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A NEW PROOF OF THE SHARP WEIGHTED POWER

MEAN BOUNDS FOR THE SCHWAB–BORCHARDT MEAN

TIE-HONG ZHAO AND MIAO-KUN WANG ∗

(Communicated by L. Mihoković)

Abstract. Let SB(x,y) be Schwab-Borchardt mean of two positive numbers x and y . In this
paper, by using hypergeometric function theory and some new analytical techniques, we provide
a new proof of the sharp weighted power mean bounds for the Schwab-Borchardt mean, that is,
the double inequality (

1
3

xp +
2
3
yp
)1/p

< SB(x,y) <

(
1
3
xq +

2
3
yq
)1/q

holds for 0 < x < y if and only if p � 4/5 and q � log/2(3/2) = 0.8978 · · · , and it holds for
x > y > 0 if and only if p � 0 and q � 4/5 .

1. Introduction

The Schwab-Borchardt mean of two positive numbers x and y is defined as fol-
lows

SB(x,y) ≡ SB =

⎧⎪⎨⎪⎩
√

y2−x2

arccos(x/y) , x < y,
√

x2−y2

arccosh (x/y) , y < x

(1.1)

(cf. [3, (2.3)], [11, (1.1)]). It is apparent from (1.1) that the Schwab-Borchardt mean
is a homogeneous function of degree one in its variables and SB(x,y) �= SB(y,x) for
x �= y . Using elementary identities for the inverse trigonometric (hyperbolic) function,
one can rewrite the formula (1.1) as

SB(x,y) =

√
y2− x2

arcsin
(√

1− (x/y)2
) =

√
y2− x2

arctan
(√

(y/x)2 −1
) (1.2)
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for 0 < x < y and

SB(x,y) =

√
x2 − y2

arcsinh
(√

(x/y)2−1
) =

√
x2 − y2

arctanh
(√

1− (y/x)2
) (1.3)

for 0 < y < x .
It is well known that many classical homogenous means are the particular cases of

the Schwab-Borchardt mean. For x,y > 0 with x �= y , if we let H,G,A,Q and C stand,
respectively, for the harmonic, geometric, arithmetic, quadratic and contra-harmonic
means of x and y , that is,

H = H(x,y) =
2xy
x+ y

, G = G(x,y) =
√

xy, A = A(x,y) =
x+ y

2
,

Q = Q(x,y) =

√
x2 + y2

2
, C = C(x,y) =

x2 + y2

x+ y
.

Then two Seiffert means

P = P(x,y) =
x− y

2arcsin
(

x−y
x+y

)
(cf. [16]) and

T = T (x,y) =
x− y

2arctan
(

x−y
x+y

)
(cf. [17]), the logarithmic mean

L = L(x,y) =
x− y

logx− logy
=

x− y

2arctanh
(

x−y
x+y

)
(cf. [5]) and the Neuman-Sándor mean

NS = NS(x,y) =
x− y

2arcsinh
(

x−y
x+y

)
(cf. [11, (2.6)]) can be expressed by

P = SB(G,A), T = SB(A,Q), L = SB(A,G), NS = SB(Q,A),

respectively (cf. [11, (2.8)]).
An alternative family of bivariate means derived from the Schwab-Borchardtmean

are defined by

SAH = SB(A,H), SHA = SB(H,A), SCA = SB(C,A),
SAC = SB(A,C), SCH = SB(C,H), SHC = SB(H,C)
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(cf. [8, (8)]). Generally speaking, a pair of bivariate means X and Y generates a new
mean SB(X ,Y) by the Schwab-Borchardt mean, which is called a Schwab-Borchardt
type mean with the generating means X and Y .

In the past twenty years, optimal bounds for the Schwab-Borchardt type means
in terms of their generating means have been studied in [4, 6, 7, 8, 9, 10, 15]. As
applications, a lot of equivalent sharp inequalities for the trigonometric functions and
hyperbolic functions have also been derived. For example, the authors [4, 7, 15] proved

G1/3A2/3 < P <
1
3
G+

2
3
A, (1.4)

A1/3G2/3 < L <
1
3
A+

2
3
G, (1.5)

for all x,y > 0 with x �= y , and therefore obtained

cos1/3 t <
sin t
t

<
2
3

+
1
3

cost, t ∈
(
0,

2

)
,

(coshx)1/3 <
sinh t

t
<

2
3

+
1
3

coshx, t ∈ (0,)

by letting (x,y) = (1+ sin t,1− sint) in (1.4) for t ∈ (0,/2) and (x,y) = (1+ tanht,
1− tanht) in (1.5) for t ∈ (0,) . These inequalities are known as Cusa-Huygens and
Mitrinović-Adamović inequalities, and their hyperbolic counterpart.

It is worthy noting that inequalities (1.4) and (1.5) can be unified by

M0(x,y;1/3) = x1/3y2/3 < SB(x,y) <
x+2y

3
= M1(x,y;1/3) (1.6)

for x,y > 0 with x �= y , where

Mp(x,y;w) =

⎧⎨⎩
[
wxp +(1−w)yp

]1/p
, p �= 0,

xwy1−w, p = 0
(1.7)

is the weighted power mean of positive numbers x and y with weight w ∈ (0,1) . We
remark that p �→ Mp(x,y;w) is strictly increasing for fixed x,y > 0 with x �= y and
w ∈ (0,1) , and Mp(x,y;w) for w �= 1/2 is also a non-symmetric mean of x and y .

To strengthen the double inequality (1.4), Yang [23] had proved that the double
inequality (

1
3
Gp +

2
3
Ap
)1/p

< P <

(
1
3
Gq +

2
3
Aq
)1/q

for x,y > 0 if and only if p � 4/5 and q � log/2(3/2) = 0.8978 · · · , which is, by
Seiffert and Arc sine transformation, equivalent to the double inequality

Mp

(
cost,1;

1
3

)
=
(

1
3

cosp t +
2
3

)1/p

<
sin t
t

<

(
1
3

cosq t +
2
3

)1/q

= Mq

(
cost,1;

1
3

)
(1.8)
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holds for all t ∈ (0,/2) if and only if p � 4/5 and q � log/2(3/2) = 0.8978 · · ·,
where the second inequality was first proved in [26], and the first one also appeared
in [18, Proposition 5]. For its hyperbolic counterpart, it also had been proved in [27,
Theorem 1.1] that the double inequality

Mp

(
cosh t,1;

1
3

)
=
(

1
3

coshp t +
2
3

)1/p

<
sinh t

t

<

(
1
3

coshq t +
2
3

)1/q

= Mq

(
cosh t,1;

1
3

)
(1.9)

is valid for t ∈ (0,) if p < 0 and q � 4/5.
According to (1.1), it is not difficult to verify that the inequalities (1.8) and (1.9)

can be rewritten as inequalities (1.10) and (1.11) in the following theorem, which im-
prove the inequality (1.6). However, the proofs of two inequalities (1.8) and (1.9) are
based on derivatives and elementary trigonometric (hyperbolic) functions, which is not
easy to extended to the case of generalized trigonometric (hyperbolic) functions. The
main goal of this paper is provide a new proof of Theorem 1.1 through the methods of
hypergeometric function theory and the unimodal monotonicity rule.

THEOREM 1.1. Let p,q ∈ R . Then we have the following conclusions.
(i) The inequality

Mp(x,y;1/3) < SB(x,y) < Mq(x,y;1/3) (1.10)

holds for all 0 < x < y if and only if p � 4/5 and q �  = log/2(3/2) = 0.8978 · · · .
(ii) The inequality

Mp(x,y;1/3) < SB(x,y) < Mq(x,y;1/3) (1.11)

holds for all 0 < y < x if and only if p � 0 and q � 4/5 .

The rest of this paper is as follows. In the following section, we shall recall the
definition and basic facts of Gaussian hypergeometric function, introduce two technical
tools and then establish several lemmas. In Section 3, we prove two monotonicity
theorems involving the inverse (hyperbolic) sine function and complete the proof of
Theorem 1.1.

2. Preliminaries

2.1. Basic knowledge

Given a,b,c∈ R with c �= 0,−1,−2, · · · , the Gaussian hypergeometric function is
defined by

F(a,b;c;x) := 2F1(a,b;c;x) =



n=0

(a)n(b)n

(c)n

xn

n!
for |x| < 1,
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where (a)0 = 1 and (a)n = a(a+1) · · ·(a+n−1) = (a+n)/(a) is the shifted fac-
torial function or the Pochhammer symbol for n ∈ N . Here (x) =

∫ 
0 tx−1e−tdt the

classical Euler gamma function (cf. [13]).
Recall that the hypergeometric function F(a,b;c;x) has a simple derivative for-

mula
d
dx

F(a,b;c;x) =
ab
c

F(a+1,b+1;c+1;x).

Further, the behavior of hypergeometric function F(a,b;c;x) near x = 1 satisfies the
following properties:

(1) c > a+b (cf. [14, p. 49])

F(a,b;c;1) =
(c)(c−a−b)
(c−a)(c−b)

, (2.1)

(2) c = a+b (cf. [1, 15.3.10]) the Ramanujan’s asymptotic formula (x → 1)

B(a,b)F(a,b;c;x)+ log(1− x) = R(a,b)+O [(1− x) log(1− x)] , (2.2)

(3) c < a+b (cf. [12, (1.2)]), as x → 1,

F(a,b;c;x) = (1− x)c−a−bF(c−a,c−b;c;x)

=
(c)(a+b− c)

(a)(b)
(1− x)c−a−b [1+o(1)], (2.3)

where B(a,b)= [(a)(b)]/(a+b) , R(a,b)=−2−(a)−(b) , (x)=′(x)/(x)
and  are the beta function, the Ramanujan constant, the psi function and the Euler-
Mascheroni constant.

As a special case, the inverse sine and hyperbolic tangent functions can be pre-
sented [1, (15.1.4) and (15.1.6)], in terms of hypergeometric functions, by

arcsinx = xF(1/2,1/2;3/2;x2) =



n=0

(n+1/2)√
(2n+1)n!

x2n+1, (2.4)

arctanhx = xF(1/2,1;3/2;x2) =



n=0

x2n+1

2n+1
. (2.5)

2.2. Tools and Lemmas

In this subsection, we introduce two tools to used to prove our results. The first tool
is the monotonic rule, which plays an important role in dealing with the monotonicity
of the ratio of power series.

Before stating this monotone rule, we need to introduce the so-called H -function
Hf ,g ; see [18, 21, 22] for more properties. Let f and g be differentiable on (a,b) and
g′ �= 0 on (a,b) for −� a < b �  . Then the function Hf ,g is defined by

Hf ,g :=
f ′

g′
g− f .
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PROPOSITION 2.1. ([24]) Let f (t) =
n=0 antn and g(t)=

n=0 bntn be two real
power series converging on (−r,r) and bn > 0 for all non-negative integer n. Then
the following statements hold true:

(1) If the non-constant sequence {an/bn}n=0 is increasing (decreasing) for all
n � 0 , then the function f/g is strictly increasing (decreasing) on (0,r);

(2) Suppose that for certain m∈N , the sequence {ak/bk}0�k�m and {ak/bk}k�m

are both non-constant, and they are increasing (decreasing) and decreasing (increas-
ing), respectively. Then the function f/g is strictly increasing (decreasing) on (0,r) if
and only if Hf ,g(r−) � (�)0 . If Hf ,g(r−) < (>)0 , then there exists t0 ∈ (0,r) such that
f/g is strictly increasing (decreasing) on (0,t0) and strictly decreasing (increasing)
on (t0,r) .

REMARK 2.2. The first part of Proposition 2.1 is first established by Biernacki
and Krzyz [2], while the second part comes from Yang et al. [20, Theorem 2.1]. But
we cite the latest version of the second part [24, Lemma 2], where the authors have
corrected a bug in the previous version [20, Theorem 2.1].

The second tool is to give a recurrence relation of maclaurin’s coefficients for
the product of power function and hypergeometric function, which has been proved
by Yang in [19] that the coefficients of the function x �→ (1− x)pF(a,b;c;x) satisfy
a 3-order recurrence relation for  ∈ [−1,1] , and in particular they satisfy a 2-order
recurrence relation for  = 1.

As a special case of [19, Corollary 2], we state it in the following proposition.

PROPOSITION 2.3. For a, p ∈ (0,) , we define the function r �→ p(a,r) on
(0,1) by

p(a,r) = (1− r)−p/2F(a,1;5/2;r) =



n=0

unr
n. (2.6)

Then u0 = 1 , u1 = (4a+5p)/10 and the coefficients un satisfy

un+1 = nun−nun−1 (2.7)

for n � 1 , where

n =
8n2 +2(2a+2p+5)n+4a+5p

2(n+1)(2n+5)
, n =

(2n+ p)(2n+2a+ p−2)
2(n+1)(2n+5)

.

Moreover, un > 0 for all n � 0 .

Proof. To prove un > 0 for all n � 0, it suffices to express un as, by the Cauchy
product formula,

un =
n


k=0

(p/2)n−k

(n− k)!
· (a)k

(5/2)k
,

which are all positive for n � 0. �
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LEMMA 2.4. For a ∈ (0,2) and p ∈ (3/5,1) , we define the function

fp(a,r) =
p(a,r)
(a,r)

on (0,1) , where p(a,r) is defined by (2.6) and (a,r) = F(a+1,1;5/2;r).
Then we have the following conclusions:
(i) In the case of a ∈ (0,2/3] ,

• if p ∈ [4/5,1) , then fp(a,r) is strictly increasing on (0,1);

• if p ∈ (3/5,4/5) , then there exists 1 ∈ (0,1) such that fp(a,r) is strictly de-
creasing on (0,1) and is strictly increasing on (1,1) .

(ii) In the case of a ∈ [1,2) ,

• if p ∈ (3/5,4/5] , then fp(a,r) is strictly decreasing on (0,1);

• if p ∈ (4/5,1) , then there exists 2 ∈ (0,1) such that fp(a,r) is strictly increas-
ing on (0,2) and is strictly decreasing on (2,1) .

Proof. In terms of power series expansion, by (1.1) and Proposition 2.3, it can be
rewritten as

fp(a,r) =
p(a,r)
(a,r)

= 
n=0 unrn


n=0 vnrn ,

where un is defined as in (2.7) with u0 = 1, u1 = (4a+5p)/10 and

vn =
(a+1)n

(5/2)n
.

In order to study the monotonicity of fp(a,r) , by Proposition 2.1, it suffices to
consider the monotonicity of the sequence {un/vn}n=0 , equivalently, the sign of

Dn = un+1− vn+1

vn
un = ̂nun−nun−1 (2.8)

due to (2.7) and un > 0, where

̂n = n − vn+1

vn
=

4n2 +2(2p+1)n+5p−4
2(n+1)(2n+5)

.

Moreover, from (2.7) and (2.8), we see that Dn satisfies the following recurrence rela-
tion

Dn+1 = ̂n+1Dn +[̂n+1(n − ̂n)−n+1]un. (2.9)

It is easy to see that n,n and ̂n are all positive for n � 1 when a, p ∈ (0,) .
We divide into two cases to complete the proof.
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Case 2.4.1. a ∈ (0,2/3] . In this case, for p ∈ (3/5,1) , it follows that

̂n+1(n − ̂n)−n+1 =
(2− p)[2−8a+5p+2(1−2a+ p)n]

2(n+2)(2n+5)(2n+7)

� (2− p)[(4−6a)+ (7p−6a)]
2(n+2)(2n+5)(2n+7)

> 0 (n � 1). (2.10)

We divide the proof into two cases.

• If p ∈ [4/5,1) , then by (2.6) we see that D0 = (5p−4)/10 � 0 and

D1 =
−16(2− p)a−10p+35p2

280
>

(5p−4)(7p+6)
280

� 0.

Assume that Dn > 0 for n � 1, it follows from (2.9) and (2.10) together with
̂n+1 > 0 and un > 0 that Dn+1 > 0 for n � 1. This shows that Dn � 0 for n � 0
by the induction. Hence, by Proposition 2.1(1), we see that fp(a,r) is strictly
increasing on (0,1) .

• If p ∈ (3/5,4/5) , then we see that D0 = (5p− 4)/10 < 0. First we prove
that there exists some j � 1 such that Dj > 0. Otherwise, Dn � 0 for all
n � 0. According to this with Proposition 2.1(1) yields that p(a,r)/(a,r)
is decreasing on (0,1) . Moreover, by (1.2), lim

r→1−
(1− r)p/2F(a+1,1;5/2;r)= 0

if a ∈ (0,1/2] ; lim
r→1−

(1− r)p/2F(a+1,1;5/2;r) = lim
r→1−

(1− r)(p+1)/2−aF(3/2−
a,3/2;5/2;r) = 0 if a ∈ (1/2,2/3] . Combining this with the monotonicity of
p(a,r)/(a,r) , it follows that

1 =
p(a,0+)
(a,0+)

� p(a,1−)
(a,1−)

= lim
r→1−

F(a,1;5/2;r)
(1− r)p/2F(a+1,1;5/2;r)

= ,

which is a contradiction.

Suppose that Dj∗ is the first positive term, that is to say, Dn � 0 for 0 � n �
j∗ − 1. As proved in the above, if Dn � 0 for some n � 1, then Dn+1 > 0 by
(2.9) and (2.10). According to this with Dj∗ > 0, it follows that Dn > 0 for
n � j∗ by the induction. In other words, it has been proved that the sequence
{un/vn} is decreasing for 0 � n � j∗ − 1 and is increasing for n � j∗ . On the
other hand, we can compute

Hp,(r) =
 ′

p(a,r)
 ′(a,r)

(a,r)−p(a,r)

=
5p(1− r)−p/2−1F(a,1;5/2;r)+4a(1− r)−p/2F(a+1,2;7/2;r)

4(a+1)F(a+2,2;7/2;r)

×F(a+1,1;5/2;r)− (1− r)−p/2F(a,1;5/2;r)

=
1

(1− r)p/2

⎡⎣ 5pF(a,1;5/2;r)+4a(1− r)F(a+1,2;7/2;r)
4(a+1)F(3/2−a,3/2;7/2;r)

×(1− r)a−1/2F(a+1,1;5/2;r)−F(a,1;5/2;r)

⎤⎦ ,
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which together with (2.1) gives

Hp,(1−) =

{
, a ∈ (0,1/2],

sgn
(

3(p+1−2a)
(2a−1)(3−2a)

)
, a ∈ (1/2,2/3]

}
= .

According to this with the monotonicity of {un/vn} and Proposition 2.1(2), we
conclude that there exists 1 ∈ (0,1) such that fp(a,r) is strictly decreasing on
(0,1) and is strictly increasing on (1,1) .

Case 2.4.2. a ∈ [1,2) . In this case, it can be verified, for p ∈ (3/5,1) , that

̂n+1(n − ̂n)−n+1 =
(2− p)[2−8a+5p+2(1−2a+ p)n]

2(n+2)(2n+5)(2n+7)

� − (2− p)[4(a−1)+ (8a−7p)]
2(n+2)(2n+5)(2n+7)

< 0 (n � 1). (2.11)

We divide into two cases to complete the proof.

• If p ∈ (3/5,4/5] , then it is easy to see that D0 = (5p−4)/10 � 0 and

D1 =
−16(2− p)a−10p+35p2

280
< −24+(4−5p)(34+35p)

1400
< 0.

Similar to Case 2.4.1, assume that Dn < 0 for n � 1, it is easy to obtain Dn+1 < 0
for n � 1 by (2.9) and (2.11). This enables us to obtain Dn < 0 for n � 0 by the
induction. Hence, fp(a,r) is strictly decreasing on (0,1) by Proposition 2.1(1).

• If p ∈ (4/5,1) , then we see that D0 > 0. If Dn � 0 for all n � 0, by Proposition
2.1(1), then fp(a,r) is increasing on (0,1) . According to this with (2.3), it
follows that

1 =
p(a,0+)
(a,0+)

� p(a,1−)
(a,1−)

�

⎧⎨⎩limr→1−
(1−r)a−(p+1)/2F(a,1;5/2;r)

F(3/2−a,3/2;5/2;r) = 0, a ∈ [1,3/2],

limr→1−
(1−r)1−p/2F(5/2−a,3/2;5/2;r)

F(3/2−a,3/2;5/2;r) = 0, a ∈ (3/2,2).

This is obviously impossible. So there exists Dk < 0 for k � 1 and let Dk∗ be
the first negative term, namely, Dn � 0 for 1 � n � k∗ − 1. As shown in Case
2.4.1, it can be proven that Dn < 0 for n � k∗ by the induction. That is to say, the
sequence {un/vn} is increasing for 0 � n � k∗ − 1 and decreasing for n � k∗ .
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According to this with the fact that

Hp,(r) =
 ′

p(a,r)
 ′(a,r)

(a,r)−p(a,r)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(1−r)p/2

⎡⎢⎣ 5pF(a,1;5/2;r)+4a(1− r)3/2−aF(5/2−a,3/2;7/2;r)
4(a+1)F(3/2−a,3/2;7/2;r)

×F(3/2−a,3/2;5/2;r)−F(a,1;5/2;r)

⎤⎥⎦ ,

1
(1−r)p/2+a−3/2

⎡⎢⎣ 5pF(5/2−a,3/2;5/2;r)+4aF(5/2−a,3/2;7/2;r)
4(a+1)F(3/2−a,3/2;7/2;r)

×F(3/2−a,3/2;5/2;r)−F(5/2−a,3/2;5/2;r)

⎤⎥⎦ ,

=

⎧⎪⎪⎨⎪⎪⎩
−sgn

(
3(2a−p−1)

(2a−1)(3−2a)

)
, a ∈ [1,3/2),

−, a = 3/2,

−sgn
(

3(2−p)
√
(a−3/2)

4(2a−1)(a)

)
, a ∈ (3/2,2)

⎫⎪⎪⎬⎪⎪⎭= − as (r → 1−),

Proposition 2.1 leads to the conclusion that there exists 2 ∈ (0,1) such that
fp(a,r) is strictly increasing on (0,2) and is strictly decreasing on (2,1) .

This completes the proof. �
We will provide two identities for general hypergeometric functions in the follow-

ing lemma, although we only use its special case in this paper.

LEMMA 2.5. For an integer m � 0 , it holds that

F(a,m+1;c;r)−1 =
ar
c

m


k=0

F(a+1,k+1;c+1;r),

1− (1− r)F(a,m+1;c;r) =
r
c

⎡⎣ (c−a)F(a,m+1;c+1;r)

−a
m−1


k=0
F(a+1;k+1;c+1;r)

⎤⎦
for r ∈ (0,1) . In particular, we say

m−1


k=0
( · ) = 0 if m = 0 .

Proof. Let us define Ak = (n+k)!/n!= [k!(k+1)n]/n! and Bk = (n+k+1)!/(n+
1)! = [k!(k+1)n+1]/(n+1)! for k � 0.

We first prove the following identity

Bm

m!
=

m


k=0

Ak

k!
. (2.12)

It is easy to see that (2.12) holds for m = 0 and m = 1. Assume that the identity (2.12)
holds for m � 1, then a simple calculation gives

Bm+1−Am+1

(m+1)!
=

1
(m+1)!

[
(n+m+2)!

(n+1)!
− (n+m+1)!

n!

]
=

Bm

m!
=

m


k=0

Ak

k!
,
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equivalently,

Bm+1

(m+1)!
=

m+1


k=0

Ak

k!
,

which shows (2.12) by induction. By applying (2.12), it follows that

(m+1)n+1

n+1
=

n!Bm

m!
=

m


k=0

n!Ak

k!
=

m


k=0

(k+1)n. (2.13)

For m � 0, by (2.13), it can be obtained that

F(a,m+1;c;r)−1 =



n=1

(a)n(m+1)n

(c)n

rn

n!
=

ar
c




n=0

(a+1)n(m+1)n+1

(c+1)n(n+1)
rn

n!

=
ar
c

m


k=0




n=0

(a+1)n(k+1)n

(c+1)n

rn

n!
=

ar
c

m


k=0

F(a+1,k+1;c+1;r)

and

1− (1− r)F(a,m+1;c;r) = rF(a,m+1;c,r)− ar
c

m


k=0

F(a+1,k+1;c+1;r)

=
r
c

⎡⎣ cF(a,m+1;c;r)−aF(a+1,m+1;c+1;r)

−a
m−1


k=0
F(a+1,k+1;c+1;r)

⎤⎦
=

r
c

⎡⎣ (c−a)F(a,m+1;c+1;r)

−a
m−1


k=0
F(a+1;k+1;c+1;r)

⎤⎦ .

This gives the proof of Lemma 2.5. �

Taking m = 0 into Lemma 2.5, we obtain the following corollary which had been
proved in [25, (3.5) and (3.6)].

COROLLARY 2.6. For a,c > 0 , the following identities

F(a,1;c;r)−1 =
ar
c

F(a+1,1;c+1;r),

1− (1− r)F(a,1;c;r) =
(c−a)r

c
F(a,1;c+1;r)

holds for r ∈ (0,1) .

LEMMA 2.7. For w∈ (0,1) , the function r �→Mp(
√

1− r,1;w)/Mq(
√

1− r,1;w)
is increasing on (0,1) if and only if p � q, and is decreasing on (0,1) if and only if
p � q.
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Proof. For w ∈ (0,1) , it is easy to see that

d
dr

[
log

(
Mp(

√
1− r,1;w)

Mq(
√

1− r,1;w)

)]
=

w(1−w)
[
(1− r)q/2− (1− r)p/2

]
2(1− r)

[
Mp(

√
1− r,1;w)

]p [
Mq(

√
1− r,1;w)

]q � 0,

d
dr

[
log

(
Mp(

√
1− r,1;w)

M0(
√

1− r,1;w)

)]
=

w(1−w)
[
1− (1− r)p/2

]
2(1− r)

[
Mp(

√
1− r,1;w)

]p � 0

hold for x ∈ (0,1) if and only if p � q �= 0 and p � 0, which gives the desired result
of Lemma 2.7. �

3. Proof of Theorem 1.1

Before proving Theorem 1.1, we first show two monotonicity theorems.

THEOREM 3.1. Let p ∈ (0,1) and the function r �→ Gp(r) be defined by

Gp(r) =
√

r

arcsin
√

r
[

1
3 (1− r)p/2 + 2

3

]1/p
.

Then the following statements are true:
(i) If p ∈ (0,4/5] , then Gp(r) is strictly increasing from (0,1) onto (1,1/p) ,

and therefore, the double inequality

p

[
1
3
(1− x2)p/2 +

2
3

]−1/p

<
arcsinx

x
<

[
1
3
(1− x2)p/2 +

2
3

]−1/p

(3.1)

holds for x ∈ (0,1) , where p = (2/3)1/p/2 is the best constant.
(ii) If p ∈ (4/5,1) , then there exists r1 ∈ (0,1) such that Gp(r) is decreasing on

(0,r1) and is increasing on (r1,1) and thereby the inequality

min{p,1}
[
1
3
(1− x2)p/2 +

2
3

]−1/p

<
arcsinx

x
(3.2)

holds for x ∈ (0,1) . In particular, the inequality[
1
3
(1− x2)p/2 +

2
3

]−1/p

<
arcsinx

x
(3.3)

holds for x ∈ (0,1) when  � p < 1 , where  is given in Theorem 1.1(i) .

Proof. Logarithmic derivative of Gp(r) together with (2.3) and (2.4) gives rise to

G′
p(x)

Gp(x)
=

1
2r

[
2(1− r)+ (1− r)p/2

(1− r)(2+(1− r)p/2)
−

√
r√

1− rarcsin
√

r

]

=
1
2r

[
2(1− r)+ (1− r)p/2

(1− r)(2+(1− r)p/2)
−

√
1− r

(1− r)F(1/2,1/2;3/2;r)

]

=
gp(r)

2r(1− r)[2+(1− r)p/2]F(1,1;3/2;r)
, (3.4)
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where

gp(r) = (1− r)p/2
[
F(1,1;3/2;r)−1

]
−2

[
1− (1− r)F(1,1;3/2;r)

]
.

By Corollary 2.6, we can simplify gp(r) as

gp(r) =
2r
3

(1− r)p/2F(2,1;5/2;r)− 2r
3

F(1,1;5/2;r)

=
2r
3

(1− r)p/2F(2,1;5/2;r)
[
1− fp(1,r)

]
, (3.5)

where fp(a,r) is defined in Lemma 2.4.
We divide the proof into two cases:

Case 3.1.1. p ∈ (0,4/5] . For p ∈ (3/5,4/5] , by Lemma 2.4(ii), fp(1,r) is de-
creasing on (0,1) and thereby, fp(1,r) � fp(1,0+) = 1 for r ∈ (0,1) . This together
with (3.5) yields gp(r) � 0 for r ∈ (0,1) and by (3.4), which in turn implies Gp(r) is
strictly increasing on (0,1) . In particular, G4/5(r) is strictly increasing on (0,1) . In
this case, we rewrite Gp(x) as

Gp(x) = G4/5(x) ·
M4/5(

√
1− r,1;1/3)

Mp(
√

1− r,1;1/3)

which, by Lemma 2.7, is the product of two positive and increasing functions on (0,1)
and so is Gp(x) . Therefore, we conclude that, r ∈ (0,1) ,

1 = Gp(0+) < Gp(r) < Gp(1−) =
2(3/2)1/p


,

that is, by making a change of variable x =
√

r ,

(2/3)1/p

2

[
1
3
(1− x2)p/2 +

2
3

]−1/p

<
arcsinx

x
<

[
1
3
(1− x2)p/2 +

2
3

]−1/p

for x ∈ (0,1) , which gives (3.1).

Case 3.1.2. p∈ (4/5,1) . In this case, Lemma 2.4(ii) enables us to know that there
exists r̂1 ∈ (0,1) such that fp(1,r) is increasing on (0, r̂1) and is decreasing on (r̂1,1) .
This together with fp(1,0+) = 1 and fp(1,1−) = 0 implies that there exists r̃1 ∈ (r̂1,1)
such that fp(1,r) > 1 for r ∈ (0, r̃1) and fp(1,r) < 1 for r ∈ (r̃1,1) . In other words,
gp(r) < 0 for r ∈ (0, r̃1) and gp(r) > 0 for r ∈ (r̃1,1) by (3.5) and so is G′

p(r) by (3.4).
Consequently, we obtain

Gp(r) < max{Gp(0+),Gp(1−)} = max

{
1,

2(3/2)1/p



}
for r ∈ (0,1) , which implies (3.2) by changing the variable x =

√
r . If  � p < 1, that

is, 2(3/2)1/p/ < 2(3/2)1// = 1, the inequality Gp(r) < 1, namely,[
1
3
(1− x2)p/2 +

2
3

]−1/p

<
arcsinx

x
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holds for r ∈ (0,1) . This completes the proof. �

THEOREM 3.2. Let p ∈ (3/5,) and the function r �→ G̃p(r) be defined by

G̃p(r) =
√

r

arctanh
√

r
[

1
3 + 2

3 (1− r)p/2
]1/p

.

Then the following statements hold true:
(i) If p ∈ [4/5,) , then G̃p(r) is strictly decreasing from (0,1) onto (0,1) , and

therefore, the inequality [
1
3

+
2
3
(1− x2)p/2

]−1/p

<
arctanhx

x
(3.6)

holds for x ∈ (0,1) .
(ii) If p∈ (3/5,4/5) , then there exits r∈ (0,1) such that G̃p(r) is strictly increas-

ing on (0,r2) and strictly decreasing on (r2,1) with G̃p(0+) = 1 and G̃p(1−) = 0 .

Proof. Taking the logarithmic differentiation for G̃p(r) with (2.5) yields

G̃′
p(r)

G̃p(r)
=

1
2r(1− r)

[
1− r+2(1− r)p/2

1+2(1− r)p/2
−

√
r

arctanh
√

r

]

=
1

2r(1− r)

[
1− r+2(1− r)p/2

1+2(1− r)p/2
− 1

F(1/2,1;3/2;r)

]

=
g̃p(r)

2r(1− r)[1+2(1− r)p/2]F(1/2,1;3/2;r)
, (3.7)

where

g̃p(r) =
[
1− r+2(1− r)p/2

]
F(1/2,1;3/2;r)−1−2(1− r)p/2.

Similarly, due to Corollary 2.6, we can rewrite g̃p(r) as

g̃p(r) = 2(1− r)p/2 [F(1/2,1;3/2;r)−1]− [1− (1− r)F(1/2,1;3/2;r)]

=
2r
3

(1− r)p/2F(3/2,1;5/2;r)− 2r
3

F(1/2,1;5/2;r)

=
2r
3

(1− r)p/2F(3/2,1;5/2;r)
[
1− fp(1/2,r)

]
, (3.8)

where fp(a,r) is defined by Lemma 2.4.
We divide the proof into two cases.

Case 3.2.1. p∈ [4/5,) . For p∈ [4/5,1) , by Lemma 2.4(i), fp(1/2,r) is increas-
ing on (0,1) and thereby, fp(1/2,r) � fp(1/2,0+) = 1 for r ∈ (0,1) . This together
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with (3.8) yields g̃p(r) � 0 for r ∈ (0,1) and by (3.7), which in turn implies G̃p(r)
is strictly decreasing on (0,1) . In particular, G̃4/5(r) is strictly decreasing on (0,1) .
According to this with Lemma 2.7, it can be seen that for p ∈ [4/5,) ,

G̃p(x) = G̃4/5(x) ·
M4/5(

√
1− r,1;2/3)

Mp(
√

1− r,1;2/3)

is the product of two positive and decreasing functions on (0,1) and so is G̃p(x) .
Therefore, we conclude that, r ∈ (0,1) ,

1 = G̃p(0+) > G̃p(r) > G̃p(1−) = 0,

that is, by making a change of variable x =
√

r ,[
1
3

+
2
3
(1− x2)p/2

]−1/p

<
arctanhx

x

for x ∈ (0,1) , which gives (3.6).

Case 3.2.2. p∈ (3/5,4/5) . In this case, Lemma 2.4(i) leads to the conclusion that
there exists r̂2 ∈ (0,1) such that fp(1/2,r) is decreasing on (0, r̂2) and is increasing
on (r̂2,1) . Combining this with fp(1/2,0+) = 1 and fp(1/2,1−) = , it follows from
(3.8) that there exists r̃2 ∈ (r̂2,1) such that g̃p(r) > 0 for r ∈ (0, r̃2) and g̃p(r) < 0 for
r ∈ (r̃2,1) . This, by (3.7), gives the desired monotonicity result of Theorem 3.2(ii) .
Obviously, G̃p(0+) = 1 and G̃p(1−) = 0. The proof is completed. �

Now we are in a position to prove Theorem 1.1.

Proof. We divide into two cases 0 < x < y and 0 < y < x to complete the proof.

Case 1.1. 0 < x < y . Let r = 1− (x/y)2 ∈ (0,1) . Then it can be easily seen from
(1.2) that

SB(x,y) = y

√
1− (x/y)2

arcsin
√

1− (x/y)2
= y

√
r

arcsin
√

r
(3.9)

and

Mp(x,y;1/3) = y

[
1
3
(x/y)p +

2
3

]1/p

= y

[
1
3
(1− r)p/2 +

2
3

]1/p

. (3.10)

Necessity. The necessary condition for inequality (1.10), by (3.9) and (3.10), re-
quires to satisfy

lim
r→0+

1
r2

{
arcsin

√
r√

r
−
[
1
3
(1− r)p/2 +

2
3

]−1/p
}

= lim
r→0+

1
r2

{
1+

r
6

+
3r2

40
+o(r2)−

[
1+

r
6

+
(7−2p)r2

72
+o(r2)

]}
=

5p−4
180

� 0,
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which gives p � 4/5 and

lim
r→1−

{
arcsin

√
r√

r
−
[
1
3
(1− r)p/2 +

2
3

]−1/p
}

=

2
−
(

3
2

)1/p

� 0,

which implies p �  = log/2(3/2).

Sufficiency. As mentioned in the introduction, it has been known that p �→Mp(x,y;
1/3) is strictly increasing on (−,) for fixed x,y > 0. Hence, it suffices to prove that
the inequality (1.10) holds for 0 < x < y when p = 4/5 and q =  , which follows easily
from (3.9) and (3.10) together with the right-side of (3.1) and (3.3).

Case 1.2. 0 < y < x . Let r = 1− (y/x)2 ∈ (0,1) . Then it can be easily seen from
(1.3) that

SB(x,y) = x

√
1− (y/x)2

arctanh
√

1− (y/x)2
= x

√
r

arctanh
√

r
(3.11)

and

Mp(x,y;1/3) = x

[
1
3

+
2
3
(y/x)p

]1/p

= x

[
1
3

+
2
3
(1− r)p/2

]1/p

. (3.12)

We divide into three cases to complete the proof.

• If p ∈ [4/5,) , then the inequality

SB(x,y) < Mp(x,y;1/3) (3.13)

for all 0 < y < x follows from (3.11) and (3.12) together with (3.6).

• If p ∈ (0,4/5) , then by Taylor series expansion,

G̃p(r) = 1+
4−5p
180

r2 +o(r2)

gives G̃p(r) > 1 for r ∈ (0,1) with sufficient small 1 > 0. This together with
(3.11) and (3.12) implies that

SB(x,y) > Mp(x,y;1/3) (3.14)

for
√

1− 1 < y/x< 1. On the other hand, the continuity with G̃p(1−)= 0 shows
that there exists sufficient small 2 > 0 such that G̃p(r) < 1 for r ∈ (1− 2,1) ,
equivalently, by (3.11) and (3.12),

SB(x,y) < Mp(x,y;1/3) (3.15)

for 0 < y/x <
√
2 .
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• If p ∈ (−,0] , then it is easy to obtain

Mp(x,y;1/3) � M0(x,y;1/3) < SB(x,y) (3.16)

for all 0 < y < x , due to the monotonicity of p �→ Mp(x,y;1/3) and SB(x,y) >

x1/3y2/3 .

The desired result of Theorem 1.1(ii) can be obtained from (3.13)–(3.16). �
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