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Abstract. The strict singularity and closed range property of the Volterra integral operator Tg

with the symbol g on the Dirichlet-Morrey type space D ,k were investigate in this paper.

1. Introduction

Let D represent the open unit disk within the complex plane C , and let H(D)
denote the class of functions that are analytic in D . Let H = H(D) denote the space
of all bounded analytic functions on D . The norm in this space is given by ‖ f‖ =
supw∈D | f (w)| . The Bloch space, denoted by B(D) = B , consists of all f ∈ H(D)
satisfying

‖ f‖B = | f (0)|+ sup
w∈D

(1−|w|2)| f ′(w)| < .

The space B is a Banach space with respect to the norm ‖ ·‖B , meaning it is complete
under this norm. It can be shown that H ⊂ B . The little Bloch space, denoted by
B0 , contains all f ∈ H(D) such that lim|w|→1(1−|w|2)| f ′(w)| = 0.

Let 0 < p <  and  > −1. The weighted Bergman space Ap
 consists of all

analytic functions f in D , i.e., f ∈ H(D) , for which the following norm is finite:

‖ f‖p
Ap


= ( +1)
∫

D

| f (w)|p(1−|w|2)dA(w) < .

In the above expression, dA represents the normalized area measure on D . A function
f ∈ H(D) is said to be in the weighted Dirichlet space D p

(D) = D p
 if

‖ f‖p
D p


= | f (0)|p +
∫

D

| f ′(w)|p(1−|w|2)dA(w) < .

It is worth to note that when  = 1 and p = 2, the weighted Dirichlet space D p
 is

identical to the classical Hardy space H2 .
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Let 0 < p <  , −2 < q <  , 0 � s <  . A function g ∈ H(D) is in F(p,q,s) if

‖g‖p
F(p,q,s) = |g(0)|p + sup

b∈D

∫
D

|g′(w)|p(1−|w|2)q(1−|b(w)|2)sdA(w) < .

Here b(w) = b−w
1−bw

denotes the automorphism of D exchanging 0 for b . A function g

belongs to the space F0(p,q,s) if

lim
|b|→1

∫
D

|g′(w)|p(1−|w|2)q(1−|b(w)|2)sdA(w) = 0.

Zhao introduced F(p,q,s) in [41]. From [41], when q = p−2, F(p, p−2,s) = B if
s > 1, F(p, p−2,0)= Bp . When p = 2, F(p, p−2,s)= Qs . In particular, F(2,0,1) =
BMOA , the set of all analytic functions of bounded mean oscillation. For a gener-
alization of the space on the unit ball and some operators acting from or into it see,
e.g., [14, 32, 33] and the references therein.

Let K : [0,) → [0,) be a non-decreasing, right-continuous function. Assume
K is not identically zero, with K(0) = 0, K(t) > 0 for every t > 0, and K(t) = K(1)
for all t � 1. For −1 <  < 0, as Hu and Liu [8] defined, a class of Dirichlet-Morrey
type space D ,K consists of all functions f ∈ H(D) such that

‖ f‖D ,K
= | f (0)|+ sup

b∈D

(1−|b|2)+1

K(1−|b|2) ‖ f ◦b− f (b)‖D1


< .

We denote ‖ f‖D ,K
−| f (0)| by ‖ f‖∗,D ,K

. Analogously, an analytic function f is said

to belong to the little Dirichlet-Morrey space D0
 ,K if

lim
|b|→1

(1−|b|2)+1

K(1−|b|2) ‖ f ◦b− f (b)‖D1


= 0.

See [26, 35, 36, 38–40, 42, 44, 45] for various analytic Morrey type spaces, including
Hardy-Morrey spaces, Bergman-Morrey spaces, Dirichlet-Morrey spaces and Besov-
Morrey spaces.

Let g ∈ H(D) . The Volterra integral operator Tg is defined as follows:

Tg f (z) =
∫ z

0
f (w)g′(w)dw, f ∈ H(D), z ∈ D.

Pommerenke [22] was probably the first who studied the operator. He showed that Tg

is bounded on the Hardy space H2 if and only if g ∈ BMOA-the space of bounded
mean oscillation. Up to the present day, the operator Tg along with its generalizations,
like generalized Cesàro or Volterra operators or their products with composition opera-
tors, have attracted significant attention within the mathematical community. Extensive
research has been carried out on the boundedness, compactness, norm, and essential
norm of Tg over various function spaces, yielding rich results. For a comprehensive
overview of additional findings regarding this operator and its various generalizations,
one may refer to [1, 2, 4–9, 11–16, 20, 21, 23–36, 38–40, 42, 44, 45].
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Recently, the study of the strict singularity of the integral operator Tg in various
function spaces has piqued interest. Let us recall that for a bounded linear operator
T : X → Y between Banach spaces, as introduced by Kato in [10], it is said to be
strictly singular if for any infinite-dimensional closed subspace M ⊂ X , the restriction
T |M is not an isomorphism onto its image. Precisely, there does not exist a positive
constant c such that ‖T (y)‖� c‖y‖ for all y∈M . Evidently, every compact operator is
strictly singular. A well-known example of strictly singular yet non-compact operators
is the inclusion mapping ip,q : �p → �q , where 1 � p < q <  . In 2017, Miihkinen,
in the work [20], demonstrated that for a non-compact operator Tg : Hp → Hp with
1 � p < , it contains an isomorphic copy of l p within Hp . As a consequence, for the
operator Tg on Hp , the properties of compactness and strict singularity are equivalent.
In the context of Bergman spaces Ap for 1 � p < , the strict singularity of the operator
Tg is equivalent to its compactness. In [7], Chen established that for the operator Tg :
F(p, p−2,s)→ F(p, p−2,s) with s, p > 0 satisfying s+ p > 1, the compactness and
strict singularity are identical. See [17] for the study of the strict singularity of another
integral operator Sg on Hp .

Meanwhile, studying the closed range of the operator has also attracted a lot of
attention. Using the closed graph theorem, we see that T has closed range if and
only if it is bounded below when T is a one-to-one bounded linear operator on X .
Hence, to investigate the closed range of the operator Tg , we only need to consider
the boundedness below of the operator Tg . Recall that a linear operator T on a quasi-
Banach space (X ,‖ · ‖) is said to be bounded below if there exists C > 0 such that

‖Tx‖ � C‖x‖
for all x ∈ X . Anderson [3] showed that Tg can be bounded below on weighted
Bergman spaces. In 2014, Anderson, Jovovic, and Smith showed that Tg is never
bounded below on the Hardy space H2 , the Bloch space B , and the space BMOA [4].
Chen [7] proved that Tg also has no lower bound on F(p, pa−2,s) .

Motivated by the above-mentioned works, in this paper, we study the strictly sin-
gular property and closed range property of the integration operator Tg on the Dirichlet-
Morrey type space D ,k . We show that when g ∈ F(1,−1, + 1) \F0(1,−1, + 1) ,
Tg is not strictly singular. Also, Tg has no closed range on D ,k . Moreover, we also
investigate some properties of D0

 ,K .
Throughout the paper, we write A � B (or B � A ) to denote that there is some

inessential constant C such that A � CB . If A � B � A , then we write A 	 B .

2. Vanishing K -Carleson measure and embedding of D0
 ,K

In this section, we investigate some basic properties of D0
 ,K . We require certain

properties of K . Throughout the remainder of this paper, we consistently assume that
the subsequent condition regarding K is satisfied (refer to [37]):

∫ 

1

K(x)
x1+ dx < ,  > 0, (2.1)
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where

K(x) = sup
0<s�1

K(sx)
K(s)

, 0 < x < .

Obviously, K(x) = xp satisfies inequality (2.1) for 0 < p <  .

LEMMA 2.1. ([37], Theorem 3.7) If K satisfies condition (2.1) for some  > 0,
then there exists a weight function K1 such that

lim
t→0+

K1(t)
t

= .

Furthermore, K1 still satisfies all standing assumptions on weights, K1 is comparable
with K on (0,1) .

For arc I on the unit circle D , |I| is the normalized arc length ( |D| = 1). Let

S(I) = {w = rei : 1−|I|< |w| < 1,ei ∈ I}
denote the Carleson box based on I . A positive Borel measure  on D is called a
K -Carleson measure if (see [35])

‖‖K = sup
I⊂D

(S(I))
K(|I|) < .

When K(t) = ts,0 < s <  , the K -Carleson measure is an s-Carleson measure. When
K(t) = t ,  is the classical Carleson measure. The following lemma gives a character-
ization for K -Carleson measure.

LEMMA 2.2. ([35]) Suppose K satisfies (2.1) for some  ∈ (0,2) . Let  be a
positive Borel measure on D . The measure  is a K -Carleson measure if and only if

sup
b∈D

1
K(1−|b|2)

∫
D

(
1−|b|2
|1− bw|

)t

d(w) < ,  � t < .

Similarly, we call  a vanishing K -Carleson measure if

lim
|I|→0

(S(I))
K(|I|) = 0.

Combining the proofs of Theorem 1 in [19] and Lemma 2.2, or Theorem 2.1 in [35],
we can get the following lemma. Since the proof is routine, we omit the detail.

LEMMA 2.3. Suppose K satisfies (2.1) for some  ∈ (0,2) . Let  be is a positive
Borel measure on D . The measure  is a vanishing K -Carleson measure if and only if

lim
|b|→1

1
K(1−|b|2)

∫
D

(
1−|b|2
|1− bw|

)t

d(w) = 0, � t < .
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From the definition of D0
 ,K and Lemma 2.3 we get the following characterization

for the space D0
 ,K .

PROPOSITION 2.4. Let −1 <  < 0 and K satisfy (2.1) for some  ∈ (0, +1] .
Let f ∈ H(D) and d f (w) = | f ′(w)|(1−|w|2)dA(w) . Then the following statements
are equivalent:

(i) f ∈ D0
 ,K ;

(ii)

lim
|b|→1

(1−|b|2)1+

K(1−|b|)
∫

D

| f ′(w)|(1−|w|2)−1(1−|b(w)|2)+1dA(w) = 0;

(iii)  is a vanishing K -Carleson measure.

The following integral estimate is of great importance in our proof.

LEMMA 2.5. [43, Lemma 3.10] Suppose z ∈ D , c is real, t > −1 , and

Ic,t (z) =
∫

D

(
1−|w|2

)t

|1− zw|2+t+c dA(w) .

(a) If c < 0 , then as a function of z, Ic,t (z) is bounded from above and bounded
from below on D .

(b) If c > 0 , then

Ic,t (z) 	 1(
1−|z|2

)c , |z| → 1−.

The following two propositions illustrate the relationship between polynomials
and D0

 ,K . We show that D0
 ,K is the closure of all polynomials in D ,K .

PROPOSITION 2.6. Let −1 <  < 0 and K satisfy (2.1) for some  ∈ (0, +1] .
Then D0

 ,K (and so D ,K ) contains all polynomials.

Proof. Since K satisfies (2.1) for some  ∈ (0, +1] , by Lemma 2.1, there exists
a weight function K1 such that

t/K1(t) → 0,

as t → 0. Because  �  +1, we have

(1−|b|2)+1

K1(1−|b|2) � (1−|b|2)
K1(1−|b|2) .

Furthermore, K1 still satisfies all standing assumptions on weights, K1 is comparable
with K on (0,1) . Hence

lim
|b|→1

(1−|b|2)+1

K(1−|b|2) = 0. (2.2)
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If f is a polynomial, then supw∈D | f ′(w)| � M < . By Lemma 2.5,

(1−|b|2)1+

K(1−|b|2)
∫

D

| f ′(w)|(1−|w|2)−1(1−|b(w)|2)1+dA(w)

�M
(1−|b|2)1+

K(1−|b|2)
∫

D

(1−|w|2)−1(1−|b(w)|2)1+dA(w)

�M
(1−|b|2)1+

K(1−|b|2)
∫

D

(1−|w|2)
|1− bw|2+2

dA(w)

�M
(1−|b|2)1+

K(1−|b|2) .

By (2.2), we obtain that

lim
|b|→1

(1−|b|2)1+

K(1−|b|2)
∫

D

| f ′(w)|(1−|w|2)−1(1−|b(w)|2)1+dA(w) = 0.

Thus f ∈ D0
 ,K . �

Similarly to the proof of Proposition 2.15 in [41], we get the following proposition.

PROPOSITION 2.7. Let −1 <  < 0 and K satisfy (2.1) for some  ∈ (0, +1]
and g ∈ D0

 ,K . Then
lim
r→1

‖gr −g‖D ,K
= 0,

where gr(w) = g(rw) . In particular, D0
 ,K is the closure of all polynomials in D ,K .

Let  be a positive Borel measure on D . The space TK() consists of all mea-
surable functions f that satisfy

‖ f‖TK() = sup
I⊂D

1
K(|I|)

∫
S(I)

| f (w)|d(w) < .

Let TK,0() denote the space of all measure functions f such that

lim
|I|→0

1
K(|I|)

∫
S(I)

| f (w)|d(w) = 0.

PROPOSITION 2.8. Let −1 <  < 0 and K satisfy (2.1) for some  ∈ (0, +1] .
Let  be a positive Borel measure on D . Then the identity operator Id : D0

 ,K →
TK,0() is bounded if and only if  is a ( +1)-Carleson measure.

Proof. Necessity. Suppose Id : D0
 ,K → TK,0() is bounded. Let I ⊂ D , ei be

the center of I and a = (1−|I|)ei . It is easy to see that

|1− aw| ≈ 1−|a|2 ≈ |I|, w ∈ S(I).
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Let

fa(w) =
(1−|a|2)1+K(1−|a|2)

(1− aw)2+2
, w ∈ D.

Clearly, we have that fa ∈ D0
 ,K . Thus

(S(I))
|I|1+ =

K(|I|)
|I|1+

1
K(|I|)

∫
S(I)

d

≈
1

K(|I|)
∫

S(I)
| fa(w)|d(w) � ‖ fa‖TK() � ‖ fa‖D ,K

< ,

which implies that  is a ( +1)-Carleson measure.

Sufficiency. Suppose  is a ( +1)-Carleson measure. Carefully check the proof
of Theorem 3.2 in [8], we see that the identity operator Id : D ,K →TK() is bounded.
By Proposition 2.7, for any  > 0, there exists a polynomial P(z) such that

‖ f −P‖D ,K
<  (2.3)

for any f ∈ D0
 ,K . Thus,

1
K(|I|)

∫
S(I)

| f (w)|d(w) � 1
K(|I|)

∫
S(I)

| f (w)−P(w)|d(w)+
1

K(|I|)
∫

S(I)
|P(w)|d(w)

�‖ f −P‖TK() +‖P‖H
(S(I))
|I|1+

|I|1+

K(|I|) .

By Lemma 2.1, for  ∈ (0,1+ ] , we have that

lim
|I|→0

|I|1+

K(I)
= 0. (2.4)

Combining (2.3) and (2.4), we get that

lim
|I|→0

1
K(|I|)

∫
S(I)

| f (w)|d(w) = 0,

which implies f ∈ TK,0(). This completes the proof of this proposition. �

3. Strict singularity

In this section, we mainly show that a non-compact operator Tg is not strictly
singular, i.e., there is a subspace M ⊂ D ,K such that Tg|M is bounded below on M
which yields the compactness and strict singularity are equivalent for Tg on D ,K . In
order to prove the main result in this section, we need the following lemma, see [8,
Theorem 1 and Corollary 1].

LEMMA 3.1. Let g∈H(D) , −1 <  < 0 and K satisfy (2.1) for some  ∈ (0, +
1] . Then the following statements hold.
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1. Tg is bounded on D ,k if and only if g ∈ F(1,−1, +1);

2. Tg is compact on D ,k if and only if g ∈ F0(1,−1, +1).

COROLLARY 3.2. Let g ∈ H(D) , −1 <  < 0 and K satisfy (2.1) for some  ∈
(0, +1] . Then Tg is bounded on D0

 ,K if and only if g ∈ F(1,−1, +1) .

Proof. Since g ∈ F(1,−1, + 1) if and only if dg = |g′(w)|(1− |w|2) is a
( +1)-Carleson measure, by Proposition 2.8, we can get this corollary. �

Using Theorem 9 in [18], we immediately obtain the following result.

LEMMA 3.3. Let −1 <  < 0 and  be a positive Borel measure on D . Then 
is a ( +1)-Carleson measure if and only if for all functions f ∈ D1

 ,

∫
D

| f (w)|d(w) � ‖ f‖D1

.

COROLLARY 3.4. Let −1 <  < 0 . Let g∈ F(1,−1, +1) . Then Tg is bounded
on D1

 .

Proof. By the assumption we see that dg(w) := |g′(w)|(1− |w|2)dA(w) is a
( + 1)-Carleson measure. By Lemma 3.3, Id : D1

 → L(D,dg) is bounded. Hence,
for any f ∈ D1

 ,

‖Tg f‖D1


=
∫

D

| f (w)||g′(w)|(1−|w|2)dA(w) � ‖ f‖D1

,

as desired. �

To prove the main result in this section, one of important steps is to construct the
operator Q : C0 → D0

 ,K such that Q is bounded and is an isomorphism onto its range.
Here C0 denote the Banach space of complex sequences converging to zero endowed
with the supremum norm ‖ · ‖l . We have the following result.

PROPOSITION 3.5. Let −1 <  < 0 and K satisfy (2.1) for some  ∈ (0,1+ ] .
Let { fn}n=1 be a sequence in D0

 ,K with ‖ fn‖∗,D ,K
≈ 1 and limn→ ‖ fn‖D1


= 0 . Then

there exists a subsequence { fnk} ⊆ { fn}n=1 such that the operator Q : C0 → D0
 ,K

defined as follows

Q() =



k=1

k fnk ,  = {k} ⊂ C0,

is an isomorphism onto its range.



STRICT SINGULARITY AND CLOSED RANGE 725

Proof. We denote

( fn,b) =
(1−|b|2)+1

K(1−|b|2)
∫

D

| f ′n(w)|(1−|w|2)−1(1−|b(w)|2)+1dA(w).

Since fn ∈ D0
 ,K , for each n � 1, we have that

lim
|b|→1

( fn,b) = 0. (3.1)

If |b| � t0 for some t0 ∈ (0,1) , according to the monotonicity of K and the fact that
limn→ ‖ fn‖D1


= 0, we get

( fn,b) � 1

K(1− t20)

∫
D

| f ′n(w)|(1−|w|2)dA(w) � 1

K(1− t20)
‖ fn‖D1


→ 0,

as n → . Therefore, for any t ∈ (0,1) ,

lim
n→

sup
|b|�t

( fn,b) = 0. (3.2)

By the assumed condition ‖ fn‖∗,D ,K
	 1, there are S1,S2 > 0 such that,

S1 � ‖ fn‖∗,D ,K
� S2 (3.3)

for any n � 1.
Combining (3.1), (3.2) with limn→ ‖ fn‖D1


= 0, there exits a subsequence { fnk}

and an increasing sequence {tk} with tk ∈ (0,1) such that, for any k � 1,

sup
|b|�tk

( fnk ,b) < 3−k−1S1,

and
sup

|b|>tk+1

( fnk ,b) < 3−k−1S1

and
‖ fnk‖D1


< 3−k−1S1.

Since b belongs to at most one circular region tk < |b|� tk+1 within D , for any b ∈ D ,
the inequality

( fnk ,b) < 3−k−1S1

holds for all but at most one index k . For the exceptional index k , tk < |b| � tk+1 , the
inequality ( fnk ,b) � S2 is satisfied. In addition, from (3.3), for any k � 1, there is
bk ∈ D such that

( fnk ,bk) � 2S1

3
.
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By the triangle inequality, for any  = {k} ∈ C0 , we obtain that

‖Q()‖D ,K
=|




k=1

k fnk(0)|+ sup
b∈D

(Q(),b)

�‖‖l




k=1

‖ fnk‖D1

+ sup

b∈D




k=1

|k|( fnk ,b)

<‖‖l




k=1

3−k−1S1 +‖‖l

(



k=1

3−k−1S1 +S2

)

<(S1 +S2)‖‖l ,

which implies that Q() ∈ D ,K and Q : C0 → D ,K is bounded.
Next, we prove that Q() ∈ D0

 ,K . In fact, for any b ∈ D and N > 1,

(Q(),b) �



k=1

|k|( fnk ,b) � ‖‖l
N


k=1

( fnk ,b)+ sup
k>N

|k|



k=N+1

( fnk ,b)

� ‖‖l

N


k=1

( fnk ,b)+ sup
k>N

|k|.

Because fnk ∈ D0
 ,K for each k � 1, we get

lim
|b|→1

(Q(),b) � sup
k>N

|k|.

Letting N →  , we have that

lim
|b|→1

(Q(),b) = 0

and hence Q() ∈ D0
 ,K , which implies that Q : C0 → D0

 ,K is bounded.

Finally we will prove that Q : C0 → D0
 ,K is bounded below. For any  = {k}

and j � 1, by triangle inequality we obtain

‖Q()‖D ,K
� (Q(),b j) � | j|( fn j ,b j)−

k �= j

|k|( fnk ,b j)

� 2S1

3
| j|−

k �= j

|k|3−k−1S1

� 2S1

3
| j|− S1

6
‖‖l .

The arbitrariness of j gives that

‖Q()‖D ,K
� S1

2
‖‖l .

Thus Q : C0 → D0
 ,K is an isomorphism onto its range. �
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THEOREM 3.6. Let −1 <  < 0 and K satisfy (2.1) for some  ∈ (0,1 +  ] .
Suppose g ∈ F(1,−1, + 1) \F0(1,−1, + 1) . Then there is a subspace M ⊂ D ,K
isomorphic to C0 such that Tg|M : M → Tg(M) is an isomorphism. In particular, Tg is
not strictly singular.

Proof. Let

 := limsup
|I|→0

1

|I|1+

∫
S(I)

|g′(w)|(1−|w|2)dA(w).

Because g ∈ F(1,−1, + 1) \ F0(1,−1, + 1) , we get that  > 0 and there exists
{In} ⊂ D with limn→ |In| = 0 such that

 = lim
n→

1

|In|1+

∫
S(In)

|g′(w)|(1−|w|2)dA(w) > 0. (3.4)

For each n � 1, set n = (1− |In|)n , where n is the center of In . It is known
that

|1− nw| ≈ 1−|n|2 ≈ |In|, w ∈ S(In). (3.5)

Take

fn(w) =
(1−|n|2)+1K(1−|n|2)

(1− nw)2+2
, w ∈ D.

It is easy to check that fn ∈ D0
 ,K and ‖ fn‖D ,K

� 1 for any n � 1. Form (3.5), it is
easy to see that

| fn(w)| � K(|In|)
|In|1+ , w ∈ S(In). (3.6)

Then by using (3.4) and (3.6), there exist some constant  > 0 such that

1
K(|In|)

∫
S(In)

| fn(w)||g′(w)|(1−|w|2)dA(w) � 
3

for n larger than some fixed positive number N � 1.
Since g ∈ F(1,−1, + 1) , Tg is bounded on D ,K , which implies that Tg fn ∈

D ,K and
‖Tg fn‖D ,K

� 1.

Moreover, by Corollary 3.2, Tg is bounded also on D0
 ,K and then Tg fn ∈ D0

 ,K . Thus,
passing to a further subsequence if necessary, we assume that

1
K(|In+1|)

∫
S(In+1)

| fn(w)||g′(w)|(1−|w|2)dA(w) � 
4

for any n � N .
Set

Hn = fn+1 − fn,n � N.



728 X. ZHU

Then Hn ∈ D0
 ,K and ‖Hn‖D ,K

� 1. According to the above facts, we have that

1
K(|In+1|)

∫
S(In+1)

|Hn(z)||g′(w)|(1−|w|2)dA(w)

=
1

K(|In+1|)
∫

S(In+1)
| fn+1(w)− fn(w)||g′(w)|(1−|w|2)dA(w)

� 1
K(|In+1|)

∫
S(In+1)

| fn+1(w)||g′(w)|(1−|w|2)dA(w)

− 1
K(|In+1|)

∫
S(In+1)

| fn(w)||g′(w)|(1−|w|2)dA(w)

�
12

.

Therefore, for any n � N ,


12

� 1
K(|In+1|)

∫
S(In+1)

|Hn(w)||g′(w)|(1−|w|2)dA(w)

�‖TgHn‖∗,D ,K
� ‖Hn‖∗,D ,K

� 1.

Thus TgHn ∈ D0
 ,K and

‖TgHn‖∗,D ,K
	 ‖Hn‖∗,D ,K

	 1

for any n � N.

Since Hn ∈ D0
 ,K , we have that Hn ∈ D1

 . Set P
n = (1−|n|2)+1K(1−|n|2) .

∫
D

|H ′
n(w)|(1−|w|2)dA(w) =

∫
D

| f ′n+1(w)− f ′n(w)|(1−|w|2)dA(w)

=(2 +2)
∫

D

∣∣∣∣∣ P
n+1n+1

(1− n+1w)2+3
− P

n n
(1− nw)2+3

∣∣∣∣∣(1−|w|2)dA(w)

�
∫

D

∣∣P
n+1n+1(1− nw)2+3−P

n n(1− n+1w)2+3
∣∣

|1− n+1w|2+3|1− nw|2+3
(1−|w|2)dA(w)

�
∫

D

P
n+1

∣∣(1− nw)2+3− (1− n+1w)2+3
∣∣

|1− n+1w|2+3|1− nw|2+3
(1−|w|2)dA(w)

+
∫

D

∣∣P
n+1n+1−P

n n
∣∣ |1− n+1w|2+3

|1− n+1w|2+3|1− nw|2+3
(1−|w|2)dA(w)

�
∫

D

P
n+1(1−|w|2)dA(w)
|1− n+1w|2+3

+
∫

D

P
n+1(1−|w|2)dA(w)

|1− nw|2+3
+
∫

D

P
n (1−|w|2)dA(w)
|1− nw|2+3

.

(3.7)
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By Lemma 2.5,

∫
D

P
n (1−|w|2)dA(w)
|1− nw|2+3

=(1−|n|2)+1K(1−|n|2)
∫

D

(1−|w|2)dA(w)
|1− nw|2+3

� K(1−|n|2) → 0

(3.8)

as n →  . Similarly,

∫
D

P
n+1(1−|w|2)dA(w)
|1− n+1w|2+3

→ 0 and
∫

D

P
n+1(1−|w|2)dA(w)

|1− nw|2+3
→ 0 (3.9)

as n →  . Combining (3.7), (3.8) and (3.9), we obtain that

lim
n→

‖Hn‖D1


= 0.

Since Tg is bounded on D1
 by Corollary 3.4, we get

lim
n→

‖TgHn‖D1


= 0.

Using Proposition 3.5, we can construct a subsequence {Hnk} of {Hn} such that Q :
C0 → D0

 ,K and V : C0 → D0
 ,K are both isomorphism onto their respective ranges,

where

Q() =



k=1

kHnk ,  = {k} ⊂ C0,

and

V () =



k=1

kTgHnk ,  = {k} ⊂ C0.

Let M be the closure of span {Hnk} in D0
 ,K . Then M is isomorphic to C0 and Tg|M :

M → Tg(M) is an isomorphism. This complete the proof of this theorem. �

4. Closed range of Tg

In this section, we will study the closed range property of Tg on D ,k and show
that Tg : D ,k → D ,k does not have closed range.

THEOREM 4.1. Let −1 <  < 0 , g ∈ F(1,−1, + 1) and K satisfy (2.1) for
some  ∈ (0,1+ ] . Then Tg : D ,k →D ,k does not have closed range, or equivalently
to say that Tg is not bounded below on D ,k .

Proof. If g∈F0(1,−1,1) , by Lemma 3.1, we have that Tg is compact on D ,k and
then Tg is not bounded below on D ,k . Thus we just need to prove that the conclusion
is correct when g ∈ F(1,−1, +1)\F0(1,−1, +1) happens.
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From the proof of Theorem 2.9, for any  > 0, there is a positive constant 0 ∈
(0,1) such that

(1−|b|2)+1

K(1−|b|2) <  (4.1)

for any 0 < |b| < 1.
Let fn(w) = wn . Clearly, fn ∈ D ,k for any n � 1. Then, for any n � 1, by (4.1)

we get that

sup
0<|b|<1

(1−|b|2)+1

K(1−|b|2)
∫

D

|wn||g′(w)|(1−|w|2)−1(1−|b(w)|2)2+2dA(w)

�‖g‖F(1,−1,+1) sup
0<|b|<1

(1−|b|2)+1

K(1−|b|2) � .
(4.2)

Now let us prove the case of |b| � 0 . Since g ∈ F(1,−1, + 1) , we see that
g ∈ D1

 . Thus there exists r ∈ (0,1) such that∫
D\rD

|g′(w)|(1−|w|2)dA(w) < .

Thus, by the monotonicity of K we have that

sup
|b|�0

(1−|b|2)+1

K(1−|b|2)
∫

D\rD
|wn||g′(w)|(1−|w|2)−1(1−|b(w)|2)+1dA(w)

= sup
|b|�0

(1−|b|2)+1

K(1−|b|2)
∫

D\rD
|wn||g′(w)|(1−|w|2) 1

|1− bw|2+2
dA(w)

� sup
|b|�0

1
K(1−|b|2)

∫
D\rD

|g′(w)|(1−|w|2)dA(w)

� 
K(1−|0|2) .

(4.3)

In addition, we can choose a sufficiently large N such that rn <  whenever n > N .
Then

sup
|b|�0

(1−|b|2)+1

K(1−|b|2)
∫

rD
|wn||g′(w)|(1−|w|2)−1(1−|b(w)|2)+1dA(w)

�
‖g‖F(1,−1,+1)

K(1−|0|2) .

(4.4)

Combing (4.3) with (4.4) we get

sup
|b|�0

(1−|b|2)+1

K(1−|b|2)
∫

D

|wn||g′(w)|(1−|w|2)−1(1−|b(w)|2)+1dA(w)

�
‖g‖F(1,−1,+1)

K(1−|0|2) � .
(4.5)
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By (4.2), (4.5) and the fact that  > 0 is arbitrary, we conclude that Tg is not bounded
below on D ,k . �
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