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A NEW PROOF OF THE SHARP WEIGHTED POWER
MEAN BOUNDS FOR THE SCHWAB-BORCHARDT MEAN

TIE-HONG ZHAO AND MIAO-KUN WANG*

(Communicated by L. Mihokovic)

Abstract. Let SB(x,y) be Schwab-Borchardt mean of two positive numbers x and y. In this
paper, by using hypergeometric function theory and some new analytical techniques, we provide
a new proof of the sharp weighted power mean bounds for the Schwab-Borchardt mean, that is,

the double inequality
1/p 1/q
1 2 1 2
Y Y SB Y
<3x +3y) < (x,y)<<3x +3y)

holds for 0 <x <y if and only if p <4/5 and g > log,/,(3/2) = 0.8978--, and it holds for
x>y>0ifandonly if p<0 and ¢ >4/5.

1. Introduction

The Schwab-Borchardt mean of two positive numbers x and y is defined as fol-

lows

22

arccos(x/y) X<y
SB(x,y) =SB = (L.1)
/22
arccosh (x/y)’ y<x

(cf. [3, (2.3)], [11, (1.1)]). It is apparent from (1.1) that the Schwab-Borchardt mean
is a homogeneous function of degree one in its variables and SB(x,y) # SB(y,x) for
x # y. Using elementary identities for the inverse trigonometric (hyperbolic) function,
one can rewrite the formula (1.1) as

R
arcsin ( 1— (x/y)2> " arctan ( (y/x)? — 1)
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for 0 <x <y and

2 _ 2 2 _ 2
SB(x,y) = Ty - VI~ (1.3)

arcsinh ( (x/y)? — 1) arctanh ( 1- (y/x)2>

for 0 <y <x.

It is well known that many classical homogenous means are the particular cases of
the Schwab-Borchardt mean. For x,y > 0 with x #y, if we let H,G,A,Q and C stand,
respectively, for the harmonic, geometric, arithmetic, quadratic and contra-harmonic
means of x and y, thatis,

2xy x—+y
H=H ’ =T G=G 3 = 3 A=A 5 = A
(x,y) Tty (x,y) = Vxy (x,y) = —
22+ 2 24y?
— s = s C = C 5 = .
0=0(x.y) 3 ¥ =24y
Then two Seiffert means
P=Pry)= ———
2 arcsin (;%)
(cf. [16]) and
T=T(xy)=—"—

x—y
2 arctan <m )

(cf. [17]), the logarithmic mean

L=Lixy)=—3 =22

logx—logy  2arctanh (%)

(cf. [5]) and the Neuman-Sandor mean

NS=NS(x,y)= — Y
2arcsinh %)

/N

(cf. [11, (2.6)]) can be expressed by
P=SB(G,A), T=SB(A,0), L=SB(A,G), NS=SB(Q,A),

respectively (cf. [11, (2.8)]).
An alternative family of bivariate means derived from the Schwab-Borchardt mean
are defined by

Sap = SB(A,H), Spya=SB(H,A), Sca=SB(C,A),
Sac =SB(A,C), Scy =SB(C,H), Suc=SB(H,C)
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(cf. [8, (8)]). Generally speaking, a pair of bivariate means X and Y generates a new
mean SB(X,Y) by the Schwab-Borchardt mean, which is called a Schwab-Borchardt
type mean with the generating means X and Y.

In the past twenty years, optimal bounds for the Schwab-Borchardt type means
in terms of their generating means have been studied in [4, 6, 7, 8, 9, 10, 15]. As
applications, a lot of equivalent sharp inequalities for the trigonometric functions and
hyperbolic functions have also been derived. For example, the authors [4, 7, 15] proved

1.2

G'PA?P < p< 3G+34, (1.4)
1 2

ARG <L < 7A+36, (1.5)

for all x,y > 0 with x # y, and therefore obtained

cos/t<51—m<2+lcost tE(OE>
t 3 3 ’ 2
inhr 2 1

(coshx)1/3<%<§+§coshx7 1 € (0,00)

by letting (x,y) = (1 +sinz, 1 —sinz) in (1.4) for r € (0,7/2) and (x,y) = (1 + tanhz,
1 —tanhr) in (1.5) for # € (0,00). These inequalities are known as Cusa-Huygens and
Mitrinovi¢-Adamovic inequalities, and their hyperbolic counterpart.

It is worthy noting that inequalities (1.4) and (1.5) can be unified by

x+2
Mo(x,y;1/3) = x'y*/* < SB(x,y) < Ty = M (x,y:1/3) (1.6)
for x,y > 0 with x # y, where
[wxp—l—(l—w) o #0
M, (x,y;w) = yoo PTD (1.7)
Kyl p=0

is the weighted power mean of positive numbers x and y with weight w € (0,1). We
remark that p — M), (x,y;w) is strictly increasing for fixed x,y > 0 with x # y and

€ (0,1), and M (x,y;w) for w # 1/2 is also a non-symmetric mean of x and y.
To strengthen the double inequality (1.4), Yang [23] had proved that the double

inequality
1 2 1/p 1 2 1/q
<§Gp+§Ap) <P< <—Gq+§Aq)

for x,y >0 if and only if p <4/5 and g > log,»(3/2) = 0.8978---, which is, by
Seiffert and Arc sine transformation, equivalent to the double mequahty

1 1 2\'? sint
M, <c0st,1;§> = <§c0spt+§) < 2

1 2\ V4 1
<<§c0sqt+§> :M[I(cost,l;g) (1.8)
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holds for all ¢ € (0,7/2) if and only if p <4/5 and g > log,/,(3/2) = 0.8978--
where the second inequality was first proved in [26], and the first one also appeared
in [18, Proposition 5]. For its hyperbolic counterpart, it also had been proved in [27,
Theorem 1.1] that the double inequality

M, | cosht,1; Ny _ (] cosh”t + 2\ < sinh?
P "3) \3 3 t
1 2\ V4 1
< <§ cosh?t + §> =M, (cosht, I; 5) (1.9)

is valid for ¢ € (0,00) if p <0 and g >4/5.

According to (1.1), it is not difficult to verify that the inequalities (1.8) and (1.9)
can be rewritten as inequalities (1.10) and (1.11) in the following theorem, which im-
prove the inequality (1.6). However, the proofs of two inequalities (1.8) and (1.9) are
based on derivatives and elementary trigonometric (hyperbolic) functions, which is not
easy to extended to the case of generalized trigonometric (hyperbolic) functions. The
main goal of this paper is provide a new proof of Theorem 1.1 through the methods of
hypergeometric function theory and the unimodal monotonicity rule.

THEOREM 1.1. Let p,q € R. Then we have the following conclusions.
(i) The inequality

My (x,y;1/3) < SB(x,y) < My(x,y;1/3) (1.10)

holds for all 0 < x <y ifand only if p <4/5 and q > T =1log,/,(3/2) = 0.8978--
(ii) The inequality

My (x,y;1/3) < SB(x,y) < My(x,y;1/3) (1.11)
holds for all 0 <y < x ifand only if p <0 and g > 4/5.

The rest of this paper is as follows. In the following section, we shall recall the
definition and basic facts of Gaussian hypergeometric function, introduce two technical
tools and then establish several lemmas. In Section 3, we prove two monotonicity
theorems involving the inverse (hyperbolic) sine function and complete the proof of
Theorem 1.1.

2. Preliminaries

2.1. Basic knowledge

Given a,b,c € R with ¢ #0,—1,—2,---, the Gaussian hypergeometric function is
defined by

=

F(a,b;c;x) == F(a,b;c;x) = 2 Jnl for |x| <1,
n=0 C n
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where (a)o=1 and (a), =ala+1)---(a+n—1)=T(a+n)/I(a) is the shifted fac-
torial function or the Pochhammer symbol for n € N. Here T'(x) = [ t* le~'dt the
classical Euler gamma function (cf. [13]).

Recall that the hypergeometric function F(a,b;c;x) has a simple derivative for-

mula P b
a
EF(aJ?,c,x) = ?F(a—I— L,b+ L;c+ 1;x).

Further, the behavior of hypergeometric function F(a,b;c;x) near x = 1 satisfies the
following properties:
(1) ¢ >a+Db (cf. [14, p. 49])

[(c)I'(c—a—D)

Fla.bie:l) = m e =b)’

2.1

(2) ¢ =a+Db (cf. [1, 15.3.10]) the Ramanujan’s asymptotic formula (x — 1)
B(a,b)F(a,b;c;x) +1og(1l —x) = R(a,b) + O[(1 —x)log(1 —x)], (2.2)
(3) e<a+b (cf. [12,(1.2)D,as x — 1,

F(a,b;c;x) = (1—x) " PF(c —a,c—b;c;x)
[(c)I'(a+b—c) Cah
=———— ~(1—-x)""[1 1 2.3

where B(a,b) =[[(a)['(b)]/T(a+b), R(a,b) = -2y —wy(a)—y(b), y(x)=T"(x)/T(x)
and y are the beta function, the Ramanujan constant, the psi function and the Euler-
Mascheroni constant.

As a special case, the inverse sine and hyperbolic tangent functions can be pre-
sented [1, (15.1.4) and (15.1.6)], in terms of hypergeometric functions, by

o _L+1/2) 2

Py — . 2 —
arcsinx = xF (1/2,1/2;3/2;x%) = 26 TRt Dl ; (2.4)
oo x2n+1
arctanhx = xF(1/2,1;3/2:x%) = Y il (2.5)

n=0

2.2. Tools and Lemmas

In this subsection, we introduce two tools to used to prove our results. The first tool
is the monotonic rule, which plays an important role in dealing with the monotonicity
of the ratio of power series.

Before stating this monotone rule, we need to introduce the so-called H -function
Hy 4 see [18, 21, 22] for more properties. Let f and g be differentiable on (a,b) and
g #0 on (a,b) for —eo < a < b < eo. Then the function Hy, is defined by

fg—f

Hf,:==
18 Py
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PROPOSITION 2.1. ([24]) Let f(1) =X _qant™ and g(t) =Y, _obut" be two real
power series converging on (—r,r) and by, > 0 for all non-negative integer n. Then
the following statements hold true:

(1) If the non-constant sequence {a,/b,};_ is increasing (decreasing) for all
n =0, then the function f/g is strictly increasing (decreasing) on (0,r);

(2) Suppose that for certain m € N, the sequence {ay /by }o<k<m and {ar/bi}i=m
are both non-constant, and they are increasing (decreasing) and decreasing (increas-
ing), respectively. Then the function f/g is strictly increasing (decreasing) on (0,r) if
andonly if Hr o(r™) 2 (<)0. If Hy 4(r™) < (>)0, then there exists ty € (0,r) such that
f/g is strictly increasing (decreasing) on (0,ty) and strictly decreasing (increasing)
on (to,r).

REMARK 2.2. The first part of Proposition 2.1 is first established by Biernacki
and Krzyz [2], while the second part comes from Yang et al. [20, Theorem 2.1]. But
we cite the latest version of the second part [24, Lemma 2], where the authors have
corrected a bug in the previous version [20, Theorem 2.1].

The second tool is to give a recurrence relation of maclaurin’s coefficients for
the product of power function and hypergeometric function, which has been proved
by Yang in [19] that the coefficients of the function x — (1 — 0x)PF (a,b;c;x) satisfy
a 3-order recurrence relation for 8 € [—1,1], and in particular they satisfy a 2-order
recurrence relation for 0 = 1.

As a special case of [19, Corollary 2], we state it in the following proposition.

PROPOSITION 2.3. For a,p € (0,%), we define the function r — ¢p(a,r) on
(0,1) by

op(a,r) = (1—r)P2F(a,1;5/21) = Y upr" (2.6)
n=0
Then ug =1, uy = (4a+5p)/10 and the coefficients u, satisfy
Upt1 = Oplly — ﬁnun—l 2.7
for n > 1, where

_ 8n?+2(2a+2p+5)n+4a+5p

o (2n+p)2n+2a+p—-2)
" 2(n+1)(2n+5) '

2(n+1)(2n+5)

ﬁn:

Moreover, u, >0 forall n > 0.

Proof. To prove u,, > 0 for all n > 0, it suffices to express u, as, by the Cauchy
product formula,

N (P/Z)nfk. (@)«
”"‘,Zo =k 52

which are all positive for n > 0. [
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LEMMA 2.4. For a € (0,2) and p € (3/5,1), we define the function

on (0,1), where ¢,(a,r) is defined by (2.6) and ¢(a,r) = F(a+1,1;5/2;r).
Then we have the following conclusions:
(i) In the case of a € (0,2/3],

e if pe4/5,1), then fy(a,r) is strictly increasing on (0,1);

o if p€(3/5,4/5), then there exists 8; € (0,1) such that f,(a,r) is strictly de-
creasing on (0,01) and is strictly increasing on (81,1).

(ii) In the case of a € [1,2),
o if pc(3/5,4/5], then fy(a,r) is strictly decreasing on (0,1);

o if pe(4/5,1), then there exists 6, € (0,1) such that f,(a,r) is strictly increas-
ing on (0,8,) and is strictly decreasing on (8,,1).

Proof. In terms of power series expansion, by (1.1) and Proposition 2.3, it can be
rewritten as

~ Ppla,r)  Xounr”
Jlar) = ola,r) X gvart’

where u,, is defined as in (2.7) with up = 1, u; = (4da+5p)/10 and

(a+1),
(5/2)n

In order to study the monotonicity of f,(a,r), by Proposition 2.1, it suffices to
consider the monotonicity of the sequence {u,/v,}; . equivalently, the sign of

Vn =

Vn+1

Dy =uy o — Uy = Oyt — Bnunfl (2.3)

n

due to (2.7) and u, > 0, where

P s 4n* +2(2p+ 1)n+5p—4
Ty, 2(n+1)(2n+5)

Moreover, from (2.7) and (2.8), we see that D,, satisfies the following recurrence rela-
tion

Dn+1 = &n+an + [&nJrl(O‘n - &n) - ﬁnJrl} Up. (2-9)

It is easy to see that o, B, and &, are all positive for n > 1 when a,p € (0,00).
We divide into two cases to complete the proof.
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Case 2.4.1. a € (0,2/3]. In this case, for p € (3/5,1), it follows that
(2-p)[2—8a+5p+2(1—2a+p)n|
2(n+2)2n+5)(2n+7)
- 2-p)[(4—-64) + (7p — 6a)]
2(n+2)2n+5)(2n+17)
We divide the proof into two cases.

e If pc[4/5,1), then by (2.6) we see that Dy = (5p—4)/10 > 0 and

—16(2—p)a—10p+35p>  (5p—4)(7p+6)

280 ~ 280
Assume that D, > 0 for n > 1, it follows from (2.9) and (2.10) together with
Oy 1 >0 and u, > 0 that Dy, > 0 for n > 1. This shows that D,, > 0 for n >0
by the induction. Hence, by Proposition 2.1(1), we see that f,(a,r) is strictly
increasing on (0,1).

Cni1 (O — Ot) = By1 =

>0 (n=1). (2.10)

D, =

= 0.

o If p € (3/5,4/5), then we see that Dy = (Sp —4)/10 < 0. First we prove
that there exists some j > 1 such that D; > 0. Otherwise, D, < 0 for all
n > 0. According to this with Proposition 2.1(1) yields that ¢,(a,r)/¢(a,r)
is decreasing on (0, 1). Moreover, by (1.2), lim L (1—r)P2F(a+1,1;5/2;r) =0

if a € (0,1/2]; lim 1 (1—r)P2F (a+1,1; 5/2 r)— lim 1 (1—r)(PHD/27ap(3 /2 —

a,3/2;5/2;r) = O 1f a € (1/2,2/3]. Combining thlS with the monotonicity of
(pp(a r)/@(a,r), it follows that
F(a,1;5/2;r)

_ ¢p(a’0+) > ¢P(a’17) — 1 — oo
(p(a’OJr) - (p(a,I*) r—1- (1—7’)17/2F(a+1,1,5/2 r) ’

which is a contradiction.

Suppose that D, is the first positive term, that is to say, D, <0 for 0 <n <
Jj«— 1. As proved in the above, if D, > 0 for some n > 1, then D,1; > 0 by
(2.9) and (2.10). According to this with D;, > 0, it follows that D, > 0 for
n > j. by the induction. In other words, it has been proved that the sequence
{un/vn} is decreasing for 0 < n < j, — 1 and is increasing for n > j.. On the
other hand, we can compute

¢p(a.r)

(p/(a’r) (p(aﬂ") - ¢P(a7r)

5p(1—r)~ P27 1F(a,1;5/2;r) +4a(1 —r) P2F(a+1,2;7/2;r)
B d(a+1)F(a+2,2;7/2;r)

X Fla+1,1;5/2;r) — (1 —r)"P/?F(a,1;5/2;r)
S5pF(a,1;5/2;r) +4a(l —r)F(a+1,2;7/2;r)
4(a+1)F(3/2—a,3/2;7/2;r)
x(1—r)~V2F (a+1,1;5/2;r) — F(a,1;5/2;7)

H¢p (P( )

BEDLE
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which together with (2.1) gives

Hyyp(17) =3 a€(0,1/2],
opol )= Sgn<%>w’ ae(1/2,2/3]

According to this with the monotonicity of {u,/v,} and Proposition 2.1(2), we
conclude that there exists §; € (0,1) such that f,(a,r) is strictly decreasing on
(0,8;) and is strictly increasing on (9;,1).

Case 2.4.2. a € [1,2). In this case, it can be verified, for p € (3/5,1), that

2—-p)2—8a+5p+2(1—2a+p)n]

2(n+2)2n+5)(2n+7)

_(2-p)la—1)+(Ba—T7p)|
2(n+2)2n+5)2n+17)

Cni1 (O — Oy) = By1 =

<0 (n=1). (.11

We divide into two cases to complete the proof.
o If p€(3/5,4/5], then it is easy to see that Dy = (5p —4)/10 < 0 and

—16(2 — p)a— 10p +35p° 24+ (4—5p)(34+35p)
D — _ 0.
1 280 < 1400 <

Similar to Case 2.4.1, assume that D,, < 0 for n > 1, itis easy to obtain D, <0
for n > 1 by (2.9) and (2.11). This enables us to obtaln D,, <0 for n > 0 by the
induction. Hence, f,(a,r) is strictly decreasing on (0,1) by Proposition 2.1(1).

e If p € (4/5,1), then we see that Dy > 0. If D,, > 0 for all n > 0, by Proposition
2.1(1), then fy(a,r) is increasing on (0,1). According to this with (2.3), it
follows that

0p(@,07) _ dpla, 1)
0(@07) = gla,1)

i 1—r)a=(PtD2F(a1;5/2:r
llmr_d— ( F)(3/2_a’3/2E5’/2;r§ ) = O, ac [173/2]7
SR 1—n) "PRF(5/2—a3/2:5/2r

lim, - ( )F(3/2—(a,/3/2;5/2/;r) 2 0, ac (3/2’2)'

1=

This is obviously impossible. So there exists Dy < 0 for k > 1 and let Dy, be
the first negative term, namely, D,, > 0 for 1 <n < k. — 1. As shown in Case
2.4.1, it can be proven that D, < 0 for n > k. by the induction. That is to say, the
sequence {u,/v,} is increasing for 0 < n < k. — 1 and decreasing for n > k..
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According to this with the fact that

¢, (a,r)
H¢[)~,(P(r) = (sz(aﬂ") (p(aar) - ¢P(a7r)
5pF(a,1;5/2;r) +4a(1 —r)3?F(5/2 —a,3/2;7/2;r)
m 4(a+1)F(3/2—a,3/2;7/2;r) ,

xF(3/2—a,3/2;5/2;r) — F(a,1;5/2;r)
S5pF(5/2—a,3/2;5/2;r) +4aF(5/2 —a,3/2;7/2;r)

W 4(a+1)F(3/2—a,3/2;7/2;r) 7
XF(3/2—a,3/2:5/2:r) — F(5/2 — a,3/2;5/2;7)
3(2a—p—1)
—sgn (W&M) o, ac[1,3/2),
={ —oo, a=3/2, =—c as (r—17),

32— p)V/AT(a—3/2
—sgn (B e, a e (3/2,2)
Proposition 2.1 leads to the conclusion that there exists d; € (0,1) such that
fpla,r) is strictly increasing on (0,0,) and is strictly decreasing on (8,1).

This completes the proof. [

We will provide two identities for general hypergeometric functions in the follow-
ing lemma, although we only use its special case in this paper.

LEMMA 2.5. For an integer m > 0, it holds that

m
Fla,m+ Lieir) =1 =23 Fla+ 1,k+ Lic+ 1;r),
¢ k=0
(c—a)F(a,m+ L;c+1;r)
1

)
L=(=nFlamtlan) =2t " pag Lk Let 1)
k=0

m—1
Sfor r€(0,1). In particular, we say 'Y, (-)=0if m=0.
k=0

Proof. Letus define Ay = (n+k)!/n! = [k!(k+1),]/n! and By = (n+k+1)!/(n+
D!'=[k!(k+1),1]/(n+ 1)! for k> 0.
We first prove the following identity
B, \A
== k—’f (2.12)
m! = k!
It is easy to see that (2.12) holds for m = 0 and m = 1. Assume that the identity (2.12)
holds for m > 1, then a simple calculation gives

Bni1 —Ams1 1 (n+m+2)! (n+m+1)!] By iAk
(m+1)! (m+1)!| (n+1)! n! m!

_ _m -
=0 k!
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equivalently,
Bm«‘rl _ Wil ﬂ
(m+1)! &k
which shows (2.12) by induction. By applying (2.12), it follows that
(m+1)p1  n!By ZonlAp &
= = = k 1 . 2. 1 3
n+1 m! ,Z;) k! ,Z;)(+ Jn 1)

For m > 0, by (2.13), it can be obtained that

o & @am+1), " ar & (a+1)(m+ 1), 1
F(a7m+1,c,r)—1_’§1Ta_?n§:“o (C+1>n(n+1)+ y

m S ln ln 1 m
:ﬂzz“—(a—i_ Jnlk+1) r—ZQZF(a—Fl,k—i-l;c—i-l;r)
c &= (c+ 1), n! c &

and

1—(l=r)F(a,m+ Lic;r) =rF(a,m+ 1;¢,r) — a N Fla+1,k+1;c+1:r)
=

[cF(a,m+1;¢;r) —aF(a+1,m+ 1;c+ 1;7)

:f m—1
c —a Y F(a+1,k+L;c+1;r)
L k=0
- [(c—a)F(a,m+ 1;c+ 1;r)
— m—1
¢ —a Y F(a+ Lik+Lc+ 1;r)
k=0

This gives the proof of Lemma 2.5. [

Taking m = 0 into Lemma 2.5, we obtain the following corollary which had been
proved in [25, (3.5) and (3.6)].

COROLLARY 2.6. For a,c > 0, the following identities
ar
F(a,l;c;r)—1=—F(a+1,1;c+ 1;r),
c
1—(1=r)F(a,1;¢;r) = MfF(a, Lie+1;r)
¢
holds for r € (0,1).
LEMMA 2.7. For w € (0,1), the function r — M, (/1 —r,1;w)/My(v/1—r,1;w)

is increasing on (0,1) if and only if p > q, and is decreasing on (0,1) if and only if
P<q.
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Proof. For w e (0,1), it is easy to see that
d My(V1—r,Lw)\] w(l —w) [(1_r)q/2_(1_r)p/z]
dr {log (Mq(w/l—r,l;w)>} B 2(1—r) [Mp(\/m,l;W)]p [Mq(\/m,l;w)]q >0,
d My(V1=r1;w) w(l—w) [1—(1—r)P/?
dr [IOg (Mg(w/l—r,l;w)ﬂ N 2(1—r) [M (m,l;w)]p

hold for x € (0,1) if and only if p > g # 0 and p > 0, which gives the desired result
of Lemma2.7. [

3. Proof of Theorem 1.1
Before proving Theorem 1.1, we first show two monotonicity theorems.

THEOREM 3.1. Let p € (0,1) and the function r— G,(r) be defined by
\/;
arcsin/7 [(1 —r)P/2+ %] 1/p

Then the following statements are true:
(i) If p € (0,4/5], then G,(r) is strictly increasing from (0,1) onto (1,1/0,),
and therefore, the double inequality

| 27-Up . 1 71 Up
o) [5(1 _x2>p/2+§] < ey [3(1 _x2>1’/2+§} G.1)

Gp(") =

holds for x € (0,1), where 6, = (2/3)"/? /2 is the best constant.
(ii) If p € (4/5,1), then there exists r; € (0,1) such that G,(r) is decreasing on
(0,r1) and is increasing on (r1,1) and thereby the inequality

1 2 -1/p :
min{o,, 1} {5(1 _AP g} < ey (3.2)
X
holds for x € (0,1). In particular, the inequality
1 2177 arcsinx
o L 33
R I 33)

holds for x € (0,1) when T < p < 1, where T is given in Theorem 1.1(i).

Proof. Logarithmic derivative of G,(r) together with (2.3) and (2.4) gives rise to
Gyl) 1| 20=n+{-np? Vr
Gp(x)  2r | (1=r)2+(1—7r)P2) /T —rarcsiny/r
L 20=n+a=rp2 Vi—r
S 2 (L)@ (=P (1=n)F(1/2,1/2:3/2:1)

_ gp(r)
S 2r(1-nR2+(1 —pr)P/2}F(1,1;3/z;r)’ 34




A NEW PROOF OF THE SHARP WEIGHTED POWER MEAN BOUNDS 745

where
gp(r) = (L= [F(1,153/2:) = 1] =2[1 = (1 = )F(1,1:3/2:7)]

By Corollary 2.6, we can simplify g,(r) as

gp(r) = %(1—r)p/zF(2,1;5/2;r)—%F(I,I;S/Z;r)
_ %(14)1’/21:(2,1;5/2;@[1—f,,(l,r)], (3.5)

where f,(a,r) is defined in Lemma 2.4.

We divide the proof into two cases:

Case 3.1.1. p € (0,4/5]. For p € (3/5,4/5], by Lemma 2.4(ii), f,(1,r) is de-
creasing on (0,1) and thereby, f,(1,7) < f,(1,07) =1 for r € (0,1). This together
with (3.5) yields g,(r) > 0 for r € (0,1) and by (3.4), which in turn implies G,(r) is
strictly increasing on (0, 1). In particular, G4/5(r) is strictly increasing on (0,1). In
this case, we rewrite G,(x) as

Mys(VI—r,1;1/3)
M,(V1—r,1;1/3)

which, by Lemma 2.7, is the product of two positive and increasing functions on (0, 1)
and so is G, (x). Therefore, we conclude that, r € (0,1),

_203/)'r

1=G,(0%7) <G,(r) <Gp(17) = —

Gp(x) = G4/5 (x) -

that is, by making a change of variable x = \/r,

n(2/3)V7 [1 o 2177 aresine[1 N
5 3(1 x°) +3 < . < 3(1 x°) +3

for x € (0,1), which gives (3.1).

Case3.1.2. p € (4/5,1). In this case, Lemma 2.4(ii) enables us to know that there
exists 71 € (0,1) such that f,,(1,7) is increasing on (0,7) and is decreasing on (7(,1).
This together with f,(1,0%7) =1 and f,(1,17) = 0 implies that there exists 7| € (#;,1)
such that f,(1,r) > 1 for r € (0,7) and f,(1,r) <1 for r € (7,1). In other words,
gp(r) <0 for re(0,7) and g,(r) > 0 for r € (7,1) by (3.5) and so is G,(r) by (3.4).
Consequently, we obtain

Gy(r) < max{Gy(07),Gp(17)} = ma"{h %}

for r € (0,1), which implies (3.2) by changing the variable x = /r. If 7 < p < 1, that
is, 2(3/2)"/7/m < 2(3/2)"/7/m = 1, the inequality G,(r) < 1, namely,

1 -1/p

{5(1—x2)1’/2+§]

arcsinx

X
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holds for r € (0, 1). This completes the proof. [J

THEOREM 3.2. Let p € (3/5,%0) and the function r — ép(r) be defined by

. Vi
Gplr) = 1,2 2 l/p’
arctanh /7 [§ + 5(1 —r)P/?]

Then the following statements hold true:
(i) If p € [4/5,00), then G,(r) is strictly decreasing from (0,1) onto (0,1), and
therefore, the inequality

1 2 “1/P arctanhx
— 21 =P/ 3.6
[3 3( *) ] < X (3.6)

holds for x € (0,1).
(ii) If p € (3/5,4/5), then there exits r € (0,1) such that G,(r) is strictly increas-
ing on (0,r2) and strictly decreasing on (ry,1) with G,(07) =1 and G,(17) =0.

Proof. Taking the logarithmic differentiation for ép(r) with (2.5) yields

Gy 1 [1—r20-pp2
Gy(r) 2r(l—=r)| 1+2(1—r)p/? * arctanh \/r
1 1—r42(1—r)P/? 1
2i(L—r) | 142(1—r)2  F(1/2,1;3/2;r)
_ gp(r)
T U=+ 2(l— P AF(1/2,1:3)2:7) 3-7)
where
,(r) = [1 —r+2(1 —r)p/z] F(1/2,133/2:5) — 1 —2(1— r)?/2.
Similarly, due to Corollary 2.6, we can rewrite g,(r) as
g,(r)=2(1— P2 F(1/2,1;3/2;r) = 1] = [1 — (1 = r)F(1/2,1;3/2;7)]
= %(1 —r)P?F(3/2,1;5/2:r) — %F(l/z,l;S/z;r)
= TR, 5/20 1 0/2.0)], G3)

where f,(a,r) is defined by Lemma 2.4.
We divide the proof into two cases.

Case3.2.1. pe[4/5,%). For p € [4/5,1),by Lemma2.4(i), f,(1/2,r) is increas-
ing on (0,1) and thereby, f,(1/2,r) > f,(1/2,07) =1 for r € (0,1). This together
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with (3.8) yields g,(r) < 0 for r € (0,1) and by (3.7), which in turn implies ép(r)
is strictly decreasing on (0,1). In particular, G4/5(r) is strictly decreasing on (0,1).
According to this with Lemma 2.7, it can be seen that for p € [4/5,e0),

B N Mys(VI—7,1:2/3
Gp(x) = Gy5(x) - AZS((\/E, 1;2//3))

is the product of two positive and decreasing functions on (0,1) and so is ép(x).
Therefore, we conclude that, r € (0,1),

1=G,(0") > G,(r) >G,(17) =0,

that is, by making a change of variable x = \/r,

1 2 “1/P arctanhx
(=2 N
[3 3= } R

for x € (0,1), which gives (3.6).

Case3.2.2. p€(3/5,4/5). In this case, Lemma 2.4(i) leads to the conclusion that
there exists 7 € (0,1) such that f,(1/2,r) is decreasing on (0,7,) and is increasing
on (#,1). Combining this with f,(1/2,07) =1 and f,(1/2,17) = eo, it follows from
(3.8) that there exists 7 € (7, 1) such that g,(r) >0 for r € (0,7,) and g,(r) <0 for
r € (#2,1). This, by (3.7), gives the desired monotonicity result of Theorem 3.2 (ii).
Obviously, (~;p(0+) =1 and 5,,(1’) = 0. The proof is completed. [J

Now we are in a position to prove Theorem 1.1.
Proof. We divide into two cases 0 < x <y and 0 <y < x to complete the proof.

Case 1.1. 0 <x<y.Let r=1—(x/y)? € (0,1). Then it can be easily seen from

(1.2) that
1— (x/y)* VT
SB(x,y) = = 3.9
(oY) =y—-t- ) arcsiny’ (3.9)
and
1 217 1 2]
Myt =y |3+ 3| =y ga-ore 3T o)

Necessity. The necessary condition for inequality (1.10), by (3.9) and (3.10), re-
quires to satisfy

.1 Jarcsiny/r [1 p/2 ., 2 ~Up
rl—1>I(I)1+r_2{T_{§(l_r> +§

.1 ro 32 r (1-2p)r? Sp—4
— lim =414+ 4+22 ) 1= Ot ="=—<0
it r2{ tetag o) [ et o) 180 S
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which gives p < 4/5 and

. arcsin/7  [1 o2, 2 ~1/p T 3\ /P
_— | = — — —_ — — — >
lﬂl{ Jr [3(1 DS 2 \2) =Y

which implies p > 7 =log, ,(3/2).

Sufficiency. As mentioned in the introduction, it has been known that p — M), (x,y;
1/3) is strictly increasing on (—ee, <) for fixed x,y > 0. Hence, it suffices to prove that
the inequality (1.10) holds for 0 < x <y when p=4/5 and ¢ = 7, which follows easily
from (3.9) and (3.10) together with the right-side of (3.1) and (3.3).

Case 1.2. 0 <y<x.Let r=1—(y/x)> € (0,1). Then it can be easily seen from
(1.3) that

1—(y/x)? Vr
SB(x,y) = x =x (3.1D)
(x.7) arctanh /1 — (y/x)? arctanh\/r
and
1 2 1/p 1 2 1/p
My(x,y;1/3) =x |+ =(y/x)P|  =x|5+2(1-rP? . (3.12)
3°3 3°3
We divide into three cases to complete the proof.
o If p € [4/5,00), then the inequality
SB(x,y) < M, (x,y;1/3) (3.13)

for all 0 <y < x follows from (3.11) and (3.12) together with (3.6).
e If p € (0,4/5), then by Taylor series expansion,

4—5p

2 2
0~ tolr)

Gy(r)=1+

gives ép(r) > 1 for r € (0, &) with sufficient small & > 0. This together with
(3.11) and (3.12) implies that

SB(x,y) > M, (x,y;1/3) (3.14)

for /1 — & <y/x< 1. On the other hand, the continuity with (~;p(1’) =0 shows
that there exists sufficient small & > 0 such that G,(r) <1 for r € (1 —&,1),
equivalently, by (3.11) and (3.12),

SB(x,y) < Mp(x,y;1/3) (3.15)

for 0 <y/x<./&.
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o If p € (—e,0], then it is easy to obtain

My (x,y:1/3) < Mo(x,:1/3) < SB(x,y) (3.16)

for all 0 <y < x, due to the monotonicity of p — M,(x,y;1/3) and SB(x,y) >
1/3,2/3
x Py

The desired result of Theorem 1.1(ii) can be obtained from (3.13)—(3.16). [J
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