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A NOTE ON INEQUALITIES FOR

GAUSSIAN HYPERGEOMETRIC FUNCTIONS
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(Communicated by G. Nemes)

Abstract. We establish new inequalities for Gaussian hypergeometric functions that are not zero-
balanced. In the literature, such inequalities are referred to as Landen-type inequalities, as they
generalize the classical Landen identity for the complete elliptic integral of the first kind. We also
discuss comparisons, including numerical simulations, between our results and existing similar
ones in the literature.

1. Introduction

For any real numbers a,b and c where c �= 0,−1,−2, · · · , the Gaussian hyperge-
ometric function F (a,b;c;x) is defined as

F (a,b;c;x) := 2F1(a,b;c;x) =



n=0

(a)n(b)n

(c)n n!
xn, x ∈ (−1,1). (1)

where (a)n is the Pochhammer’s symbol given by

(a)0 = 1 when a �= 0 and (a)n = a(a+1)(a+2) · · ·(a+n−1). (2)

When c = a+b in (1), the hypergeometric function F (a,b;c;x) is called zero-balanced.
We begin with the following two identities:

F

(
1,

1
2
;1;x

)
=
(
1− 1

2x
)−1

F

(
1,

1
2
;1;

(
x

2− x

)2
)

, x ∈ (0,1), (3)

which comes from [5, (15.8.13)] by setting a = 1 and b = 1
2 ; and

F (a,a;1;x) =
(
1+

√
x
)−2a

F

(
a,

1
2
;1;

4
√

x
(1+

√
x)2

)
, x ∈ (0,1), (4)
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derived from [5, (15.8.21)] by setting a = b . Note that, when a = 1
2 , F

(
1
2 , 1

2 ;1;x
)

is
a zero-balanced hypergeometric function. The above identity (4) is indeed the Landen
identity (cf. [1])

K

(
2
√

k
1+ k

)
= (1+ k)K (k), (5)

where K (k) is the complete elliptic integral of the first kind

K (k) =

2

F

(
1
2
,
1
2
;1;k2

)
=
ˆ 

2

0

d√
1− k2 sin2 

, k ∈ (0,1).

There is another Landen identity which is equivalent to (5):

K

(
1− k
1+ k

)
=

1+ k
2

K (
√

1− k2). (6)

For general zero-balanced hypergeometric functions F(a,b;a+b;x) , the Landen iden-
tities (5) and (6) no longer hold. For instance, Simić and Vuorinen [8] showed that, for
a,b > 0 with ab � 1

4 ,

F

(
a,b;a+b;

4x
(1+ x)2

)
� (1+ x)F(a,b;a+b;x2), x ∈ (0,1); (7)

and for a,b > 0 with 1/a+1/b � 4,

F

(
a,b;a+b;

4x
(1+ x)2

)
� (1+ x)F(a,b;a+b;x2), x ∈ (0,1). (8)

Since these inequalities share a similar structure with (5) and (6), they are referred to
as the Landen inequalities. The Landen inequalities have attracted a lot of research
interests in the literature, with various modifications and improvements being achieved.
For example, see [6, 7, 8, 9, 10, 11].

Based on the Landen identities (5) and (6), Baricz [2] investigated Landen-type
inequalities for hypergeometric functions F(a,b;c;x) that are not zero-balanced. He
obtained the following result ([2, Theorem 1]): let a,b,c ∈ R such that c is not a
negative integer or zero, then

a. If a+b � c and 4ab � max{1,c} , then

F

(
a,b;c;

4x
(1+ x)2

)
� (1+ x)F(a,b;c;x2), x ∈ (0,1), (9)

F

(
a,b;c;

(1− x)2

(1+ x)2

)
� 1+ x

2
F(a,b;c;1− x2), x ∈ (0,1). (10)

b. If a+b � c and 4ab � min{1,c} , then for x ∈ (0,1)

F

(
a,b;c;

4x
(1+ x)2

)
� (1+ x)F(a,b;c;x2), x ∈ (0,1), (11)

F

(
a,b;c;

(1− x)2

(1+ x)2

)
� 1+ x

2
F(a,b;c;1− x2), x ∈ (0,1). (12)
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Note that by setting c = a+b , the inequalities (9) and (11) reduce to (7) and (8). There-
fore, Baricz’s results can be viewed as a generalization of the Landen inequalities. It is
also worth mentioning that when a = b = 1

2 and c = 1, all four of the above inequali-
ties hold, yielding the Landen identities (5) and (6). Other Landen-type inequalities for
hypergeometric functions F(a,b;c;x) that are not zero-balanced can also be found in
[4].

In this paper, we establish new inequalities for general hypergeometric functions
using the identities (3) and (4). Similar to the inequalities (9)–(12), our results apply to
general hypergeometric functions that are not zero-balanced. Furthermore, we address
a minor oversight in the inequalities (9)–(12), where the condition a,b,c ∈ R should
be replaced by a,b,c > 0. We clarify this condition in the proof below and provide a
numerical illustration in Sec. 3.

2. Main results

Like most proofs in the literature concerning Landen-type inequalities, we require
the following lemma from Biernacki and Krzyż [3], which provides a tool for compar-
ing two power series.

LEMMA 2.1. Consider the power series f (x) =



n=0
anxn and g(x) =




n=0
bnxn,

where an ∈ R and bn > 0 for all n ∈ {0,1, . . .}, and suppose that both series converge
on (−r,r), r > 0. If the sequence {an/bn}n�0 is increasing (decreasing), then the
function x �→ f (x)/g(x) is increasing (decreasing) too on (0,r).

Then, we list our main results in the following theorem.

THEOREM 2.2. With a,b,c > 0 , we have the following inequalities

a. If a � max{ c
2b ,c+ 1

2 −b} , then

F(a,b;c;x) �
(
1− x

2

)−1
F

(
a,b;c;

x2

(2− x)2

)
, x ∈ (0,1). (13)

b. If a � min{ c
2b ,c+ 1

2 −b} , then

F(a,b;c;x) �
(
1− x

2

)−1
F

(
a,b;c;

x2

(2− x)2

)
, x ∈ (0,1). (14)

c. If b � max{a+ c−1,ac} and a � 1
2 , then

F(a,b;c;x2) � (1+ x)−2a F

(
a,b;c;

4x
(1+ x)2

)
, x ∈ (0,1). (15)
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d. If b � min{a+ c−1,ac} and a � 1
2 , then

F(a,b;c;x2) � (1+ x)−2a F

(
a,b;c;

4x
(1+ x)2

)
, x ∈ (0,1). (16)

REMARK 2.3. Note that there is a unique choice for the parameters a,b and c
such that the conditions for both inequalities (15) and (16) are satisfied. Specifically,
these values are a = b = 1

2 and c = 1. In this case, inequalities (15) and (16) reduce to
the Landen identity (5).

REMARK 2.4. To the best of our knowledge, the inequalities (13) and (14) are
new in the literature. The inequalities (15) and (16) are similar to those in [2, Theorem
4].

We note that there is an oversight in [2, Theorem 4]: the parameter c should be
positive rather than c ∈ R . We will present figures in Sec. 3 to demonstrate that the
condition c > 0 is necessary.

Proof. We begin by proving parts a and b. Consider the function Q : (0,1) →
(0,)

Q(x) :=
F(a,b;c;x)
F(1, 1

2 ;1;x)
=




n=0

(a)n(b)n
(c)n

· xn

n!




n=0

(1)n( 1
2 )n

(1)n
· xn

n!

. (17)

According to Lemma 2.1, the monotonicity of the function Q depends on the mono-
tonicity of the sequence {n}n�0

n :=
(a)n(b)n

(c)n
· (1)n

(1)n( 1
2 )n

=
(a)n(b)n

(c)n( 1
2 )n

. (18)

This sequence is increasing (decreasing) if

n+1

n
� (�)1, for all n � 0.

Substituting (18) into the above formula, we find that a,b,c > 0∗ and(
a+b− c− 1

2

)
n+ab− c

2
� (�)0, for all n � 0.

The above inequality holds when a + b− c− 1
2 and ab− c

2 are nonnegative (non-
positive), which implies that a � (�)c + 1

2 − b and a � (�) c
2b . Consequently, by

∗If the condition a,b,c > 0 is replaced by a,b,c ∈ R , we can still obtain n+1
n

� (�)1 for sufficiently
large n . However, this condition may fail for n = 0,1,2, · · · . This oversight appears in [2, Theorem 1].
Additionally, some figures in Sec. 3 demonstrate that if we only require a,b,c ∈ R , the inequalities in
(9)–(12) may not hold.
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using Lemma 2.1, the function Q is increasing (or decreasing) on the interval (0,1) .
Therefore, we have Q(y1) � (�)Q(y2) if 0 < y1 < y2 < 1. Next, we choose y1 = x

and y2 = x2

(2−x)2 , where 1 > x > x2

(2−x)2 > 0 for x ∈ (0,1) . Recalling the definition of

Q in (17), we obtain:

F(a,b;c;x)
F(1, 1

2 ;1;x)
� (�)

F
(
a,b;c; x2

(2−x)2

)
F
(
1, 1

2 ;1; x2

(2−x)2

) .

Rearranging this inequality gives us

F(a,b;c;x) � (�)
F
(
1, 1

2 ;1;x
)

F
(
1, 1

2 ;1; x2

(2−x)2

) F

(
a,b;c;

x2

(2− x)2

)
.

By applying (3), we obtain the desired results in parts a and b.
Next, we prove parts c and d in a similar way. Consider the function R : (0,1) →

(0,)

R(x) :=
F(a,b;c;x)
F(a,a;1;x)

=




n=0

(a)n(b)n
(c)n

· xn

n!




n=0

(a)n(a)n
(1)n

· xn

n!

. (19)

The monotonicity of R depends on the monotonicity of the series {n}n�0

n :=
(a)n(b)n

(c)n
· (1)n

(a)n(a)n
=

(1)n(b)n

(c)n(a)n
. (20)

This sequence is increasing (decreasing) if

n+1

n
� (�)1, for all n � 0.

Substituting (20) into the above formula, we have a,c > 0 and

(b− c−a+1)n+b− ca� (�)0, for all n � 0.

To ensure the validity of the above inequalities, we require that b−c−a+1 and b−ca
are nonnegative (or non-positive). This leads to the first condition in parts c and d,
specifically b � max{a+ c− 1,ac} and b � min{a+ c− 1,ac} . By Lemma 2.1, the
function R is increasing (or decreasing) on the interval (0,1) , i.e., R(y1) � (�)R(y2) if
0 < y1 < y2 < 1. Next, we choose y1 = x2 and y2 = 4x

(1+x)2 , where 0 < x2 < 4x
(1+x)2 < 1

for x ∈ (0,1) . With the definition of R in (19), we obtain:

F(a,b;c;x2) � (�)
F(a,a;1;x2)

F
(
a,a;1; 4x

(1+x)2

)F

(
a,b;c;

4x
(1+ x)2

)
.
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Using the identity (4), the above inequalities yield

F(a,b;c;x2) � (�)
F
(
a, 1

2 ;1; 4x
(1+x)2

)
F
(
a,a;1; 4x

(1+x)2

) · (1+ x)−2aF

(
a,b;c;

4x
(1+ x)2

)
. (21)

When b � max{a+ c−1,ac} , the above inequality takes the “�” sign. Together with
the fact that, when a � 1

2 ,

F

(
a,

1
2
;1;

4x
(1+ x)2

)
� F

(
a,a;1;

4x
(1+ x)2

)
, x ∈ (0,1),

we obtain (15), which proves part c. Similarly, when b � min{a+c−1,ac} and a � 1
2 ,

we get the inequality (16).
This concludes the proof of our theorem. �

3. Discussions and numerical simulations

We first present the graphs in Figure 1 to demonstrate that the condition a,b,c > 0
is necessary for the validity of inequalities (9) and (10). When we set all of a,b,c
to be negative (specifically, a = −1, b = −1, c = −2.5), the left graph in Figure
1 indicates that inequality (9) is reversed. When we choose only c to be negative
(with a = 1, b = 1, c = −1.2), inequality (10) fails to hold for all x ∈ (0,1) . When
a = 1, b = 1, c = −1.2, there exists a value x0 ≈ 0.953066 such that the quantity

F
(
a,b;c; (1−x)2

(1+x)2

)
− 1+x

2 F(a,b;c;1− x2) changes sign in the neighborhood of x0 .

0.2 0.4 0.6 0.8 1.0
x
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�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

y
a��1; b��1; c��2.5.

0.92 0.94 0.96 0.98 1.00
x

�0.4

�0.3

�0.2

�0.1

y
a�1; b�1; c��1.2.

Figure 1: The left graph for F
(
a,b;c; 4x

(1+x)2

)
− (1+ x)F(a,b;c;x2) and the right graph for

F
(
a,b;c; (1−x)2

(1+x)2

)
− 1+x

2 F(a,b;c;1−x2) .

Figure 2 illustrates the validity of our inequality (13) using the example a = 3,
b = 0.5 and c = 2. If we reduce a to max{ c

2b ,c + 1
2 − b} , specifically by choosing

a = c and b = 0.5, the inequalities (13) and (14) reduce to the following one

F

(
a,

1
2
;a;x

)
=
(
1− x

2

)−1
F

(
a,

1
2
;a;

x2

(2− x)2

)
, x ∈ (0,1). (22)
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The above identity is trivial because F
(
a, 1

2 ;a;x
)

= (1− x)−
1
2 ; see [5, (15.4.6)].

0.2 0.4 0.6 0.8 1.0
x

1

2

3

4

5

y
a�3; b�0.5; c�2.

Figure 2: The graph for F(a,b;c;x)−(1− x
2

)−1 F
(
a,b;c; x2

(2−x)2

)
.

Figure 3 shows that the condition c > 0 is necessary in [2, Theorem 4]. When c is

negative (for instance, with a = 1, b = 0.5, c = −1.5), the function F
(
a,b;c; 4x

(1+x)2

)
may not be greater than (1+ x)2aF(a,b;c;x2) for all x ∈ (0,1) , as asserted in [2, The-
orem 4]. When a = 1, b = 0.5, c = −1.5, there exists a value x0 ≈ 0.0736607 such

that the quantity F
(
a,b;c; 4x

(1+x)2

)
− (1+ x)2a F(a,b;c;x2) changes sign in the neigh-

borhood of x0 .

0.02 0.04 0.06 0.08 0.10
x

�0.05

0.05

0.10

0.15

0.20

0.25

y
a�1; b�0.5; c��1.5.

Figure 3: The graph for F
(
a,b;c; 4x

(1+x)2

)
− (1+x)2a F(a,b;c;x2) .

Note that the conditions in parts c and d of Theorem 2.2 differ from those in [2,
Theorem 4]. Both sets of conditions serve as sufficient criteria for the validity of in-
equality (15). In the left graph of Figure 4, the values a = 1, b = 3 and c = 2 satisfy
the condition in Theorem 2.2 but violate that in [2, Theorem 4]. Conversely, in the right
graph of Figure 4, the values a = 2, b = 1, and c = 1 satisfy the condition in [2, Theo-
rem 4] but violate the condition in Theorem 2.2. This discrepancy arises because, while
Lemma 2.1 is useful for deriving Landen-type inequalities, it only provides a sufficient



714 D. DAI AND T. SANG

condition. Improving the results in parts c and d of Theorem 2.2 and [2, Theorem 4] by
establishing necessary and sufficient conditions for the validity of inequalities (15) and
(16) would be very interesting. Achieving such results may require new ideas.

0.2 0.4 0.6 0.8 1.0
x

2000

4000

6000

8000

10000

12000

14000

y
a�1; b�3; c�2.

0.2 0.4 0.6 0.8 1.0
x

5000

10000

15000

20000

25000

y
a�2; b�1; c�1.

Figure 4: The graph for F
(
a,b;c; 4x

(1+x)2

)
− (1+x)2a F(a,b;c;x2) .

We would like to make a final remark about the validity conditions for Landen-
type inequalities. For zero-balanced hypergeometric functions, as illustrated in (7) and
(8), it is possible to divide the first quadrant of the (a,b)-plane into several regions.
This allows us to clearly identify the regions where the inequalities (7) and (8) hold,
while in other regions, the inequalities may not be valid for all x ∈ (0,1) ; for example,
see such kind of treatments in [7, 8, 9]. However, since we are considering general
hypergeometric functions that are not zero-balanced, we have three free parameters:
a,b and c . Consequently, if we attempt to divide the first octant of the (a,b,c)-space
into several solids to discuss the validity of inequalities in different regions, the resulting
picture may not be as clear as in the two-dimensional case. Therefore, we did not adopt
this method in the present paper.
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