lournal of
athematical
nequalities

Volume 19, Number 2 (2025), 717-732 doi:10.7153/jmi-2025-19-46

STRICT SINGULARITY AND CLOSED RANGE OF VOLTERRA
INTEGRATION OPERATOR ON DIRICHLET-MORREY TYPE SPACES

XIANGLING ZHU

(Communicated by L. Mihokovic)

Abstract. The strict singularity and closed range property of the Volterra integral operator T
with the symbol g on the Dirichlet-Morrey type space ¥ ; were investigate in this paper.

1. Introduction

Let D represent the open unit disk within the complex plane C, and let H(DD)
denote the class of functions that are analytic in . Let H* = H*(ID) denote the space
of all bounded analytic functions on ID. The norm in this space is given by || /||« =
sup,ep|f(w)|. The Bloch space, denoted by #(D) = #, consists of all f € H(D)
satisfying

11l = 1£(0)] +sup (L — [w]) £ (w)] < eo.
weD

The space £ is a Banach space with respect to the norm || - || 4, meaning it is complete
under this norm. It can be shown that H* C Z. The little Bloch space, denoted by
2, contains all f € H(D) such that limy,,_; (1 — [w|?)|f"(w)| =0.

Let 0 < p < and a > —1. The weighted Bergman space AL, consists of all
analytic functions f in D, i.e., f € H(ID), for which the following norm is finite:

111 = (06+1)/D\f(W)I”(1 — [w]?)*dA(w) < e.

In the above expression, dA represents the normalized area measure on D. A function
f € H(D) is said to be in the weighted Dirichlet space 24 (D) = 2} if

111G, = |f(0)|p+/D|f’(W)l”(1 —[wP)*dA(w) < .
It is worth to note that when oo = 1 and p = 2, the weighted Dirichlet space 2} is
identical to the classical Hardy space H>.
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Let 0 < p<oo, —2<g<oo, 0<s<oo. Afunction g€ H(D) isin F(p,q,s) if
18115 (p.q) = \8(0)|p+sup/ 18" ()P (1= W) (1 = |0 (w)[*) dA(w) < .
(Pa:9) e D

bow
1-bw

belongs to the space Fy(p,q,s) if

Here o)(w) = denotes the automorphism of I exchanging O for 5. A function g

tim [ 1007 (1= (1 = o)) dA () =0
Zhao introduced F(p,q,s) in [41]. From [41], when g =p—2, F(p,p—2,s) = A if
s>1,F(p,p—2,0)=B,. When p=2, F(p,p—2,s) = Qs. In particular, F(2,0,1) =
BMOA, the set of all analytic functions of bounded mean oscillation. For a gener-
alization of the space on the unit ball and some operators acting from or into it see,
e.g., [14,32,33] and the references therein.

Let K : [0,00) — [0,°0) be a non-decreasing, right-continuous function. Assume
K is not identically zero, with K(0) =0, K(r) > 0 for every ¢t > 0, and K(1) = K(1)
forall £ > 1. For —1 < A <0, as Hu and Liu [8] defined, a class of Dirichlet-Morrey
type space 7, g consists of all functions f € H(ID) such that

(1 _ ‘b|2)/l+1

Ka—ppy Moo= f®)lgy <=

1£1l 2, « = £ (0)] + sup
beD

We denote || f||z, . —[£(0)| by ||f]l+,7, .- Analogously, an analytic function f is said
to belong to the little Dirichlet-Morrey space _@g x if

(1 _ ‘ b|2)k+l
— —f()|| g =0.
‘hTTl K(l—‘b|2) Hfoo-b f( )H_A}L
See [26, 35, 36,3840, 42,44, 45] for various analytic Morrey type spaces, including
Hardy-Morrey spaces, Bergman-Morrey spaces, Dirichlet-Morrey spaces and Besov-
Morrey spaces.
Let g € H(D). The Volterra integral operator T, is defined as follows:

1) = [ f0g/w)dw, fEHD)., zeD.

Pommerenke [22] was probably the first who studied the operator. He showed that T,
is bounded on the Hardy space H? if and only if g € BMOA-the space of bounded
mean oscillation. Up to the present day, the operator T, along with its generalizations,
like generalized Cesaro or Volterra operators or their products with composition opera-
tors, have attracted significant attention within the mathematical community. Extensive
research has been carried out on the boundedness, compactness, norm, and essential
norm of 7T, over various function spaces, yielding rich results. For a comprehensive
overview of additional findings regarding this operator and its various generalizations,
one may refer to [1,2,4-9,11-16,20,21,23-36,38-40,42,44,45].
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Recently, the study of the strict singularity of the integral operator T, in various
function spaces has piqued interest. Let us recall that for a bounded linear operator
T : X — Y between Banach spaces, as introduced by Kato in [10], it is said to be
strictly singular if for any infinite-dimensional closed subspace M C X, the restriction
T|y is not an isomorphism onto its image. Precisely, there does not exist a positive
constant ¢ such that ||T(y)|| = ¢||y|| forall y € M. Evidently, every compact operator is
strictly singular. A well-known example of strictly singular yet non-compact operators
is the inclusion mapping i,  : ¥ — {9, where 1 < p < g <. In 2017, Miihkinen,
in the work [20], demonstrated that for a non-compact operator 7, : H? — HP with
1 < p < oo, it contains an isomorphic copy of /7 within H?. As a consequence, for the
operator T, on H”, the properties of compactness and strict singularity are equivalent.
In the context of Bergman spaces A? for 1 < p < oo, the strict singularity of the operator
T, is equivalent to its compactness. In [7], Chen established that for the operator 7 :
F(p,p—2,s) — F(p,p—2,s) with s, p > 0 satisfying s+ p > 1, the compactness and
strict singularity are identical. See [17] for the study of the strict singularity of another
integral operator S, on H?.

Meanwhile, studying the closed range of the operator has also attracted a lot of
attention. Using the closed graph theorem, we see that 7 has closed range if and
only if it is bounded below when T is a one-to-one bounded linear operator on X .
Hence, to investigate the closed range of the operator 7,, we only need to consider
the boundedness below of the operator 7, . Recall that a linear operator 7 on a quasi-
Banach space (X, || - ||) is said to be bounded below if there exists C > 0 such that

ITx|| = Cl|x]

for all x € X. Anderson [3] showed that 7, can be bounded below on weighted
Bergman spaces. In 2014, Anderson, Jovovic, and Smith showed that 7, is never
bounded below on the Hardy space HZ, the Bloch space %, and the space BMOA [4].
Chen [7] proved that T, also has no lower bound on F(p,pa—2,s).

Motivated by the above-mentioned works, in this paper, we study the strictly sin-
gular property and closed range property of the integration operator 7, on the Dirichlet-
Morrey type space 7, ;. We show that when ¢ € F(1,—1,A + 1)\ Fo(1,—1,A+1),
T, is not strictly singular. Also, T, has no closed range on %, ;. Moreover, we also
investigate some properties of @2 X

Throughout the paper, we write A < B (or B2 A ) to denote that there is some
inessential constant C such that A < CB. If A < B <A, then we write A < B.

2. Vanishing K -Carleson measure and embedding of @2 %

In this section, we investigate some basic properties of 9)(3_ k- We require certain
properties of K. Throughout the remainder of this paper, we consistently assume that
the subsequent condition regarding K is satisfied (refer to [37]):

= gk (x)
1 xl+o

dx <o, § >0, 2.1
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where K(sx)
SX

Qg (x) = sup ———, 0 <x < oo,
W)= %)

Obviously, K(x) = x? satisfies inequality (2.1) for 0 < p < §.

LEMMA 2.1. ([37], Theorem 3.7) If K satisfies condition (2.1) for some § > 0,
then there exists a weight function K| such that
K1)

lim = oo
t—0t ZS

Furthermore, Ky still satisfies all standing assumptions on weights, Ky is comparable
with K on (0,1).

For arc I on the unit circle dD, |I| is the normalized arc length (|0D| = 1). Let
S ={w=re" : 11| < |w| < 1,6 €1}

denote the Carleson box based on /. A positive Borel measure 1 on D is called a
K -Carleson measure if (see [35])

s
L ()

When K(¢) =1°,0 < s < oo, the K-Carleson measure is an s-Carleson measure. When
K(t) =1, u is the classical Carleson measure. The following lemma gives a character-
ization for K -Carleson measure.

LEMMA 2.2. ([35]) Suppose K satisfies (2.1) for some 6 € (0,2). Let u be a
positive Borel measure on . The measure W is a K -Carleson measure if and only if

Sup—— /1_b|2>tdu(w)< §<i<
e K(1=1[b?) Jo \ |1 — bw| o '

Similarly, we call u a vanishing K -Carleson measure if

o HOSW)
i—o K(|1])

Combining the proofs of Theorem 1 in [19] and Lemma 2.2, or Theorem 2.1 in [35],
we can get the following lemma. Since the proof is routine, we omit the detail.

LEMMA 2.3. Suppose K satisfies (2.1) for some 0 € (0,2). Let u be is a positive
Borel measure on D. The measure W is a vanishing K -Carleson measure if and only if

P — w 0 S o




STRICT SINGULARITY AND CLOSED RANGE 721

From the definition of _@g x and Lemma 2.3 we get the following characterization
for the space 7 .

PROPOSITION 2.4. Let —1 < A <0 and K satisfy (2.1) for some § € (0,A +1].
Let f € H(D) and dus(w) = |f'(w)|(1— |w|*)*dA(w). Then the following statements
are equivalent:

(i) f € D)
(ii)

im PRI Tl (1 - o)1~ o) () =
bl—1 K(1—1|b])
(iii) W is a vanishing K -Carleson measure.
The following integral estimate is of great importance in our proof.

LEMMA 2.5. [43, Lemma 3.10] Suppose z€ D, c isreal, t > —1, and

l—IW\
= dA(w).
/]D)|1 ZW|2+I+L ( )

(a) If ¢ <0, then as a function of z,1.;(z) is bounded from above and bounded
from below on 1.

(b)If ¢ >0, then
1

The following two propositions illustrate the relationship between polynomials
and :@2 k- We show that :@2 18 the closure of all polynomials in 7, k.

L (2) < lz2] — 17.

PROPOSITION 2.6. Let —1 < A <0 and K satisfy (2.1) for some § € (0,A +1].
Then _@2 x (and so 7, k) contains all polynomials.

Proof. Since K satisfies (2.1) for some 6 € (0,A + 1], by Lemma 2.1, there exists
a weight function K such that
ta/Kl (t) - 07

as t — 0. Because § < A+ 1, we have

(L= p)*t (1= pP)°
Ki(1—[b]?) = K (1-[b?)

Furthermore, K still satisfies all standing assumptions on weights, K| is comparable
with K on (0,1). Hence
(1 _ ‘ b|2)k+l

RS ol B 2.2
KT =T 22
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If f is a polynomial, then sup,,.p |/ (w)| < M < eo. By Lemma 2.5,

1+A
b|b| L1701 = ) (1= o)) A (w)

—|b 141 B
<Mﬁ L= Py = o Py )
(1= (1= )
M= P /D 1wz A
(1 o)+
MR-y

By (2.2), we obtain that

b))+ 2-1 24142
tim G P [ 700l = ) (1~ b)) aa ) 0.

Thusfe:@gK. O

Similarly to the proof of Proposition 2.15 in [41], we get the following proposition.

PROPOSITION 2.7. Let —1 <A <0 and K satisfy (2.1) for some 6 € (0,4 +1]
and g € :@2 k- Then

ll_IH ng _g”'@ﬁ,K = 07
where g,(w) = g(rw). In particular, 9}?.]{ is the closure of all polynomials in 7, k.

Let u be a positive Borel measure on . The space k(i) consists of all mea-
surable functions f that satisfy

10 = s g [ 1P Od) <

Let Jko(u) denote the space of all measure functions f such that

. 1
tim e L IOl () 0.

PROPOSITION 2.8. Let —1 < A <0 and K satisfy (2.1) for some § € (0,A +1].
Let u be a positive Borel measure on D. Then the identity operator 1 : _@2 P

Tk o(u) is bounded if and only if u is a (A +1)-Carleson measure.

Proof. Necessity. Suppose I : :@2 « — Jko(u) is bounded. Let I C D, % be
the center of 7 and a = (1 — |I|)e'®. It is easy to see that

1—aw| =~ 1—|a>= 1|, weSI).
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Let

(1—la)' K (1—aP)
(1—aw)+2 )

Clearly, we have that f, € :@2 k- Thus

) K L

‘I|1+7L ‘]|1+7L [( ‘]|

1
Ny < < 7 oo
R o eI 00 S 1l ) < el <o

which implies that u is a (4 + 1)-Carleson measure.

w e D.

Ja(w) =

Sufficiency. Suppose u is a (A + 1)-Carleson measure. Carefully check the proof
of Theorem 3.2 in [8], we see that the identity operator I; : 7, x — Jk(u) is bounded.
By Proposition 2.7, for any € > 0, there exists a polynomial P(z) such that

If=Plla,, <€ (2.3)

forany f € ) .. Thus,

R 01100 S [ 1709~ POl gz [ 1P
(s J'+
17~ Pl + 1P BSEDHL

By Lemma 2.1, for 6 € (0,1+ 4], we have that
I 1+A
L
-0 K(I)

2.4)

Combining (2.3) and (2.4), we get that

. 1
\}\lglo k(1) /S(I) |f(w)ldu(w) =0,

which implies f € Jk o(u). This completes the proof of this proposition. [

3. Strict singularity

In this section, we mainly show that a non-compact operator 7, is not strictly
singular, i.e., there is a subspace M C @/LK such that Tg\ M 1s bounded below on M
which yields the compactness and strict singularity are equivalent for 7, on Z; . In
order to prove the main result in this section, we need the following lemma, see [8,
Theorem 1 and Corollary 1].

LEMMA 3.1. Let ge H(D), —1 <A <0 and K satisfy (2.1) for some 6 € (0,A +
1]. Then the following statements hold.
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1. Ty is bounded on 9, ; if and only if g € F(1,—1,A +1);
2. Ty is compact on P, ;. if and only if g € Fo(1,—1,A +1).

COROLLARY 3.2. Let g€ H(D), —1 < A <0 and K satisfy (2.1) for some § €
(0,A +1]. Then T, is bounded on 9% . if and only if g € F(1,—1,A +1).

Proof. Since g € F(1,—1,A + 1) if and only if dug = |g'(w)|(1 — [w[>)* is a
(A + 1)-Carleson measure, by Proposition 2.8, we can get this corollary. [

Using Theorem 9 in [18], we immediately obtain the following result.

LEMMA 3.3. Let —1 <A <0 and u be a positive Borel measure on D. Then u
is a (A + 1)-Carleson measure if and only if for all functions f € 9){ ,

L1l < 171

COROLLARY 3.4. Let —1 <A <0. Let g€ F(1,—1,A+1). Then T, is bounded
on 9.
A

Proof. By the assumption we see that dpig(w) := |g'(w)|(1 — |w|>)*dA(w) is a
(A 4 1)-Carleson measure. By Lemma 3.3, I, : 9; — L(D,dp,) is bounded. Hence,
forany f € @/{,

ITefllgy = [ 100 ()11 = ) aA(w) S 1f]. 5y

as desired. [

To prove the main result in this section, one of important steps is to construct the
operator Q : 6y — 9)(3_ ¢ such that O is bounded and is an isomorphism onto its range.
Here %, denote the Banach space of complex sequences converging to zero endowed
with the supremum norm || - ||==. We have the following result.

PROPOSITION 3.5. Let —1 < A <0 and K satisfy (2.1) for some § € (0,1+A].
Let {fu}y_| be asequencein QE_K with || full«.2, = 1 and limy_.c anH%l =0. Then

there exists a subsequence {f,, } € {fu}_, such that the operator Q : €y — :@2 .
defined as follows

om) =Y Mfu. n={m} %,
k=1

is an isomorphism onto its range.
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Proof. We denote

‘b| At 2\—1 2\A+1
Df1b) = oy Jy ORI = ) (= o)) A ),
Since f;, € 9)?.1{7 for each n > 1, we have that

lim @(£,,) =0. (3.1)

If |b| <ty for some 7y € (0,1), according to the monotonicity of K and the fact that

1imy oo || fu || 1 g1 =0, we get

292 1
OUib) S iy Jo 09I 1 A $ sl O

as n — oo. Therefore, for any 7 € (0,1),

lim sup ®(f,,b) =0. (3.2)

n—»oolblgt

By the assumed condition ||fn||*7% « =< 1, there are S1,S; > 0 such that,

S1 < an

Ty <52 (33)

forany n > 1.
Combining (3.1), (3.2) with lim,, e || 2| 7! = 0, there exits a subsequence { f;,, }

and an increasing sequence {#} with 7 € (0,1) such that, for any k > 1,

Sup q)(fnk7b) < 3_k_1S17

|b|<ti
and
sup D(f,.b) < 37klg,
B>ty 41
and

Hfl’lkH_@)lL < 37k71S1'

Since b belongs to at most one circular region 7 < |b| <ty within D, for any b € D,
the inequality

D(fr,,b) <3755y

holds for all but at most one index k. For the exceptional index k, f; < |b| < 41, the
inequality ®(f,,,b) <S> is satisfied. In addition, from (3.3), for any k > 1, there is
by € D such that

251

q)(fnk,bk) > T
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By the triangle inequality, for any 1 = {n;} € %, we obtain that

o) IJM—\anfnk \+Supq>(Q(n) b)

<lnlle Z 1|l 1 +sup Z [1k| P (o, D)
k=1 beDf—1

<[l Y, 3781+ [l (Z 37471s, +52>

fa| k=1
<(S1+S2)n =,

which implies that Q(1) € 2 x and Q : 6y — 2, g is bounded.
Next, we prove that Q(1) € 2 .. In fact, forany b €D and N > 1,

=

o N
2 nk‘q) fnk7 ||nHl°°2q)(fnk7 +SUP‘nk‘ Z q)(fnk7b)
k=1 k=1

k>N k=N+1

5 Hn||l°° Z q)(fnkab) =+ sup |nk‘
k=1 k>N
Because f,, € _@g P foreach k > 1, we get
fim ®(Q(n),5) < sup ngl.
[p|—1 k>N

Letting N — oo, we have that

I;gﬁ(Q(n) b) =0

and hence Q(n) € :@2 > Which implies that Q : 6y — 92 i bounded.

Finally we will prove that Q : 6y — @2  is bounded below. For any n = {n;}
and j > 1, by triangle inequality we obtain

10(M)ll2, x = P(Q(N),bj) = |nj|P(fn;,];) ;Im@fnw)
k#j

2S
Sl =X 3 s
k#/

zs1
In;\ ||71H1°°-

The arbitrariness of j gives that

S1
lo(mllz, , 2 EHTI||1°°~

Thus Q: %) — _@g x 1s an isomorphism onto its range. [
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THEOREM 3.6. Let —1 < A <0 and K satisfy (2.1) for some 6 € (0,1+ A].
Suppose g € F(1,—1,A + 1)\ Fo(1,—1,A +1). Then there is a subspace M C I g
isomorphic to 6 such that Tg|py : M — Ty(M) is an isomorphism. In particular, T, is
not strictly singular.

Proof. Let

1

Y':zlimsup—/ 1€ (W)|(1 = [l dA(w).
=o' Jsa)

Because g € F(1,—1,A+ 1)\ Fp(1,—1,A 4+ 1), we get that Y > 0 and there exists

{I,} C dD with lim,_. || = 0 such that

T 1 / 2\A
T—kgﬁﬂﬁjé%ﬂgWNU—hﬂ)dAW0>0 (3.4)

For each n > 1, set ¥, = (1 — |I,|)n,, where n, is the center of I,. It is known

that
[L=pawl = L=l = L], w € S(h). (3.5)

Take .
(1= [* K1 =)

(1 _7 W)2&+2
It is easy to check that f, € _@27 and ||full,  S'1 forany n > 1. Form (3.5), it is
easy to see that

fn(W): , weD.

K(|1n \)
a1
Then by using (3.4) and (3.6), there exist some constant § > 0 such that
1B

: ! 2\
m/sun) a8 (W) (1= |w|")*dA(w) > R

for n larger than some fixed positive number N > 1.
Since g € F(1,—1,A +1), T, is bounded on Z, g, which implies that T, f,, €
P, x and

W)l 2

, weS(I). (3.6)

||Tgan@)L‘K 5 L.

Moreover, by Corollary 3.2, T, is bounded also on %9 . and then T, f, € 2 .. Thus,
passing to a further subsequence if necessary, we assume that

_
K(|L11])

forany n > N.
Set

L, IO 0l da) < 2

H, = fps1— fa,n 2 N.
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Then H, € 7  and ||H,| 7,x < 1. According to the above facts, we have that

s I 011 P aa()

K(|Li1])
ot T
T o 00 = SO0 01~ I )aAw)
1 / )
>m/su,,ﬂ) | fur1(W)|lg’ (W) (1 — |w|*)dA(w)
R
(\1+1\)/ () [ (W)llg" (wW)I(1 = [w|")dA(w)
SYP
12

Therefore, for any n > N,

B 1 / 2\A
Esmmw&mmmmwmfw>ww
S

~ T

Thus T,H, ¢ :@2 x and

=1

D) K

forany n > N.
Since H, € 7} ., we have that H, € 7, . Set Pl =(1—|m)* K1 = |%)?).

[ IO~ P = [ 175008) ~ 709101 ) aA )
A
:(u+2)/ (1_%’7&&% - (1_%?;2“3 (1= w2 dA(w)

|‘Dn+17’n+1 00 et 0 10 e (TS0 it FERERES A
11— Vg w|2A 3|1 — | 2A+3 (1—[w[7)"dA(w)
/ | (L= Fw) A3 — (1 = Fgw) 43|
- \1 TP w23
‘2/l+3

(1wl dA(w)

(1= |w*)*dA(w)

/ }Pn+l)/"+1 - b yn| |1 —Yur1w
1= Fw| 24 3|1 — w2243
(1—|w)*dA(w) (1 — |w?)*dA(w)

/ n+11_‘w‘ AdA( )+/P}%+1 _|_/Pn(
~ 1= T[22 53 L S DL Faw A

(3.7)
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By Lemma 2.5,

JE ST
D ‘1 _%w‘2k+3

38
(1= WP dAw) G

=(1 = |yl K (1 - WnF)/DW SK(1—=|p)—0

as n — oo. Similarly,

2\A 2\A
n+1(1_|w| ) dA( n+l 1_|W| ) dA( )
e o [ 69

as n — oo. Combining (3.7), (3.8) and (3.9), we obtain that

lim ([ 1 =0

Since T, is bounded on 9){ by Corollary 3.4, we get
nlE{}OHTanH%l =0.

Using Proposition 3.5, we can construct a subsequence {H,, } of {H,} such that Q:
Cg(l)] — @)?’ g and V : %y — _@27 x are both isomorphism onto their respective ranges,
where

k=1
and

v(n) =Y mTH,, n={m}cC%.
k=1

Let M be the closure of span {H,, } in ) .. Then M is isomorphic to %y and Ty|u :
M — T,(M) is an isomorphism. This complete the proof of this theorem. [

4. Closed range of 7,

In this section, we will study the closed range property of T, on %, ; and show
that T, : 7, , — 2, 4 does not have closed range.

THEOREM 4.1. Let —1 <A <0, g€ F(1,-1,A+1) and K satisfy (2.1) for
some 8 € (0,1+A]. Then T, : D, y — D), x does not have closed range, or equivalently
to say that Ty is not bounded below on ) .

Proof. 1f g € Fo(1,—1,1), by Lemma 3.1, we have that 7, is compacton &, ; and
then T is not bounded below on &, ;. Thus we just need to prove that the conclusion
is correctwhengeF( —1,A41)\ Fy(1,—1,A + 1) happens.
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From the proof of Theorem 2.9, for any € > 0, there is a positive constant py €
(0,1) such that
(1 _ |b‘2)l+1
— <& 4.1
K(T—bF) b
forany po < |b| < 1.
Let f,(w) =w". Clearly, f, € 2 4 forany n> 1. Then, for any n > 1, by (4.1)
we get that

L S TR,
sup U P [l () (1= ) (1 oy ) P 2 ()
po<|bl<1 ( b]*) Jp
4.2)
( _‘b|2))t+l
<lglra—1a41) SUP —m——me SE

po<|b|<1 K(l - ‘b|2)

Now let us prove the case of |b| < pg. Since g € F(1,—1,A + 1), we see that
g € 7). Thus there exists r € (0,1) such that

LIl =) aaw) <
D\rD
Thus, by the monotonicity of K we have that

(1_‘b|2))t+1
SUp >
bl<py K(1—1b1%)
(l—blz)”l/ / 2\2 1
=sup ————— & 1— —————dA
P KT 6T oo I OO0 = ) ()

b|<po

1

S T o 9 0I = PY dA )
<pPo 7]

§¥~
K(1—pol?)

In addition, we can choose a sufficiently large N such that * < &€ whenever n > N.
Then

/D "1 (w) (1 = wl*) ™" (1 = |ap(w)?)* ' dA(w)
\rD

(4.3)

< sup

~

1_‘b| Al n l— 2\—1 1— 2 A-‘rldA
P e [ Iw [l (w W)~ (1 =[op(w)[7) (w)
bl<po K(1— ‘b|

4.4)
<£||g||F(l,—l,?L+l)
~ K(1—|pol?)
Combing (4.3) with (4.4) we get
‘b| )L“rl n 1_ 2\—1 1— 2)L+ldA
sup — | g (w w[™) (1= [op(w)[7) (w)
bl<pe K(I—1[b[2)
bI<po 4.5)

gHgHF(l,fl,}Hrl)
~ K(1—po?)
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By (4.2), (4.5) and the fact that € > 0 is arbitrary, we conclude that T, is not bounded
below on 7 . 0
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