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A MULTIDIMENSIONAL HARDY–HILBERT’S INTEGRAL INEQUALITY

INVOLVING ONE DERIVATIVE FUNCTION OF HIGHER–ORDER

ZHILAI YAN, BICHENG YANG ∗ AND DONGMEI XIN

(Communicated by M. Krnić)

Abstract. By means of the weight functions, the idea of introduced parameters and using the
techniques of real analysis, a multidimensional Hardy-Hilbert’s integral inequality involving one
derivative function of higher-order is obtained. As applications, the equivalent statements of the
best possible constant factor in the new inequality related to several parameters are considered.
Some corollaries are obtained.

1. Introduction

Suppose that p > 1, 1
p + 1

q = 1, am, bn � 0, 0 <
m=1 ap

m < and 0 <
n=1 bq

n <
. We have the following Hardy-Hilbert’s inequality with the best possible constant
factor 

sin(/p) (cf. [5], Theorem 315):




m=1




n=1

ambn

m+n
<


sin(/p)

(



m=1

ap
m

) 1
p
(




n=1

bq
n

) 1
q

. (1)

Setting f (x), g(y) � 0, 0 <
∫ 
0 f p(x)dx <  and 0 <

∫ 
0 gq(y)dy < , we have the

integral analogue of (1) as follows (cf. [5], Theorem 316):

∫ 

0

∫ 

0

f (x)g(y)
x+ y

dxdy <


sin(/p)

(∫ 

0
f p(x)dx

) 1
p
(∫ 

0
gq(y)dy

) 1
q

, (2)

where the constant factor 
sin(/p) is the best possible.

In 2006, by means of the Euler-Maclaorin summation formula and the techniques
of real analysis, [15] gave the following extension of (1):




m=1




n=1

ambn

(m+n)
< B(1,2)

(



m=1

mp(1−1)−1ap
m

) 1
p
(




n=1

nq(1−2)−1bq
n

) 1
q

. (3)
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where, 1, 2 ∈ (0,2] , 1 +2 =  ∈ (0,4], the constant factor B(1,2) is the best
possible, and

B(u,v) =
∫ 

0

tu−1

(1+ t)u+v dt, u,v > 0 (4)

is the beta function.
In 2019, by means of the result of (1) and Abel’s partial summation formula,

Adiyasuren et al. [1] deduced an extension of (1) involving two partial sums. In 2020,
Mo et al. [21] gave an extension of (2) involving two upper limit functions. Inequalities
(1)–(2) with their extensions played an important role in analysis and its applications
(cf. [2, 3, 6, 14, 16, 22, 24–28]).

In 2016–2017, Hong et al. [8, 10] considered some equivalent statements of the
extensions of (1) and (2) with a few parameters. Some further results were provided by
[4, 7, 9]. In 2023, Hong et al. [13] gave a more accurate half-discrete multidimensional
Hilbert-type inequality involving one derivative function of m-order. Some further
results were provided by [11–13, 19, 20, 23, 29].

In this paper, following the way of [20], by means of the weight functions, the
idea of introduced parameters and the techniques of real analysis. A multidimensional
Hardy-Hilbert’s integral inequality with the new kernel as 1

(x+||y|| )
involving one

derivative function of higher-order is obtained. As applications, the equivalent state-
ments of the best possible constant factor in the new inequality related to several pa-
rameters are considered. Some corollaries are obtained.

2. Some formula and lemmas

In what follows, we suppose that m ∈N0 = {0,1, · · ·} , n ∈N = {1,2, · · ·} , p > 1,
1
p + 1

q = 1, , ∈ R+ ,  > 0, 1,2 ∈ (0, ) , ̂1 = −2
p + 1

q , ̂2 = −1
q + 2

p ,

f (x)(� 0) is a differentiable function of m-order, and f (m)(x)(� 0) is a continuous
function unless at finite points in R+ = (0,), for m ∈ N ,

f (k−1)(x) = o(etx) (t > 0; x → ), f (k−1)(0+) = 0 (k = 1, · · · ,m),

and for f (m)(x) , g(y) � 0 (x ∈ R+ , y ∈ Rn
+ , m ∈ N0) , we have

0 <

∫ 

0
xp(1−̂1)−1( f (m)(x))pdx <  and

0 <

∫
Rn

+

||y||q(n−̂2)−n
 gq(y)dy < .

If M > 0, (u) (u > 0) is a nonnegative measurable function, then we have the
following transfer formula (cf. [27], (9.1.5)):∫

· · ·
∫
{y∈Rn

+; 0<n
i=1(

yi
M )�1}


( n


i=1

( yi

M

))
dy1 · · ·dyn

=
Mnn( 1

 )

 n( n
 )

∫ 1

0
(u)u

n
 −1du. (5)
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In particular, (i) in view of ||y|| = M[n
i=1(

yi
M ) ]

1
 , by (5), we have∫

Rn
+

(||y|| )dy

= lim
M→

∫
· · ·

∫
{y∈Rn

+;0<n
i=1(

yi
M )�1}


(
M
[ n


i=1

( yi

M

)] 1

)
dy1 · · ·dyn

= lim
M→

Mnn( 1
 )

 n( n
 )

∫ 1

0
(Mu

1
 )u

n
 −1

du

v=Mu
1


=
n( 1

 )

 n−1( n
 )

∫ 

0
(v)vn−1dv; (6)

(ii) for (u) = (Mu
1
 ) = 0, u < ( b

M ) (b > 0), by (5), we have∫
{y∈Rn

+;||y||�b}
(||y|| )dy = lim

M→

Mnn( 1
 )

 n( n
 )

∫ 1

( b
M )

(Mu
1
 )u

n
 −1du

v=Mu
1


=
n( 1

 )

 n−1( n
 )

∫ 

b
(v)vn−1dv. (7)

REMARK 1. For b = 1, c ∈ R+, by (7), we have∫
{y∈Rn

+;||y||�1}
||y||−c−n

 dy =
n( 1

 )

c n−1( n
 )

. (8)

LEMMA 1. For s ∈ (0,) , s1,s2 ∈ (0,s), define the following weight functions:

s(s1,y) := ||y||(s−s1)


∫ 

0

xs1−1

(x+ ||y|| )s dx (y ∈ Rn
+), (9)

s(s2,x) := xs−s2
∫

Rn
+

||y||s2−n


(x+ ||y|| )s dy (x ∈ R+). (10)

We have the following expressions:

s(s1,y) = B(s1,s− s1) (y ∈ Rn
+), (11)

s(s2,x) =
n( 1

 )

 n−1( n
 )

B(s2,s− s2) (x ∈ R+). (12)

Proof. In (9), setting u = x
||y||

, we find

s(s1,y) = ||y||(s−s1)


∫ 

0

(u||y|| )s1−1||y||
(u||y|| + ||y|| )s du

=
∫ 

0

us1−1

(u+1)s du = B(s1,s− s1),



754 Z. YAN, B. YANG AND D. XIN

and then we have (11).

In (10), setting (v) = vs2− n


(x+v)s , by (6), we have

s(s2,x) = xs−s2
∫
{y∈Rn

+}

(||y|| )s2− n


(x+ ||y|| )s dy

= xs−s2
∫
{y∈Rn

+}

(
M

[ n


i=1

( yi

M

)] 

)
dy1 · · ·dyn

= lim
M→

Mnn( 1
 )

 n( n
 )

xs−s2
∫ 

0
(Mu


 )u

n
 −1

du

v=M u



=
n( 1

 )

 n−1( n
 )

xs−s2
∫ 

0

vs2−1

(x+ v)s dv

t=v/x
=

n( 1
 )

 n−1( n
 )

∫ 

0

ts2−1

(1+ t)s dt

=
n( 1

 )

 n−1( n
 )

B(s2,s− s2),

and then we have (12).
The lemma is proved. �

LEMMA 2. For t > 0, we have the following expression:∫ 

0
e−tx f (x)dx = t−m

∫ 

0
e−tx f (m)(x)dx. (13)

Proof. For m = 0, (13) is naturally valid; for m ∈ N , since f (0+) = 0, f (x) =
o(etx) (t > 0; x → ), we find∫ 

0
e−tx f ′(x)dx =

∫ 

0
e−txd f (x) = e−tx f (x)|0

−
∫ 

0
f (x)de−tx = lim

x→
e−tx f (x)+ t

∫ 

0
e−tx f (x)dx

= t
∫ 

0
e−tx f (x)dx.

Inductively, for f (k)(0+) = 0, f (k)(x) = o(etx) (t > 0, k = 1, · · ·m ; x → ), we still
have ∫ 

0
e−tx f (x)dx = t−1

∫ 

0
e−tx f ′(x)dx = · · · = t−m

∫ 

0
e−tx f (m)(x)dx.

Hence, (13) is valid.
The lemma is proved. �
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LEMMA 3. We have the following inequality:

I :=
∫
{y∈Rn

+}

∫ 

0

f (m)(x)g(y)
(x+ ||y|| )

dxdy

<

(
n( 1

 )

 n−1( n
 )

) 1
p

B
1
p (2, −2)B

1
q (1, −1)

×
[∫ 

0
xp(1−̂1)−1( f (m)(x))pdx

] 1
p
[∫

{y∈Rn
+}

||y||q(n−̂2)−n
 gq(y)dy

] 1
q

. (14)

In particular, for  = 1 +2, we have

0 <

∫ 

0
xp(1−1)−1( f (m)(x))pdx < ,

0 <

∫
{y∈Rn

+}
||y||q(n−2)−n

 gq(y)dy < ,

and the following inequality:

I :=
∫
{y∈Rn

+}

∫ 

0

f (m)(x)g(y)
(x+ ||y|| )

dxdy

<

(
n( 1

 )

 n−1( n
 )

) 1
p

B(1,2)

×
[∫ 

0
xp(1−1)−1( f (m)(x))pdx

] 1
p
[∫

{y∈Rn
+}

||y||q(n−2)−n
 gq(y)dy

] 1
q

. (15)

Proof. By Hölder’s inequality (cf. [17]), we have

I =
∫
{y∈Rn

+}

∫ 

0

1

(x+ ||y|| )

⎡⎣x(1−1)/q f (m)(x)

||y||(n−2)/p


⎤⎦⎡⎣ ||y||(n−2)/p
 g(y)

x(1−1)/q

⎤⎦dxdy

�

⎧⎨⎩
∫ 

0

∫
{y∈Rn

+}
1

(x+ ||y|| )
x(1−1)(p−1)( f (m)(x))p

||y||n−2


dydx

⎫⎬⎭
1
p

×
⎧⎨⎩

∫
{y∈Rn

+}

∫ 

0

1

(x+ ||y|| )
||y||(n−2)(q−1)

 gq(y)

x1−1
dxdy

⎫⎬⎭
1
q

=

⎧⎨⎩
∫ 

0

⎡⎣x−2

∫
{y∈Rn

+}

||y||2−n
 dy

(x+ ||y|| )

⎤⎦xp[1−( −2p + 1
q )−1]( f (m)(x))pdx

⎫⎬⎭
1
p

×
{∫

{y∈Rn
+}

[
||y||(−2)



∫ 

0

x1−1dx

(x+ ||y|| )

]
||y||q[n−( −1q + 2

p )]−n

 gq(y)dy

} 1
q



756 Z. YAN, B. YANG AND D. XIN

=
[∫ 

0
 (2,x)xp(1−̂1)−1( f (m)(x))pdx

] 1
p

×
[∫

{y∈Rn
+}
 (1,y)||y||q(n−̂2)−n

 gq(y)dy

] 1
q

. (16)

If (16) keeps the form of equality, then there exist constants A and B , such that
they are not both zero, satisfying

A
x(1−1)(p−1)( f (m)(x))p

||y||n−2


= B
||y||(n−2)(q−1)

 gq(y)

x1−1
a.e. in R+×Rn

+.

Assuming that A �= 0, there exists a y ∈ Rn
+, such that

xp(1−̂1)−1( f (m)(x))p =
[
B
A
||y||q(n−2)

 gq(y)
]
x−1−(−1−2) a.e. in R+.

Since for any  −1−2 ∈ R ,
∫ 
0 x−1−(−1−2)dx =, the above expression contra-

dicts the fact that 0 <
∫ 
0 xp(1−̂1)−1( f (m)(x))pdx < .

Therefore, by (11) and (12) (s =  , s1 = 1 , s2 = 2) , we have (14) and then for
 = 1 +2 , we have (15).

The lemma is proved. �

3. Main results

THEOREM 1. We have the following multidimensional Hardy-Hilbert’s integral
inequality involving one derivative function of higher-order:

I :=
∫
{y∈Rn

+}

∫ 

0

f (x)g(y)
(x+ ||y|| )+m

dxdy

<
( )

( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B
1
p (2, −2)B

1
q (1, −1)

×
[∫ 

0
xp(1−̂1)−1( f (m)(x))pdx

] 1
p
[∫

{y∈Rn
+}

||y||q(n−̂2)−n
 gq(y)dy

] 1
q

. (17)

In particular, for  = 1 +2, by (17) , we have

I :=
∫
{y∈Rn

+}

∫ 

0

f (x)g(y)
(x+ ||y|| )+m

dxdy

<
( )

( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B(1,2)

×
[∫ 

0
xp(1−1)−1( f (m)(x))pdx

] 1
p
[∫

{y∈Rn
+}

||y||q(n−2)−n
 gq(y)dy

] 1
q

. (18)
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Proof. By the following expression of the Gamma function:

1

(x+ ||y|| )+m
=

1
( +m)

∫ 

0
t+m−1e

−(x+||y|| )t
dt ( , x > 0), (19)

(13) and Fubini theorem (cf. [18]), we have

I =
1

( +m)

∫
{y∈Rn

+}

∫ 

0
f (x)g(y)

[∫ 

0
t+m−1e−(x+||y|| )t dt

]
dxdy

=
1

( +m)

∫ 

0
t+m−1

(∫ 

0
e−xt f (x)dx

)(∫
{y∈Rn

+}
e−||y|| tg(y)dy

)
dt

=
1

( +m)

∫ 

0
t+m−1

(
t−m

∫ 

0
e−xt f (m)(x)dx

)(∫
{y∈Rn

+}
e−||y|| tg(y)dy

)
dt

=
1

( +m)

∫
{y∈Rn

+}

∫ 

0
f (m)(x)g(y)

[∫ 

0
t−1e

−(x+||y|| )t
dt

]
dxdy

=
( )

( +m)

∫
{y∈Rn

+}

∫ 

0

f (m)(x)g(y)
(x+ ||y|| )

dxdy.

Then by (14), we have (17). For  = 1 +2 in (17), we have (18).
The theorem is proved. �

THEOREM 2. If  = 1 +2, then the constant factor

( )
( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B
1
p (2, −2)B

1
q (1, −1)

in (17) is the best possible.

Proof. For  = 1 +2 , by (17), we have (18). We need to prove that the constant
factor in (18) is the best possible. For any 0 <  < p1 , we set

f̃ (m)(x) :=

⎧⎪⎨⎪⎩
0, 0 < x < 1,

m−1

i=0

(1 + i− 
p)x1− 

p−1, x � 1,

g̃(y) :=

⎧⎨⎩
0, ||y|| < 1

||y||(2− 
q )−n

 , ||y|| � 1,

f̃ (x) :=

⎧⎪⎨⎪⎩
0, 0 < x < 1,

m−1

i=0

(1 + i− 
p)

∫ x
1 (

∫ tm
1 · · ·∫ t2

1 t
1− 

p−1

1 dt1 · · ·dtm−1)dtm, x � 1,
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namely,

f̃ (x) =

{
0, 0 < x < 1,

x1+m− 
p−1− pm−1(x), x � 1,

where, for m ∈ N , pm−1(x) is indicated as a nonnegative polynomial of (m−1)-order

satisfying pm−1(1) = 1. We denote p−1(1) := 0,
−1

i=0

(a + i) := 1. Then the above

expression satisfies for m ∈ N0.
If there exists a constant M, satisfying

0 < M � ( )
( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B(1,2) (20)

such that (18) is valid when we replace the constant factor in (18) by M , then in partic-
ular, by (18) and (8) (c = ) , we have

Ĩ :=
∫
{y∈Rn

+}

∫ 

0

f̃ (x)g̃(y)
(x+ ||y|| )+m

dxdy

< M

[∫ 

0
xp(1−1)−1( f̃ (m)(x))pdx

] 1
p
[∫

{y∈Rn
+}

||y||q(n−2)−n
 g̃q(y)dy

] 1
q

= M
m−1


i=0

(
1 + i− 

p

)(∫ 

1
x−1−dx

) 1
p
(∫

{y∈Rn
+;||y|| �1}

||y||−−n
 dy

) 1
q

=
M


m−1


i=0

(
1 + i− 

p

)(
n( 1

 )

 n−1( n
 )

) 1
q

.

By (8), (9) and (11) (s =  +m > 0, s1 = 1− 
p +m ∈ (0, +m)), we have

Ĩ =
∫
{y∈Rn

+}

∫ 

0

f̃ (x)g̃(y)
(x+ ||y|| )+m

dxdy

=
∫
{y∈Rn

+;||y|| �1}

∫ 

1

(x1+m− 
p−1− pm−1(x))||y||

(2− 
q )−n



(x+ ||y|| )+m
dxdy

=
∫
{y∈Rn

+;||y|| �1}
||y||−−n



[
||y||(2+ 

p )


∫ 

0

x1+m− 
p−1

(x+ ||y|| )+m
dx

]
dy

−
∫
{y∈Rn

+;||y|| �1}
||y||−−n



[
||y||(2+ 

p )


∫ 1

0

x1+m− 
p−1

(x+ ||y|| )+m
dx

]
dy

−
∫
{y∈Rn

+;||y|| �1}

∫ 

1

pm−1(x)||y||
(2− 

q )−n



(x+ ||y|| )+m
dxdy
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�
∫
{y∈Rn

+;||y|| �1}
||y||−−n

 +m

(
1− 

p
+m,y

)
dy

−
∫
{y∈Rn

+;||y|| �1}
||y||−−n



[
||y||(2+ 

p )


∫ 1

0

x1+m− 
p−1

(||y|| )+m
dx

]
dy

−
∫
{y∈Rn

+;||y|| �1}

||y||(2− 
q )−n



(||y|| )2+(1/2) dy
∫ 

1

pm−1(x)
x(1/2)+m

dx

= B

(
1− 

p
+m,2 +


p

)∫
{y∈Rn

+ ;||y|| �1}
|y||−−n

 dy

−
[

1
1 +m− 

p

∫
{y∈Rn

+;||y|| �1}
||y||−(1+ 

q +m)−n

 dy

+
∫
{y∈Rn

+;||y|| �1}
||y||−(+ 

q )−n

 dy
∫ 

1
O

(
1

x(1/2)+1

)
dx

]

=
B(1− 

p +m,2 + 
p )n( 1

 )

 n−1( n
 )

−O1(1).

Hence, in view of the above results, we have the following inequality

B(1− 
p +m,2 + 

p)n( 1
 )

 n−1( n
 )

− O1(1)

<  Ĩ < M
m−1


i=0

(
1 + i− 

p

)(
n( 1

 )

 n−1( n
 )

) 1
q

.

For  → 0+ , in view of the continuity of the beta function, we have

B(1 +m,2)n( 1
 )

 n−1( n
 )

� M
m−1


i=0

(1 + i)

(
n( 1

 )

 n−1( n
 )

) 1
q

,

namely,

( )
( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B(1,2)

=
B(1 +m,2)
m−1

i=0

(1 + i)

(
n( 1

 )

 n−1( n
 )

) 1
p

� M.

By (20), it follows that

M =
( )

( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B(1,2)
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is the best constant factor of (18) (namely, for  = 1 +2 in (17)).
The theorem is proved. �

THEOREM 3. If the same constant factor in (17) is the best possible, then we
have  = 1 +2.

Proof. For ̂1 = −2
p + 1

q , ̂2 = −1
q + 2

p , we find ̂1 + ̂2 =  , 0 < ̂1 , ̂2 <

 .

By Hölder’s inequality (cf. [19]), we obtain

B(̂1, ̂2) =
∫ 

0

u̂1−1

(1+u)
du =

∫ 

0

u
−2

p + 1
q −1

(1+u)
du

=
∫ 

0

1

(1+u)
(u

−2−1
p )(u

1−1
q )du

�
[∫ 

0

u−2−1

(1+u)
du

] 1
p
[∫ 

0

u1−1

(1+u)
du

] 1
q

= B
1
p (2, −2)B

1
q (1, −1). (21)

Since the constant factor

( )
( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B
1
p (2, −2)B

1
q (1, −1)

in (17) is the best possible. Compare with the constant factors in (17) and (18) (by
substitution of 1 = ̂1 , 2 = ̂2 ), we have

( )
( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B
1
p (2, −2)B

1
q (1, −1)

� ( )
( +m)

(
n( 1

 )

 n−1( n
 )

) 1
p

B(̂1, ̂2),

namely, B(̂1, ̂2) � B
1
p (2, − 2)B

1
q (1, − 1). Hence, (21) keeps the form of

equality. The necessary and sufficient condition for taking an equal sign is: there exist
constants A and B , such that they are not both zero, and (cf. [19]) Au−2−1 = Bu1−1

a.e. in R+ . Assuming that A �= 0, we have u−2−1 = B
A a.e. in R+ . It follows that

 −2−1 = 0, and then  = 1 +2 .
The theorem is proved. �



A MULTIDIMENSIONAL HARDY-HILBERT’S INTEGRAL INEQUALITY 761

COROLLARY 1. For n = 1 in (17) , we have the following inequality:∫ 

0

∫ 

0

f (x)g(y)
(x+ y)+m

dxdy

<
( )

( +m)

(
1


) 1
p

B
1
p (2, −2)B

1
q (1, −1)

×
[∫ 

0
xp(1−̂1)−1( f (m)(x))pdx

] 1
p
[∫ 

0
yq(1−̂2)−1gq(y)dy

] 1
q

. (22)

In particular, for  = 1 +2, by (22) , we have∫ 

0

∫ 

0

f (x)g(y)
(x+ y)+m

dxdy

<
( )

( +m)

(
1


) 1
p

B(1,2)
[∫ 

0
xp(1−1)−1( f (m)(x))pdx

] 1
p

×
[∫ 

0
yq(1−2)−1gq(y)dy

] 1
q

. (23)

where the constant factor ( )
(+m)

( 1

) 1

p B(1,2) is the best possible.

COROLLARY 2. If  = 1 +2, then the constant factor

( )
( +m)

(
1


) 1
p

B
1
p (2, −2)B

1
q (1, −1)

in (23) is the best possible. On the other hand, if the same constant factor in (23) is
the best possible, then we have  = 1 +2.
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