2

[ f (|〈x,y〉|)+ f (‖x‖‖y‖)]
(by the convexity of f )

� 1
2

([
f
(∣∣〈x,y〉∣∣)  f (‖x‖‖y‖)] [ f (∣∣〈x,y〉∣∣)  f (‖x‖‖y‖)]+ f (‖x‖‖y‖)

)
(by the inequality (17) )

� f (‖x‖‖y‖) (by the inequality (17))

for all three arbitrary means  ,, and x,y,e ∈ H with ‖e‖ = 1. This completes the
proof. �

As a special case of Theorem 2 for f (t) = tr (r � 1) , we have the next result.

COROLLARY 3. Let  ,, be three arbitrary means on [0,+) and r � 1 . Then∣∣〈x,e〉〈e,y〉∣∣r
� 1

2r

(|〈x,y〉|+‖x‖‖y‖)r
� 1

2

((∣∣〈x,y〉∣∣r  ‖x‖r‖y‖r) (∣∣〈x,y〉∣∣r  ‖x‖r‖y‖r)+‖x‖r‖y‖r
)

� ‖x‖r‖y‖r, (20)

where x,y,e ∈ H with ‖e‖ = 1 .
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COROLLARY 4. Let x,y,e ∈ H with ‖e‖ = 1 and r � 1 . Then∣∣〈x,e〉〈e,y〉∣∣r
� 1

2r

(|〈x,y〉|+‖x‖‖y‖)r
� 1

2

( 1
p

∣∣〈x,y〉∣∣r(1−)‖x‖r‖y‖r +
1
q

∣∣〈x,y〉∣∣r‖x‖r(1−)‖y‖r(1−) +‖x‖r‖y‖r
)

� ‖x‖r‖y‖r (21)

for all  , ∈ [0,1] and p,q > 0 with 1
p + 1

q = 1 .

Proof. Assume that  , ∈ [0,1] . If we take  = � ,  = �1− , and  =  1
q

in

the inequalities (3), then we get the desired result. �

LEMMA 2. Let  ,, be three arbitrary means on [0,+). Then

a �
√

a(a b)
√

b(a b) � b (22)

for all positive real numbers a,b such that a � b.

Proof. Using the definition of means, we get

a � a b � b and a � a b � b (23)

for all positive real numbers a,b such that a � b . By multiplying by a in the first
inequalities and by b in the second inequalities in (23), respectively, we get

(a2 �) ab � b(a b) � b2 and a2 � a(a b) � ab (� b2). (24)

Hence,

a �
√

b(a b) � b and a �
√

a(a b) � b. (25)

Therefore, for the mean  , we have

a �
√

a(a b)
√

b(a b) � b,

as required. �
Applying Lemma 2, we have another refinement of the Cauchy-Schwarz inequal-

ity.

THEOREM 3. Let  ,, be three arbitrary means on [0,+). Then

∣∣〈x,y〉∣∣�√∣∣〈x,y〉∣∣(∣∣〈x,y〉∣∣ ‖x‖‖y‖)
√
‖x‖‖y‖(∣∣〈x,y〉∣∣ ‖x‖‖y‖)

� ‖x‖‖y‖.
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In particular, if x,y ∈ H , then

∣∣〈x,y〉∣∣� 1
p

∣∣〈x,y〉∣∣1− 
2 ‖x‖ 

2 ‖y‖ 
2 +

1
q

∣∣〈x,y〉∣∣ 2 ‖x‖1− 
2 ‖y‖1− 

2 � ‖x‖‖y‖ (26)

for all  , ∈ [0,1] and p,q > 0 with 1
p + 1

q = 1 .

Proof. Assume that  , ∈ [0,1] and p,q > 0 with 1
p + 1

q = 1. By replacing a by∣∣〈x,y〉∣∣ and b by ‖x‖‖y‖ , and taking  = � ,  = �1− , and  = 1
q

in the inequalities

(22), we get the desired result. �

REMARK 4. If  ,, are three arbitrary means on [0,+) , then with a similar
strategy as in the proof Lemma 2, we get

a �
√

a(a b)b(a b) � b (27)

for all positive real numbers a,b such that a � b . To see this, observe that by using the
inequalities in (24), we have

a2 � a(a b)b(a b) � b2

for all positive real numbers a,b such that a � b . By squaring the above inequalities,
we get the desired result. Moreover, the inequalities (27) yield that

∣∣〈x,y〉∣∣�√[∣∣〈x,y〉∣∣(∣∣〈x,y〉∣∣ ‖x‖‖y‖)] [‖x‖‖y‖(∣∣〈x,y〉∣∣ ‖x‖‖y‖)]� ‖x‖‖y‖

for all x,y ∈ H and three arbitrary means  ,, on [0,+) .

REMARK 5. If 1,1,1,2,2,2, are arbitrary means on [0,+) , then by a
similar proof to that of Lemma 1, the inequality (11) can be extended as follows

a �
(
(a1 b)1(a1 b)

)

(
(a2 b)2(a2 b)

)
� b

for all positive real numbers a,b such that a � b . Hence, by using the consent of above
inequality, the obtained results can be extended and refined.

3. Some applications for operators

In this section, we establish and generalize new numerical radius upper bounds for
Hilbert space operators. For instance, we present a refinement of the second inequality
in (4).

To prove our numerical radius inequalities, we need several known lemmas.

LEMMA 3. [3] If S,T ∈ B(H ) are positive, then

1. ‖(S+T)r‖ � ‖Sr +Tr‖ for 0 < r � 1 ;
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2. ‖(S+T)r‖ � 2r−1‖Sr +Tr‖ for r � 1 .

The next lemma is McCarthy’s inequality for positive operators.

LEMMA 4. [8] (McCarthy’s inequality) Let T ∈ B(H ) be positive. Then for
all unit vectors x ∈ H , we have

〈Tx,x〉r � 〈T rx,x〉,
where r � 1. This inequality is reversed for 0 < r � 1 .

In the following lemma, we give the mixed Schwarz inequality, which can be
found in [7].

LEMMA 5. Let T ∈ B(H ) and let x,y ∈ H . Then

|〈Tx,y〉|2 �
〈 |T |2s x,x

〉〈 |T ∗|2(1−s) y,y
〉

for all 0 � s � 1.

Now, we obtain the first result of this section, which is a refinement of the inequal-
ity (8).

THEOREM 4. Let S,T ∈ B(H ) . Then

wr(S∗T ) � 1
2r p

wr(1−)(S∗T )
∥∥|T |2 + |S|2∥∥r

+
1

2r(1−)q
wr (S∗T )

∥∥|T |2 + |S|2∥∥r(1−)

� 1
2

∥∥|T |2r + |S|2r
∥∥

for all real numbers r � 1 ,  , ∈ [0,1] , and p,q > 0 with 1
p + 1

q = 1 .

Proof. Assume that r � 1.

wr(S∗T ) =
1
p
wr(1−)(S∗T )wr(S∗T )+

1
q
wr (S∗T )wr(1−)(S∗T )

� 1
2r p

wr(1−)(S∗T )
∥∥|T |2 + |S|2∥∥r

+
1

2r(1−)q
wr (S∗T )

∥∥|T |2 + |S|2∥∥r(1−)

(by the inequality (8) for r = 1).

Then, get the first inequality. For the second inequality, by using the inequality (8), we
have

1
2r p

wr(1−)(S∗T )
∥∥|T |2 + |S|2∥∥r

+
1

2r(1−)q
wr (S∗T )

∥∥|T |2 + |S|2∥∥r(1−)

�
(

1
2r p

) ∥∥|T |2 + |S|2∥∥r(1−)

2r(1−)

∥∥|T |2 + |S|2∥∥r

+
(

1

2r(1−)q

) ∥∥|T |2 + |S|2∥∥r

2r

∥∥|T |2 + |S|2∥∥r(1−)

(by the inequality (8) for r = 1)



COMPLEMENTARY AND REFINED INEQUALITIES FOR THE C-S INEQUALITY 693

=
1
2r

∥∥|T |2 + |S|2∥∥r

=
1
2r

∥∥∥(|T |2 + |S|2)r∥∥∥ (by the functional calculus)

� 1
2

∥∥|T |2r + |S|2r
∥∥ (by Lemma 3(2) for all r � 1),

as required. �
By taking  =  = 1

2 in Theorem 4, we get the next result, which is a refinement
of the inequality (8) for r � 1.

COROLLARY 5. Let S,T ∈ B(H ) . Then

wr(S∗T ) � 1

2
r
2
w

r
2 (S∗T )

∥∥|T |2 + |S|2∥∥ r
2 � 1

2

∥∥|T |2r + |S|2r
∥∥ (28)

for all r � 1 .

In the next theorem, we present an interpolation of the inequality (8) as follows.

THEOREM 5. Let S,T ∈ B(H ) and r � 1 . Then

wr(S∗T ) �
((

1−)wrt(S∗T )+

2t

∥∥|T |2rt + |S|2rt
∥∥) 1

t
�

×
((

1− )wrs(S∗T )+

2s

∥∥|T |2rs + |S|2rs
∥∥) 1

s

� 1
2

∥∥|T |2rt + |S|2rt
∥∥ 1−

t
∥∥|T |2rs + |S|2rs

∥∥ 
s

for all , , ∈ [0,1] and 0 � s,t � 1 .

Proof. Assume that x,y ∈ H and r � 1. If we replace
∣∣〈x,y〉∣∣ by

∣∣〈x,y〉∣∣r and
‖x‖‖y‖ by ‖x‖r‖y‖r in the first inequality in (18), respectively, we have

∣∣〈x,y〉∣∣r �
((

1−)|〈x,y〉|rt +‖x‖rt‖y‖rt) 1
t �
((

1− )|〈x,y〉|rs +‖x‖rs‖y‖rs) 1
s .

Let x ∈ H be a unit vector. Now, replacing x by Tx and y by Sx in the above
inequality, we get∣∣〈S∗Tx,x〉∣∣r
�
((

1−)|〈S∗Tx,x〉|rt +‖Tx‖rt‖Sx‖rt) 1
t �
((

1− )|〈S∗Tx,x〉|rs +‖Tx‖rs‖Sx‖rs) 1
s .

Moreover, we have

‖Tx‖r‖Sx‖r = 〈|T |2x,x〉 r
2 〈|S|2x,x〉 r

2

=
1
2

(〈|T |2x,x〉r + 〈|S|2x,x〉r) (by the arithmetic geometric inequality)
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� 1
2
〈|T |2r + |S|2rx,x〉 (by Lemma 4)

� 1
2

∥∥|T |2r + |S|2r
∥∥ for all r � 1. (29)

Hence,∣∣〈S∗Tx,x〉∣∣r
�
((

1−)|〈S∗Tx,x〉|rt +‖Tx‖rt‖Sx‖rt
) 1

t
�

((
1− )|〈S∗Tx,x〉|rs +‖Tx‖rs‖Sx‖rs

) 1
s

�
((

1−)|〈S∗Tx,x〉|rt + 
2t

∥∥|T |2r + |S|2r
∥∥t
) 1

t
�

×
((

1− )|〈S∗Tx,x〉|rs +

2s

∥∥|T |2r + |S|2r
∥∥s
) 1

s

(by the inequality (29))

�
((

1−)wrt(S∗T )+

2t

∥∥|T |2r + |S|2r
∥∥t
) 1

t
�

×
((

1− )wrs(S∗T )+

2s

∥∥|T |2r + |S|2r
∥∥s
) 1

s

=
((

1−)wrt(S∗T )+

2t

∥∥∥(|T |2r + |S|2r)t∥∥∥) 1
t
�

×
((

1− )wrs(S∗T )+

2s

∥∥∥(|T |2r + |S|2r)s∥∥∥) 1
s

�
((

1−)wrt(S∗T )+

2t

∥∥|T |2rt + |S|2rt
∥∥) 1

t
�

×
((

1− )wrs(S∗T )+

2s

∥∥|T |2rs + |S|2rs
∥∥) 1

s

(by Lemma 3(1) for 0 � s,t � 1).

Then, by taking the supremum over all unit vectors x ∈ H , we get the first inequality.
For the second inequality, applying the inequality (8), we have

�
((

1−)wrt(S∗T )+

2t

∥∥|T |2rt + |S|2rt
∥∥) 1

t
�

×
((

1− )wrs(S∗T )+

2s

∥∥|T |2rs + |S|2rs
∥∥) 1

s

�
((

1−
2t

)∥∥|T |2r + |S|2r
∥∥t

+

2t

∥∥|T |2rt + |S|2rt
∥∥) 1

t

�

×
((

1−
2s

)∥∥|T |2r + |S|2r
∥∥s

+

2s

∥∥|T |2rs + |S|2rs
∥∥) 1

s

(by the inequality (28) for r � 1)
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�
((

1−
2t

)∥∥|T |2rt + |S|2rt
∥∥+


2t

∥∥|T |2rt + |S|2rt
∥∥) 1

t

�

×
((

1−
2s

)∥∥|T |2rs + |S|2rs
∥∥+


2s

∥∥|T |2rs + |S|2rs
∥∥) 1

s

(by Lemma 3(1) for 0 � s, t � 1)

=
(

1
2t

∥∥|T |2rt + |S|2rt
∥∥) 1

t

�

(
1
2s

∥∥|T |2rs + |S|2rs
∥∥) 1

s

=
1
2

∥∥|T |2rt + |S|2rt
∥∥ 1−

t
∥∥|T |2rs + |S|2rs

∥∥ 
s ,

as required. �

By taking s = t = 1 in Theorem 5, we have a refinement of the inequality (8) as
follows.

COROLLARY 6. Let S,T ∈ B(H ) and r � 1 . Then

wr(S∗T ) �
((

1−)wr(S∗T )+

2

∥∥|T |2r + |S|2r
∥∥)�

×
((

1− )wr(S∗T )+

2

∥∥|T |2r + |S|2r
∥∥)

� 1
2

∥∥|T |2r + |S|2r
∥∥

for all , , ∈ [0,1] .

In the next theorem, we obtain an upper bound for the numerical radius, which is
an extension of the inequality (6).

THEOREM 6. Let T ∈ B(H ) and r � 1 . Then

w2r(T ) � 1
2p

w2r(1−)(T )
∥∥∥|T |4rs + |T ∗|4r(1−s)

∥∥∥
+

1
2q

w2r(1−)(T )
∥∥∥|T |4rs + |T ∗|4r(1−s)

∥∥∥
for all real numbers  , ∈ [0,1] , 0 � s � 1 , and p,q > 0 with 1

p + 1
q = 1 .

Proof. Assume that x ∈ H is a unit vector, 0 � s � 1 and r � 1. Then, utilizing
Lemma 5, we have

|〈Tx,x〉|2r �
〈 |T |2s x,x

〉r〈 |T ∗|2(1−s) x,x
〉r

.
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Now, by replacing a by |〈Tx,x〉|2r and b by
〈 |T |2s x,x

〉r〈 |T ∗|2(1−s) x,x
〉r

, and taking
 = � ,  =  1

q
, and  = � in Lemma 1, we get

|〈Tx,x〉|2r � 1
p
|〈Tx,x〉|2r(1−) 〈 |T |2s x,x

〉r〈 |T ∗|2(1−s) x,x
〉r

+
1
q
|〈Tx,x〉|2r(1−) 〈 |T |2s x,x

〉r〈 |T ∗|2(1−s) x,x
〉r

�
〈 |T |2s x,x

〉r〈 |T ∗|2(1−s) x,x
〉r

. (30)

Moreover, we have〈 |T |2s x,x
〉r〈 |T ∗|2(1−s) x,x

〉r �
(〈 |T |2rs x,x

〉〈 |T ∗|2r(1−s) x,x
〉)

(by Lemma 4)

� 1
2

(〈 |T |2rs x,x
〉2 +

〈 |T ∗|2r(1−s) x,x
〉2)

(by the arithmetic-geometric mean inequality)

� 1
2

〈 |T |4rs + |T ∗|4r(1−s) x,x
〉

(by Lemma 4).

Similarly, we have

〈 |T |2s x,x
〉r〈 |T ∗|2(1−s) x,x

〉r � 1
2

〈 |T |4rs + |T ∗|4r(1−s) x,x
〉

.

Applying the first inequality in (30) and the above inequalities, we get

|〈Tx,x〉|2r

� 1
p
|〈Tx,x〉|2r(1−) 〈 |T |2s x,x

〉r〈 |T ∗|2(1−s) x,x
〉r

+
1
q
|〈Tx,x〉|2r(1−) 〈 |T |2s x,x

〉r〈 |T ∗|2(1−s) x,x
〉r

� 1
2p

|〈Tx,x〉|2r(1−) 〈 |T |4rs + |T ∗|4r(1−s) x,x
〉

+
1
2q

|〈Tx,x〉|2r(1−) 〈 |T |4rs + |T ∗|4r(1−s) x,x
〉

� 1
2p

w2r(1−)(T )
∥∥∥|T |4rs + |T ∗|4r(1−s)

∥∥∥ +
1
2q

w2r(1−)(T )
∥∥∥|T |4rs + |T ∗|4r(1−s)

∥∥∥
� 1

2p
w2r(1−)(T )

∥∥∥|T |4rs + |T ∗|4r(1−s)
∥∥∥+

1
2q

w2r(1−)(T )
∥∥∥|T |4rs + |T ∗|4r(1−s)

∥∥∥
(by Lemma 3(1) for 0 �  , � 1). (31)

Then, by taking the supremum over all unit vectors x ∈H , we get the desired inequal-
ity. �
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In the following theorem, by using Theorem 6, we obtain an interpolation of the
second inequality in (4).

COROLLARY 7. Let T ∈ B(H ) and r � 1 . Then

w2r(T ) � 1
2p

w2r(1−)(T )
∥∥∥|T |2r + |T ∗|2r

∥∥∥+
1
2q

w2r(1−)(T )
∥∥∥|T |2r + |T ∗|2r

∥∥∥
(32)

� 1
4p

∥∥∥|T |2r(1−) + |T ∗|2r(1−)
∥∥∥∥∥∥|T |2r + |T ∗|2r

∥∥∥
+

1
4q

∥∥∥|T |2r(1−) + |T ∗|2r(1−)
∥∥∥∥∥∥|T |2r + |T ∗|2r

∥∥∥
for all real numbers r � 1 ,  , ∈ [0,1] such that 1

2 � r(1− ),r(1−) and p,q > 0
with 1

p + 1
q = 1 .

Proof. The first inequality in (32) follows from Theorem 6 for s = 1
2 . For the

second inequality in (32), by applying the inequality (5) and Lemma 3, respectively, we
have

w2r(1−)(T ) � 1

22r(1−) ‖|T |+ |T ∗|‖2r(1−) � 1
2
‖|T |2r(1−) + |T ∗|2r(1−)‖

and

w2r (T ) � 1

22r(1−) ‖|T |+ |T∗|‖2r(1−) � 1
2

∥∥∥|T |2r(1−) + |T ∗|2r(1−)
∥∥∥

for all real numbers r � 1,  , ∈ [0,1] such that 1
2 � r(1− ),r(1−) . Hence,

1
2p

w2r(1−)(T )
∥∥∥|T |2r + |T ∗|2r

∥∥∥+
1
2q

w2r (T )
∥∥∥|T |2r(1−) + |T ∗|2r(1−)

∥∥∥
� 1

4p

∥∥∥|T |2r(1−) + |T ∗|2r(1−)
∥∥∥∥∥∥|T |2r + |T ∗|2r

∥∥∥
+

1
4q

∥∥∥|T |2r(1−) + |T ∗|2r(1−)
∥∥∥∥∥|T |2r + |T ∗|2r∥∥ ,

as required. �

REMARK 6. Let T ∈ B(H ) and r � 1. It follows from the inequality (32) for
 =  = 1

2 that

w2r(T ) � 1
2p

wr(T )‖|T |r + |T ∗|r‖+
1
2q

wr(T )‖|T |r + |T ∗|r‖

=
1
2
wr(T )‖|T |r + |T ∗|r‖
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� 1
4
‖|T |r + |T ∗|r‖2 (by the inequality (8) for r � 1)

� 1
2

∥∥|T |2r + |T∗|2r
∥∥ (by Lemma 3(2)),

which is an extension of the inequalities (4) and (5) for the powers that are equal or
bigger than 2.

In the next theorem, we present an extension of the inequality (6) for r � 2.

THEOREM 7. Let T ∈ B(H ) and r � 1 . Then

w2r(T ) � 1
2+1p

wr(1−)(T 2)
∥∥|T |2r + |T ∗|2r

∥∥ +
1

22−q
wr (T 2)

∥∥|T |2r + |T ∗|2r
∥∥1−

+
1
4

∥∥|T |2r + |T ∗|2r
∥∥

� 1
2

∥∥|T |2r + |T ∗|2r
∥∥

for  , ∈ [0,1] and p,q > 0 with 1
p + 1

q = 1 .

Proof. Assume that  , ∈ [0,1] and x ∈ H is a unit vector. Applying the first
inequality in (20) and replacing x by Tx , e by x , and y by T ∗x , we get

∣∣〈Tx,x〉∣∣2r

=
∣∣〈Tx,x〉〈x,T ∗x〉∣∣r

� 1
2

( 1
p

∣∣〈Tx,T ∗x〉∣∣r(1−)‖Tx‖r‖T ∗x‖r +
1
q

∣∣〈Tx,T ∗x〉∣∣r‖Tx‖r(1−)‖T ∗x‖r(1−)

+‖Tx‖r‖T ∗x‖r
)

� 1
2

( 1
2 p

wr(1−)(T 2)
∥∥|T |2r + |T∗|2r

∥∥ +
1

21−q
wr (T 2)

∥∥|T |2r + |T∗|2r
∥∥1−

+
1
2

∥∥|T |2r + |T∗|2r
∥∥) (by the inequality (29))

=
1

2+1p
wr(1−)(T 2)

∥∥|T |2r + |T ∗|2r
∥∥ +

1
22−q

wr (T 2)
∥∥|T |2r + |T ∗|2r

∥∥1−

+
1
4

∥∥|T |2r + |T∗|2r
∥∥ .

Taking the supremum over all unit vectors x ∈ H , we get the first inequality. For the
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second inequality, applying the inequality (8), we have

1
2+1p

wr(1−)(T 2)
∥∥|T |2r + |T∗|2r

∥∥ +
1

22−q
wr (T 2)

∥∥|T |2r + |T ∗|2r
∥∥1−

+
1
4

∥∥|T |2r + |T ∗|2r
∥∥

�
(

1
2+1p

) ∥∥|T |2r + |T ∗|2r
∥∥1−

21−

∥∥|T |2r + |T∗|2r
∥∥

+
(

1
22−q

) ∥∥|T |2r + |T ∗|2r
∥∥

2
∥∥|T |2r + |T ∗|2r

∥∥1−
+

1
4

∥∥|T |2r + |T∗|2r
∥∥

=
1
4p

∥∥|T |2r + |T ∗|2r
∥∥+

1
4q

∥∥|T |2r + |T ∗|2r
∥∥+

1
4

∥∥|T |2r + |T∗|2r
∥∥

=
1
2

∥∥|T |2r + |T ∗|2r
∥∥ ,

as required. �
Theorem 7, for r = 1, yields a refinement of the inequality (6) as follows.

COROLLARY 8. Let T ∈ B(H ) . Then

w2(T ) � 1
2+1p

w(1−)(T 2)
∥∥|T |2 + |T ∗|2∥∥ +

1
22−q

w (T 2)
∥∥|T |2 + |T ∗|2∥∥1−

+
1
4

∥∥|T |2 + |T ∗|2∥∥
� 1

2

∥∥|T |2 + |T ∗|2∥∥
for  , ∈ [0,1] and p,q > 0 with 1

p + 1
q = 1 .

REMARK 7. If f is an increasing function on [0,+) , then by using the inequal-
ity (8) for r = 1, we have

f
(
w(S∗T )

)
� f

(∥∥ |T |2 + |S|2∥∥
2

)
for all S,T ∈ B(H ). (33)

Now, if we replace a by f
(
w(S∗T )

)
and b by f

(‖|T |2+|S|2‖
2

)
in the inequalities (11),

then we get

f
(
w(S∗T )

)
�
[

f
(
w(S∗T )

)
 f

(∥∥ |T |2+|S|2∥∥
2

)]


[
f
(
w(S∗T )

)
 f

(∥∥ |T |2+|S|2∥∥
2

)]

� f

(∥∥ |T |2 + |S|2∥∥
2

)
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for all three arbitrary means  ,, and operators S,T ∈ B(H ) . In particular, for
f (t) = tr (r � 1) , we have

wr(S∗T ) �
[
wr(S∗T )

(∥∥ |T |2 + |S|2∥∥r

2r

)]


[
wr(S∗T )

(∥∥ |T |2 + |S|2∥∥r

2r

)]

�
(∥∥ |T |2 + |S|2∥∥

2

)r

=

∥∥( |T |2 + |S|2)r∥∥
2r (by the functional calculus)

� 1
2

∥∥ |T |2r + |S|2r
∥∥ (by Lemma 3(2)).

These inequalities contain refinements and generalizations of the inequality (8).
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