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A PROOF OF THE WEIGHTED PÓLYA–KNOPP INEQUALITY

FOLLOWING ARIÑO–MUCKENHOUPT’S METHOD

EMU KONDO, SHINYA MORITOH ∗ AND YUMI TANAKA

(Communicated by V. Dmitrievič Stepanov)

Abstract. We give a simple proof of the weighted Pólya-Knopp inequality following Ariño-
Muckenhoupt’s method.

1. Introduction

The aim of this article is to give a simple proof of the weighted Pólya-Knopp
inequality following Ariño-Muckenhoupt’s method employed in [1].

Let the Ariño-Muckenhoupt class Bp (1 � p < ) be defined as the set of all
nonnegative functions W for which a constant B exists such that the inequality∫ 

r

( r
x

)p
W (x)dx � B

∫ r

0
W (x)dx (1)

holds for every r > 0, and let the Ariño-Muckenhoupt class B be the union of all
such Bp . We note that Riesz [4] tells us that (

∫ x
0 f (t)1/p dt/x)p decreases and tends

to Gf (x) := exp(
∫ x
0 log f (t)dt/x) as p increases to  . Then, as a limiting case of

Theorem (1.7) of [1], it is natural to state that a constant C exists such that the weighted
Pólya-Knopp inequality∫ 

0
Gf (x)W (x)dx � C

∫ 

0
f (x)W (x)dx (2)

holds for all positive, nonincreasing functions f on [0,) if and only if W belongs
to the class B . This limiting case is already proved in Sbordone-Wik [5]. The proof
of the fact that (2) for all positive, nonincreasing f implies (1) for some p is easy.
However, even in their paper [5], the proof of the converse is rather difficult.

We now give the proof of the converse, analogously to that of §3 of [1]. The key
point of our proof is that the basic Lemma (2.1) of [1], stating that if (1) holds for p ,
then for some  > 0 it holds for p− as well, is not needed. We hope that this article
will be a kind of supplement to the fundamental paper [1] and the subsequent paper [5].

The organization of the article is as follows. In section 2, the proof promised
immediately above is given. That is, we aim at proving the fact that the B -condition
for weight functions W implies the inequality (2) for all nonincreasing functions f . In
section 3, some comments are mentioned.
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2. Proof

We employ an analogous method as that of §3 of [1]. However, the basic Lemma
(2.1) of [1] is not needed here.

Having fixed an f , we define sequences {an} and {bn} inductively as follows. Let
b0 = 0. Given bn−1 , we take an to be the infimum of all x > bn−1 such that f (x)/Gf (x)
is less than or equal to /10, where  is a positive number to be determined later. By
this definition we have

Gf (x) � 10


f (x), bn−1 < x � an, (3)

and, since we may assume without loss of generality that the function f is continuous,

Gf (an) =
10


f (an). (4)

Given an , define bn to be the infimum of all x > an such that f (x)/Gf (x) is greater
than  . Then

Gf (x) � 1


f (x), an < x � bn, (5)

and

Gf (bn) =
1


f (bn). (6)

Since f is nonincreasing and bn � an+1 , Gf (an+1) � Gf (bn) ; from (4) and (6) we see
that 10 f (an+1) � f (bn) . It follows that

10 f (an+1) � f (an). (7)

If an < t � bn we have by (5) that (
∫ t
0 log f (u)du)/t � log( f (t)/) , i.e.,

d
dt

(
1
t

∫ t

0
log f (u)du

)
� log

t
.

Integrating both sides with respect to t from an to x (an < x � bn ),

1
x

∫ x

0
log f (u)du− 1

an

∫ an

0
log f (u)du � log

(
log

x
an

)
,

that is,

Gf (x) �
(an

x

)− log
Gf (an), an < x � bn. (8)

Now to prove (2) for W ∈ Bp with some p , write the left side of (2) as




n=1

∫ an

bn−1

Gf (x)W (x)dx+



n=1

∫ bn

an

G f (x)W (x)dx.
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By (3) we see that the first term is bounded by the right side of (2) with C = 10/ . For
the second term, use (8) to get the bound




n=1

[∫ bn

an

(an

x

)− log
W (x)dx

]
Gf (an).

Since W ∈ Bp and (4) holds true, if  := e−p then this is bounded by




n=1

B

[∫ an

0
W (x)dx

][
10


f (an)
]
,

which can be bounded by

B

(
10


)∫ 

0

[


an�x
f (an)

]
W (x)dx.

(Note that as p gets larger,  , by definition, gets smaller, which corresponds exactly to
a weaker Bp -condition on W .) From (7) and the fact that f is nonincreasing we get
the bound

B

(
10


)(
10
9

)∫ 

0
f (x)W (x)dx,

completing the proof of the inequality (2) with W ∈ Bp .

3. Comments

Carleson [2] gave a proof for power-weighted and integral version of Carleman’s
inequality. That is, he proved that the inequality (2) with W (x) = x ( > −1) holds
true for all nonincreasing functions f . Lemma 3 of Sbordone-Wik [5] is corresponding
to Lemma (2.1) of Ariño-Muckenhoupt [1], and the definition of B in [5] is given by
using the doubling conditoin. Theorem 6 of [5] states that the inequality (2) holds true
for all nonincreasing functions f if and only if W ∈ B , and its proof does not rely
on [1]. Therefore, it can safely be said that the essence of Ariño-Muckenhoupt’s proof
method is highlighted through our argument given in the previous section.

We finally note that Persson-Stepanov [3] completes a characterization, given 0 <
p, q <  , of V and W for which a constant C exists such that

[∫ 

0
Gf (x)qW (x)dx

]1/q

� C

(∫ 

0
f (x)pV (x)dx

)1/p

(9)

holds for all positive functions f on [0,) . Thus, the problem to be considered in
another publication should be a characterization of V and W for which (9) holds for
all positive, nonincreasing functions f .
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