

SOME INEQUALITIES RELATED TO HARMONICALLY CONVEXITY WITH APPLICATIONS IN TSALLIS ENTROPY AND MEANS

YAMIN SAYYARI*, SHIGERU FURUICHI AND HASAN BARSAM

(Communicated by M. Sababheh)

Abstract. In this paper, we give some new inequalities related to harmonically convex functions. In fact, we introduce a certain function F including a harmonically convex function and using Jensen and Jensen-Mercer inequalities to obtain some new inequalities. Finally, we give some application for these inequalities in information theory, Tsallis entropy, mean theory and approximation theory.

1. Introduction and preliminaries

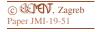
Convexity is one of the fundamental concepts in convex analysis. In fact, due to its simple understanding in terms of geometry, it has been of interest to many researchers. The most basic simple function that is introduced with the help of the concept of convexity is the convex function whose use goes back to the ancient Greeks [12]. The convex function has many applications in various sciences such as information theory, dynamic systems, physics, and probability theory (see [11, 17, 27, 28, 29, 30, 31, 32]). In addition, many inequalities have their roots in the concept of inequality. Nowadays, many authors have used this concept to construct and improve various inequalities (see [1, 3, 18, 24, 33]). One of the most important inequalities is Hermite–Hadamard which states that if $\phi : [a,b] \to \mathbb{R}$ is a convex function, then the following inequality holds:

$$\phi\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} \phi(x) dx \leqslant \frac{\phi(a) + \phi(b)}{2} \tag{1.1}$$

which was first obtained Jaques Hadamard and Charles Hermite (see [14]). This inequality was used to approximate the average of convex functions and in fact, it says that the average value of a convex function is a value between the value of the function at the arithmetic mean of two points and the arithmetic mean of the value of the function from two points. In general, the researchers study

$$\phi(T(a,b)) \leqslant L(\phi(a),\phi(b))$$

^{*} Corresponding author.



Mathematics subject classification (2020): 37B40, 26B25, 94A17, 26D15, 26D20.

 $^{{\}it Keywords\ and\ phrases}:\ Entropy, Tsallis\ entropy, Hermite-Hadamard\ inequality,\ harmonically\ convex, Jensen\ inequality\ and\ special\ means.}$

for a suitable pair of means T and L also function ϕ . Note that, a mean of two positive real numbers is defined as a function $M:(0,+\infty)\times(0,+\infty)\to(0,+\infty)$ with the property

$$\min\{a,b\} \leqslant M(a,b) \leqslant \max\{a,b\}$$

for each $a,b \in (0,+\infty)$. Hermite-Hadamard inequality in this case using convex functions ϕ when T and L are arithmetic mean is obtained. We mention here the arithmetic, geometric, harmonic and identric means of two numbers a,b>0 as

$$A(a,b) = \frac{a+b}{2}, \quad G(a,b) = \sqrt{ab}, \quad H(a,b) = \frac{2ab}{a+b} \quad \text{and} \quad I(a,b) = \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}}$$

with I(a,a) := a (see [21, 23]). Also, we use the symbol S(a,b) for the adojoint of I(a,b):

$$S(a,b) := I(a^{-1},b^{-1})^{-1} = e\left(\frac{a^b}{b^a}\right)^{\frac{1}{b-a}}.$$

Among other inequalities, Jensen's inequality was introduced in 1906 by Danish mathematician Johan Jensen, relates the value of a convex function which states that: If ϕ is convex on I, then

$$\phi\left(\sum_{i=1}^n p_i x_i\right) \leqslant \sum_{i=1}^n p_i \phi(x_i),$$

where $x_i \in I$ and $\sum_{i=1}^n p_i = 1$ (see [20]).

Let ϕ be a harmonically convex function on I, $0 \notin I$; $x_i \in I$; i = 1, ..., n. Then the following Jensen type inequality holds (see [9]):

$$\phi\left(\left(\sum_{i=1}^{n} t_i x_i^{-1}\right)^{-1}\right) \leqslant \sum_{i=1}^{n} t_i \phi(x_i)$$
(1.2)

where $\sum_{i=1}^{n} t_i = 1$ and $t_i \geqslant 0$.

Also, it has been used in the approximation of the expected value as well as the approximation of entropy. Various modifications have also been presented in [2, 5, 34]. Jensen-Mercer's inequality was introduced in 2003 by A. A. Mercer (see [22]) as follows. If h is a convex function on an interval I := [a,b], $x_i \in I$, $1 \le i \le n$ and $\sum_{i=1}^{n} p_i = 1$, $p_i \ge 0$, then

$$h\left(a+b-\sum_{i=1}^{n}p_{i}x_{i}\right)+\sum_{i=1}^{n}p_{i}h(x_{i}) \leq h(a)+h(b).$$
(1.3)

Generalizations for convex functions in operator form are also seen in the references [10, 13]. Therefore, due to the importance of convexity, the authors are interested in introducing various categories of functions that are related to the concept of

convexity, for example, m-convex functions, harmonically convex, uniformly convex, p-convex, s-convex, logarithmic convex and etc. (see [3, 4, 15, 16, 19, 24, 35]).

In [26], Rooin proved some aspects of convex functions and some practical inequalities using the following function:

$$G: [0,1] \to \mathbb{R}$$

$$G(t) = \frac{\sum_{i=1}^{n} g\left(\sum_{j=1}^{n} a_{ij}(t) x_{j}\right)}{n}$$

where $a_{ij}: [0,1] \to \mathbb{R}$ are affine mappings for every $i,j \ (1 \le i,j \le n), \ x_1, \dots, x_n$ are elements in a vector space X and $g: X \to \mathbb{R}$ is a convex function.

In this article, the goal is to obtain new inequalities with the help of harmonically convex functions, and finally, with the help of these results, we approximated some values such as the Napier number, as well as the approximation of arithmetic averages and harmonic averages, and the relationship between them, along with other applications of them.

The following definition is well known in the literature.

DEFINITION 1.1. [19] Let $f:[a,b] \longrightarrow \mathbb{R}$ be a function and $0 \notin [a,b]$. Then f is harmonically convex, if

$$f\left(\frac{xy}{(1-t)x+ty}\right) \leqslant (1-t)f(y) + tf(x) \tag{1.4}$$

for every $t \in [0,1]$ and $x,y \in [a,b]$. If the inequality is reversed, f is harmonically concave.

THEOREM 1.2. [7] Assume that $f:[a,b] \to \mathbb{R}$ is a harmonically convex function then

$$f\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - \sum_{i=1}^{n} \frac{t_i}{a_i}}\right) \le f(a) + f(b) - \sum_{i=1}^{n} t_i f(a_i)$$

for all $a_i \in [a,b]$; $0 \notin [a,b]$; $t_i \in [0,1]$; $\sum_{i=1}^n t_i = 1$.

2. Main results

In the following we begin the definition of F related to harmonically convex function.

DEFINITION 2.1. Assume that [a,b] is an interval such that $0 \notin [a,b]$, f is a harmonically convex and $a \leqslant x_i \leqslant b$; $i = 1, \dots, n$. We define the function $F : [0,1] \to \mathbb{R}$ by

$$F(t) := \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{\frac{1-t}{x_i} + \frac{t}{x_{n+1-i}}}\right).$$

THEOREM 2.2. Let $f:[a,b] \to \mathbb{R}$ be a harmonically function, and F(t) be as in Definition 2.1. Then

$$f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}\right) \leqslant F(t) \leqslant \sum_{i=1}^{n} \frac{f(x_i)}{n}$$
(2.1)

for every $a \leq x_i \leq b$; $i = 1, \dots, n$.

Proof. Since f is harmonically convex,

$$f\left(\frac{1}{\frac{1-t}{x_i} + \frac{t}{x_{n+1-i}}}\right) \leqslant t f(x_{n+1-i}) + (1-t)f(x_i).$$

Also,

$$\sum_{i=1}^{n} \left[f(x_{n+1-i}) - f(x_i) \right] = 0.$$

Using definition F(t) and (1.2), we have

$$F(t) = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{\frac{1-t}{x_i} + \frac{t}{x_{n+1-i}}}\right)$$

$$\geqslant f\left(\frac{n}{\sum_{i=1}^{n} \left(\frac{1-t}{x_i} + \frac{t}{x_{n+1-i}}\right)}\right) = f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}\right),$$

because $\sum_{i=1}^{n} \left(\frac{1}{x_i} - \frac{1}{x_{n+1-i}} \right) = 0$, which implies the right-hand side of inequality (2.1).

On the other hand, in view of harmonically convex f, we have

$$F(t) = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{\frac{1-t}{x_i} + \frac{t}{x_{n+1-i}}}\right)$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \left[(1-t)f(x_i) + tf(x_{n+1-i}) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} f(x_i),$$

since
$$\sum_{i=1}^{n} f(x_i) = \sum_{i=1}^{n} f(x_{n+1-i})$$
. \square

Another bound related to the function F as follows.

THEOREM 2.3. If $f:[a,b] \to \mathbb{R}$ is a harmonically convex function, then

$$F(t) \le f(a) + f(b) - \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{x_i}}\right)$$

Proof. Using Theorem 1.2, we get

$$f\left(\frac{1}{\frac{1-t}{x_i} + \frac{t}{x_{n+1-i}}}\right) = f\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - (1-t)(\frac{1}{a} + \frac{1}{b} - \frac{1}{x_i}) - t(\frac{1}{a} + \frac{1}{b} - \frac{1}{x_{n+1-i}})}\right)$$

$$\leqslant f(a) + f(b) - (1-t)f\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{x_i}}\right) - tf\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{x_{n+1-i}}}\right)$$
(2.2)

for each $1 \le i \le n$, we use this fact that

$$\sum_{i=1}^{n} f\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{x_{i}}}\right) = \sum_{i=1}^{n} f\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{x_{n+1-i}}}\right).$$

With summing on inequalities (2.2) from i = 1 to i = n and by division n we get

$$F(t) \le f(a) + f(b) - \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{x_i}}\right),$$

which completes the proof. \Box

COROLLARY 2.4. In view of Theorems 2.2, 2.3, we arrive at

(1)
$$f\left(\frac{n}{\sum_{i=1}^{n}\frac{1}{x_i}}\right) \leqslant \int_0^1 F(t)dt \leqslant \sum_{i=1}^{n}\frac{f(x_i)}{n}$$
.

(2)
$$\int_0^1 F(t)dt \leq f(a) + f(b) - \frac{1}{n} \sum_{i=1}^n f\left(\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{x_i}}\right)$$
.

In the next theorem we obtain some lower bounds for F(t) and $\int_0^1 F(t)dt$.

THEOREM 2.5. Assume that f is a harmonically convex function then

(1)
$$F(t) \ge \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{2}{\frac{1}{x_i} + \frac{1}{x_{n+1-i}}}\right)$$

(2)
$$\int_0^1 F(t)dt \geqslant \frac{1}{n} \sum_{i=1}^n f\left(\frac{2}{\frac{1}{x_i} + \frac{1}{x_{n+1-i}}}\right)$$

Proof. (1): For each $0 \le t \le 1$ we have

$$f\left(\frac{2}{\frac{1}{x_{i}} + \frac{1}{x_{n+1-i}}}\right) = f\left(\frac{1}{\frac{1}{2}\left(\frac{t}{x_{i}} + \frac{1-t}{x_{n+1-i}}\right) + \frac{1}{2}\left(\frac{t}{x_{n+1-i}} + \frac{1-t}{x_{i}}\right)}\right)$$

$$\leq \frac{1}{2}\left[f\left(\frac{1}{\frac{t}{x_{i}} + \frac{1-t}{x_{n+1-i}}}\right) + f\left(\frac{1}{\frac{t}{x_{n+1-i}} + \frac{1-t}{x_{i}}}\right)\right].$$

Now, with summing above inequalities from i = 1 to i = n, we obtain

$$\frac{1}{n}\sum_{i=1}^{n} f\left(\frac{2}{\frac{1}{x_i} + \frac{1}{x_{n+1-i}}}\right) \geqslant F(t).$$

Note that,
$$\sum_{i=1}^{n} f\left(\frac{1}{\frac{t}{x_i} + \frac{1-t}{x_{n+1-i}}}\right) = \sum_{i=1}^{n} f\left(\frac{1}{\frac{1-t}{x_i} + \frac{t}{x_{n+1-i}}}\right).$$
(2): It is clear from (1). \square

In the next, we give some properties of the function F.

THEOREM 2.6. Assume that f is a harmonically convex function then

- (1) F(t) is a convex function on [0,1].
- (2) $\max_{t \in [0,1]} F(t) = F(0) = F(1).$

(3)
$$\min_{t \in [0, \frac{1}{2}]} F(t) = F(\frac{1}{2}) = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{2}{\frac{1}{x_i} + \frac{1}{x_{n+1-i}}}\right).$$

Proof. (1) Let $x, y \in [0, 1], t \in [0, 1]$. Then

$$F(tx+(1-t)y) = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{\frac{tx+(1-t)y}{x_i} + \frac{1-tx-(1-t)y}{x_{n+1-i}}}\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{t\left(\frac{x}{x_i} + \frac{1-x}{x_{n+1-i}}\right) + (1-t)\left(\frac{y}{x_i} + \frac{1-y}{x_{n+1-i}}\right)}\right)$$

$$\leqslant \frac{1}{n} \sum_{i=1}^{n} \left[tf\left(\frac{1}{\frac{x}{x_i} + \frac{1-x}{x_{n+1-i}}}\right) + (1-t)f\left(\frac{1}{\frac{y}{x_i} + \frac{1-y}{x_{n+1-i}}}\right) \right]$$

$$= tF(x) + (1-t)F(y)$$

which implies that F is convex.

(2) In view of Theorem 2.2, we have

$$F(t) \leqslant \sum_{i=1}^{n} \frac{f(x_i)}{n} = F(1) = F(0).$$

(3) If $t \in [0, \frac{1}{2}]$ then

$$F\left(\frac{1}{2} - t\right) = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{\frac{1}{2} - t} + \frac{\frac{1}{2} + t}{x_{n+1-i}}\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{\frac{1}{2} + t} + \frac{\frac{1}{2} - t}{x_{n+1-i}}\right)$$
$$= F\left(\frac{1}{2} + t\right).$$

Let us proceed by contradiction and assume that $\frac{1}{2}$ is not minimum of F(t) on $[0, \frac{1}{2}]$. So, there exists a $t \in (0, \frac{1}{2}]$ such that

$$F\left(\frac{1}{2} - t\right) = F\left(\frac{1}{2} + t\right) < F\left(\frac{1}{2}\right).$$

Also, F is convex hence we have

$$\begin{split} F\left(\frac{1}{2}\right) &= F\left(\frac{1}{2}\left(\frac{1}{2} - t\right) + \frac{1}{2}\left(\frac{1}{2} + t\right)\right) \\ &\leqslant \frac{1}{2}F\left(\frac{1}{2} - t\right) + \frac{1}{2}F\left(\frac{1}{2} + t\right) \\ &< F\left(\frac{1}{2}\right) \end{split}$$

which is a contradiction. So, $\min_{t \in [0, \frac{1}{7}]} F(t) = F\left(\frac{1}{2}\right)$. \square

Using Hermite-Hadamard inequality we obtain the following result.

COROLLARY 2.7. From Theorem 2.6 and Hermite-Hadamard inequality, we get

$$\frac{1}{n} \sum_{i=1}^{n} f\left(\frac{2}{\frac{1}{x_i} + \frac{1}{x_{n+1-i}}}\right) \leqslant \int_0^1 F(t)dt \leqslant \frac{1}{n} \sum_{i=1}^{n} f(x_i).$$

Using Mercer inequality we obtain the following result.

COROLLARY 2.8. From convexity F(t) on [0,1] and Mercer inequality we have

$$\sum_{i=1}^{n} f\left(\frac{1}{\frac{\sum_{j=1}^{m} p_{j}t_{j}}{x_{i}} + \frac{\sum_{j=1}^{m} p_{j}(1-t_{j})}{x_{n+1-i}}}\right) \leqslant 2 \sum_{i=1}^{n} f(x_{i}) - n \sum_{i=1}^{n} \sum_{j=1}^{m} p_{j} f\left(\frac{1}{\frac{1-t_{j}}{x_{i}} + \frac{t_{j}}{x_{n+1-i}}}\right).$$

 $for\ every\ 0\leqslant t_j\leqslant 1,\ 1\leqslant j\leqslant m,\ 0\leqslant p_j\leqslant 1,\ 1\leqslant j\leqslant m,\ \textstyle\sum_{j=1}^m p_j=1.$

COROLLARY 2.9. By the use of convexity F on [0,1] and

$$\min_{t \in [0,1]} F(t) = F\left(\frac{1}{2}\right), \quad \max_{t \in [0,1]} F(t) = F(0) = F(1)$$

we conclude that F is decreasing on $[0,\frac{1}{2}]$ and increasing on $[\frac{1}{2},1]$.

3. Applications

In this section, we give some applications in information theory, entropy bounds, mean theory and approximation theory. In this section, we treat the function \log as the logarithmic function of base e.

3.1. Applications in information theory

We use r-logarithmic function defined by $\log_r x := \frac{x^r - 1}{r}$, $(x > 0, r \neq 0)$ in this subsection. The function $\log_r x$ uniformly converges to the usual logarithmic function $\log x$ in the limit $r \to 0$.

DEFINITION 3.1. For a probability distribution $\mathbf{P} = \{p_i\}_{i=1}^n$ the Tsallis entropy $T_r(\mathbf{P})$ is defined by (see [36])

$$T_r(\mathbf{P}) := -\sum_{i=1}^n p_i^{1-r} \log_r p_i, \ (r \neq 0)$$

and the Shannon entropy of P is defined by

$$H(\mathbf{P}) := -\sum_{i=1}^n p_i \log p_i.$$

It is standard to use the convention $0\log 0 \equiv 0$ in information theory [8]. However, to avoid such a case, we consider the positive probability distribution $\mathbf{P} := \{p_1, \dots, p_n\}$ such that $p_i > 0$ for all $i = 1, \dots, n$ and $\sum_{i=1}^n p_i = 1$ in the sequel.

DEFINITION 3.2. For a positive probability distribution $\mathbf{P} = \{p_i\}_{i=1}^n$, we define another positive probability distribution $\mathbf{Q}_t(\mathbf{P}) = \{q_i\}_{i=1}^n$ by

$$q_i := (1-t)p_i + tp_{n+1-i}$$

for every $t \in [0,1]$. In the special case we have

$$\mathbf{Q}_{\frac{1}{2}}(\mathbf{P}) = \left\{ \frac{p_i + p_{n+1-i}}{2} \right\}.$$

LEMMA 3.3. Let a,b>0 and $f_r(x):=\frac{1}{x^{1-r}}\log_r\frac{1}{x}$. If $0\neq r\leqslant 1$, then the function $f_r(x)$ is harmonically convex. If $r\geqslant 1$, then $f_r(x)$ is harmonically concave.

Proof. Let $g_r(t,a,b):=(1-t)f_r(b)+tf_r(a)-f_r\left(\frac{1}{(1-t)b^{-1}+ta^{-1}}\right)$ for a,b>0, $r\leqslant 1$ and $0\leqslant t\leqslant 1$ where $f_r(x):=\frac{1}{x^{1-r}}\log_r\frac{1}{x}$. Since $g_r(0,a,b)=g_r(1,a,b)=0$, it is sufficient to show $\frac{d^2g_r(t,a,b)}{dt^2}\leqslant 0$. Indeed it is calculated in the following:

$$\frac{d^2g_r(t,a,b)}{dt^2} = \frac{(r-1)(a-b)^2 \left(\frac{ab}{(1-t)a+tb}\right)^r}{ab \left\{ (1-t)a+tb \right\}} \le 0$$

which implies $g_r(t,a,b) \geqslant 0$. If $r \geqslant 1$, then $\frac{d^2g_r(t,a,b)}{dt^2} \geqslant 0$ which implies $g_r(t,a,b) \leqslant 0$. \square

COROLLARY 3.4. Let a,b > 0. Then the function $f(x) = -\frac{1}{x} \log x$ is harmonically convex on [a,b].

Proof. Since $\log_r x$ uniformely convergences to $\log x$ when $r \to 0$, we see $\lim_{r \to 0} f_r(x) = -\frac{1}{x} \log x$. Thus, by Lemma 3.3, we conclude that $f(x) = -\frac{1}{x} \log x$ is harmonically convex. \square

THEOREM 3.5. Let $0 \neq r \leqslant 1$ and $\mathbf{P} = \{p_i\}_{i=1}^n$ be a positive probability distribution. Then

$$T_r(\mathbf{P}) \leqslant T_r(\mathbf{Q}_t(\mathbf{P})) \leqslant \log_r n$$

for every $t \in [0,1]$.

Proof. If
$$f(x) := f_r(x) = \frac{1}{x^{1-r}} \log_r \frac{1}{x}$$
 and $x_i := \frac{1}{p_i}$; $i = 1, ..., n$, then
$$F(t) = \frac{1}{n} \sum_{i=1}^n \frac{\left[p_i(1-t) + p_{n+1-i}t\right]^r - 1}{r\left[p_i(1-t) + p_{n+1-i}t\right]^{r-1}}$$

$$= \frac{-1}{n} T_r(\mathbf{Q}_t(\mathbf{P})). \tag{3.1}$$

Set $f(x) = f_r(x)$ and $x_i := \frac{1}{p_i}$; i = 1, ..., n in Theorem 2.2, we get

$$n^{r-1}\log_r \frac{1}{n} \leqslant \frac{-T_r(\mathbf{Q}_t(\mathbf{P}))}{n} \leqslant \frac{-T_r(\mathbf{P})}{n}$$

for every $t \in [0,1]$ and $0 \neq r \leq 1$. This completes the proof. \square

COROLLARY 3.6. Let $\mathbf{P} = \{p_i\}_{i=1}^n$ be a positive probability distribution. Then

$$H(\mathbf{P}) \leqslant H(\mathbf{Q}_t(\mathbf{P})) \leqslant \log n$$

for every $t \in [0,1]$.

Proof. An immediate consequence of Theorem 3.5, since

$$\lim_{r\to 0} T_r(\mathbf{P}) = H(\mathbf{P})$$

for every positive probability distribution \mathbf{P} .

This corollary has the following useful proposition:

PROPOSITION 3.7. Let $\mathbf{P} = \{p_i\}_{i=1}^n$ be a positive probability distribution. Then

$$H(\mathbf{P}) \leqslant \sum_{i=1}^{n} p_i \log \left(\frac{2}{p_i + p_{n+1-i}} \right) \leqslant \log n$$

for every $t \in [0,1]$.

Proof. A consequence of Corollary 3.6 with $t = \frac{1}{2}$, because

$$\sum_{i=1}^{n} p_{i} \log \left(\frac{p_{i} + p_{n+1-i}}{2} \right) = \sum_{i=1}^{n} p_{n+1-i} \log \left(\frac{p_{i} + p_{n+1-i}}{2} \right).$$

This completes the proof of the proposition. \Box

EXAMPLE 3.8. Let $\mathbf{P} = \left\{ \frac{1}{6}, \frac{1}{3}, \frac{1}{2} \right\}$ and $H(\mathbf{P}) = \frac{2}{3} \log 2 + \frac{1}{2} \log 3$. On the other hand, we have

$$\mathbf{Q}_{t}(\mathbf{P}) = \left\{ \frac{1}{6} + \frac{1}{3}t, \ \frac{1}{3}, \ \frac{1}{2} - \frac{1}{3}t \right\}.$$

Thus

$$H(\mathbf{Q}_t(\mathbf{P})) = \left(\frac{2t+1}{6}\right) \log \left(\frac{6}{2t+1}\right) + \left(\frac{3-2t}{6}\right) \log \left(\frac{6}{3-2t}\right) + \frac{1}{3} \log 3.$$

Therefore, by Proposition 3.7

$$\frac{2}{3}\log 2 + \frac{1}{6}\log 3 \leqslant \frac{2t+1}{6}\log \left(\frac{6}{2t+1}\right) + \frac{3-2t}{6}\log \left(\frac{6}{3-2t}\right) \leqslant \frac{2}{3}\log 3$$

for every $t \in [0,1]$.

Figure 1 illustrates the relations among $H(\mathbf{P})$, $H(\mathbf{Q_t}(\mathbf{P}))$ and $\log n$ for the above example. The dashed line, the solid curve and the dotted line represent $H(\mathbf{P})$, $H(\mathbf{Q_t}(\mathbf{P}))$ and $\log n$, respectively.

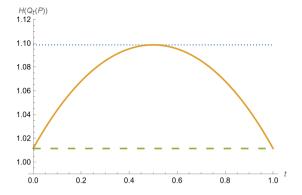


Figure 1: $H(\mathbf{P})$, $H(\mathbf{Q}_t(\mathbf{P}))$ and $\log n$ in Example 3.8.

THEOREM 3.9. Let $\mathbf{P} = \{p_i\}_{i=1}^n$ be a positive probability distribution, $t \in [0,1]$ and $r \leq 1$; $r \neq 0$. Then

$$T_r(\mathbf{Q}_t(\mathbf{P})) \leqslant T_r(\mathbf{Q}_{\frac{1}{2}}(\mathbf{P})).$$

Proof. Set $f(x) = f_r(x) = \frac{1}{x^{1-r}} \log_r \frac{1}{x}$ and $x_i := \frac{1}{p_i}$; i = 1, ..., n in Theorem 2.5 by (3.1), we get

$$\frac{-T_r(\mathbf{Q}_t(\mathbf{P}))}{n} \geqslant \frac{1}{n} \sum_{i=1}^n \frac{\left(\frac{p_i + p_{n+1-i}}{2}\right)^r - 1}{r\left(\frac{p_i + p_{n+1-i}}{2}\right)^{r-1}} = -\frac{1}{n} T_r\left(\frac{p_i + p_{n+1-i}}{2}\right)$$

for every $t \in [0,1]$. This completes the proof. \square

COROLLARY 3.10. Let $\mathbf{P} = \{p_i\}_{i=1}^n$ be a positive probability distribution. Then

$$H\left(\mathbf{Q}_{t}(\mathbf{P})\right) \leqslant H\left(\mathbf{Q}_{\frac{1}{2}}(\mathbf{P})\right)$$

for every $t \in [0,1]$.

Proof. It follows from Theorem 3.9 as $r \rightarrow 0$.

Theorems 3.5 and 3.9, yield the following result.

COROLLARY 3.11. Let $r \leq 1$, $r \neq 0$ and $\mathbf{P} = \{p_i\}_{i=1}^n$ be a positive probability distribution. Then

$$\max_{0 \le t \le 1} \{T_r(\mathbf{Q}_t(\mathbf{P}))\} = T_r\left(\mathbf{Q}_{\frac{1}{2}}(\mathbf{P})\right) \quad and \quad \min_{0 \le t \le 1} \{T_r(\mathbf{Q}_t(\mathbf{P}))\} = T_r(\mathbf{P}).$$

Corollaries 3.6 and 3.10, yield the following result.

COROLLARY 3.12. If $\mathbf{P} = \{p_i\}_{i=1}^n$ is a positive probability distribution, then

$$\max_{0 \le t \le 1} \{ H(\mathbf{Q}_t(\mathbf{P})) \} = H\left(\mathbf{Q}_{\frac{1}{2}}(\mathbf{P})\right) \quad and \quad \min_{0 \le t \le 1} \{ H(\mathbf{Q}_t(\mathbf{P})) \} = H(\mathbf{P}).$$

3.2. Applications in analysis

In this subsection, we apply the harmonically convexity of $\log x$ to obtain some inequalities for some means.

PROPOSITION 3.13. Let $0 < a \le x_i \le b$.

(1) The following extension of GH-inequality holds:

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \leqslant \sqrt[n]{\prod_{i=1}^{n} \frac{x_i x_{n+1-i}}{(1-t)x_{n+1-i} + tx_i}} \leqslant \sqrt[n]{\prod_{i=1}^{n} x_i}.$$
 (3.2)

(2) For every positive integer n, we have

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}} \leqslant \prod_{i=1}^{n} \left[\frac{x_{i} x_{n+1-i} \left(x_{i}^{\frac{x_{i}}{x_{n+1-i} - x_{i}}} \right) e}{\left(x_{n+1-i}^{\frac{x_{n+1-i}}{x_{n+1-i} - x_{i}}} \right)} \right]^{\frac{1}{n}} \leqslant \sqrt[n]{\prod_{i=1}^{n} x_{i}}.$$
(3.3)

Proof. (1) In Theorem 2.2 put $f(x) = \log x$, we obtain

$$F(t) = \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{1}{\frac{t}{x_{n+1-i}} + \frac{1-t}{x_i}} \right) = \log \sqrt[n]{\prod_{i=1}^{n} \frac{x_i x_{n+1-i}}{(1-t)x_{n+1-i} + tx_i}}.$$

By the use of Theorem 2.2, we obtain the desired inequality.

(2) In view of Corollary 2.4 (part (1)) with $f(x) = \log x$, we have

$$\int_{0}^{1} F(t)dt = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{1} \log \left(\frac{x_{i}x_{n+1-i}}{tx_{i} + (1-t)x_{n+1-i}} \right) dt$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[\log(x_{i}x_{n+1-i}) - \frac{1}{x_{n+1-i} - x_{i}} (x_{n+1-i} \log x_{n+1-i} - x_{n+1-i} - x_{i} \log x_{i} + x_{i}) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \log \frac{x_{i}x_{n+1-i} \left(x_{i}^{\frac{x_{i}}{x_{n+1-i} - x_{i}}} \times e \right)}{\left(x_{n+1-i}^{\frac{x_{n+1-i}}{x_{n+1-i} - x_{i}}} \right)}, \tag{3.4}$$

which completes the proof. \Box

The following extensions of AM-GM-HM inequality hold.

PROPOSITION 3.14. Let $x_i > 0$; i = 1, ..., n. Then we have the following

$$\frac{n}{\sum_{i=1}^{n} x_{i}^{-1}} \leqslant \sqrt[n]{\prod_{i=1}^{n} \frac{x_{i}x_{n+1-i}}{(1-t)x_{n+1-i} + tx_{i}}} \leqslant \sqrt[n]{\prod_{i=1}^{n} x_{i}}$$

$$\leqslant \sqrt[n]{\prod_{i=1}^{n} (1-t)x_{i} + tx_{n+1-i}} \leqslant \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
(3.5)

for every $t \in [0,1]$.

Proof. By replacing x_i by x_i^{-1} in (3.2), we obtain

$$\sqrt[n]{\prod_{i=1}^{n} x_i} \leqslant \sqrt[n]{\prod_{i=1}^{n} (1-t)x_i + tx_{n+1-i}} \leqslant \frac{1}{n} \sum_{i=1}^{n} x_i.$$
 (3.6)

Combine (3.2) and (3.6), we get (3.5). \square

PROPOSITION 3.15. Let $x_i > 0$; i = 1, ..., n. Then we have the following

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}} \leqslant \prod_{i=1}^{n} \left[\frac{x_{i}x_{n+1-i} \left(x_{i}^{\frac{x_{i}}{x_{n+1-i}-x_{i}}} \right) e}{\left(x_{i}^{\frac{x_{n+1-i}}{x_{n+1-i}-x_{i}}} \right)} \right]^{\frac{1}{n}} \leqslant \sqrt[n]{\prod_{i=1}^{n} x_{i}}$$

$$\leqslant \prod_{i=1}^{n} \left[\frac{x_{i}x_{n+1-i} \left(x_{i}^{\frac{x_{n+1-i}}{x_{i}-x_{n+1-i}}} \right)}{\left(x_{n+1-i}^{\frac{x_{i}}{x_{i}-x_{n+1-i}}} \right) e} \right]^{\frac{1}{n}} \leqslant \frac{\sum_{i=1}^{n} x_{i}}{n}. \tag{3.7}$$

Proof. Replace x_i by x_i^{-1} in (3.3), we arrive at

$$\sqrt[n]{\prod_{i=1}^{n} x_{i}} \leqslant \prod_{i=1}^{n} \left[\frac{x_{i} x_{n+1-i} \left(x_{i}^{\frac{x_{n+1-i}}{x_{i}-x_{n+1-i}}} \right)}{\left(x_{n+1-i}^{\frac{x_{i}}{x_{i}-x_{n+1-i}}} \right) e} \right]^{\frac{1}{n}} \leqslant \frac{\sum_{i=1}^{n} x_{i}}{n}.$$
(3.8)

Combine (3.3) and (3.8), we conclude (3.7). \Box

COROLLARY 3.16. If a, b > 0, then

$$H(a,b) \leqslant \frac{ab}{\sqrt{(ta+(1-t)b)(tb+(1-t)a)}} \leqslant G(a,b)$$

$$\leqslant \sqrt{(ta+(1-t)b)(tb+(1-t)a)} \leqslant A(a,b)$$

for every $t \in [0,1]$.

Proof. Put n = 2, $x_1 := a$ and $x_2 := b$ in Proposition 3.14. \square

COROLLARY 3.17. If $b \neq a > 0$, then

$$H(a,b) \leqslant \frac{G^2(a,b)}{I(a,b)} \leqslant G(a,b) \leqslant \frac{G^2(a,b)}{S(a,b)} \leqslant A(a,b).$$

where

$$I(a,b) = \frac{1}{e} \left(\frac{b^b}{a^a} \right)^{\frac{1}{b-a}} \quad and \quad S(a,b) := e \left(\frac{a^b}{b^a} \right)^{\frac{1}{b-a}}.$$

Proof. Put n = 2, $x_1 := a$ and $x_2 := b$ in Proposition 3.15, we obtain

$$\frac{2ab}{a+b} \leqslant abe \left(\frac{a^{\frac{2a}{b-a}}}{b^{\frac{2b}{b-a}}}\right)^{\frac{1}{2}} \leqslant \sqrt{ab} \leqslant \frac{ab}{e} \left(\frac{b^{\frac{2a}{b-a}}}{a^{\frac{2b}{b-a}}}\right)^{\frac{1}{2}} \leqslant \frac{a+b}{2}.$$

This completes the proof. \Box

Note that the second and third inequalities in Corollary 3.17 revocer the known relation [6, Corollary 13 in Section 5 of Chapter II]:

$$S(a,b) \leqslant G(a,b) \leqslant I(a,b).$$

PROPOSITION 3.18. Assume that $0 < a \le x_i \le b$. Then

$$\prod_{i=1}^{n} \frac{x_{i} x_{n+1-i} \left(x_{i}^{\frac{x_{i}}{x_{n+1-i} - x_{i}}} \times e \right)}{\frac{x_{n+1-i}}{x_{n+1-i}}} \leqslant a^{n} b^{n} \prod_{i=1}^{n} \left(\frac{1}{a} + \frac{1}{b} - \frac{1}{x_{i}} \right).$$

Proof. In view of Corollary 2.4 (part (2)) with $f(x) = \log x$ and using (3.4), we have

$$\prod_{i=1}^{n} \left[\frac{x_{i}x_{n+1-i} \left(x_{i}^{\frac{x_{i}}{x_{n+1-i}-x_{i}}} \times e \right)}{x_{n+1-i}^{\frac{x_{n+1-i}}{x_{n+1-i}-x_{i}}}} \right]^{\frac{1}{n}} \leqslant ab \prod_{i=1}^{n} \left(\frac{1}{a} + \frac{1}{b} - \frac{1}{x_{i}} \right)^{\frac{1}{n}},$$

which completes the proof. \Box

PROPOSITION 3.19. Assume that $0 < a \le x_i \le b$. Then

$$\prod_{i=1}^{n} \frac{x_{n+1-i}x_{i}}{(1-t)x_{n+1-i}+tx_{i}} \leq a^{n}b^{n} \prod_{i=1}^{n} \left(\frac{1}{a} + \frac{1}{b} - \frac{1}{x_{i}}\right).$$

Proof. Put $f(x) = \log x$ in Theorem 2.3. \square

If we take n := 2, $x_1 := a$ and $x_2 := b$ in Proposition 3.19, then we have

$$G(a,b)^2 \leqslant A_t(b,a)A_t(a,b),$$

where $A_t(a,b) := (1-t)a + tb$, $(0 \le t \le 1)$ is the weighted arithmetic mean of two positive numbers a and b.

COROLLARY 3.20. Let $0 < a \le x_1, x_2 \le b$. Then

$$(S(x_1,x_2))^2 \leqslant \left(a+b-\frac{ab}{x_1}\right)\left(a+b-\frac{ab}{x_2}\right).$$

Proof. Set n = 2 in Proposition 3.18. \square

We give a result related to e.

COROLLARY 3.21. Let $n \in \mathbb{N}$. Then,

$$\left(1+\frac{1}{n}\right)^n \left(1+\frac{1}{2n+1}\right) < e < \left(1+\frac{1}{n}\right)^{n+1/2}.$$

Proof. Setting a := 1 and $b := 1 + \frac{1}{n}$ in $G(a,b) \le I(a,b) \le A(a,b)$, we obtain the inequalities:

$$\left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{2n+1}\right)\leqslant e\leqslant \left(1+\frac{1}{n}\right)^{n+1/2}.$$

The equalities' conditions of the inequalities $G(a,b) \le I(a,b) \le A(a,b)$ are a=b. However it never occurs such a condition since a:=1 and $b:=1+\frac{1}{n}$. \square

It is known that [25] and [37, Eq. (2)]:

$$\left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{2n+1}\right) < e < \left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{2n}\right).$$

Since it is not difficult to show $\left(1+\frac{1}{n}\right)^{1/2} < \left(1+\frac{1}{2n}\right)$ for $n \in \mathbb{N}$, Corollary 3.21 gives same lower bound and a tighter upper bound of e, compared to the above.

In the following proposition, we further approximate the number e.

PROPOSITION 3.22. Let $n, m \in \mathbb{N}$. Then,

$$\left(1 + \frac{1}{mn}\right)^{mn} \left(1 + \frac{1}{2mn+1}\right) < e < \left(1 + \frac{1}{mn}\right)^{mn+1/2}.$$

Proof. The desired inequality follows from Corollary 3.17 by putting a:=m, $b:=m+\frac{1}{n}$, because we have

$$H(a,b) = \frac{2m(mn+1)}{2mn+1}, \quad \frac{G^2(a,b)}{I(a,b)} = \frac{em^{mn+1}n^{mn}}{(mn+1)^{mn}}$$

 $G(a,b) = \sqrt{m(m+1/n)}.$

In this case, the equalities never occur. \Box

REMARK 3.23. If we take m := n in Proposition 3.22, then we have

$$\frac{2\left(n^2+1\right)^{n^2+1}}{n^{2n^2}\left(2n^2+1\right)} < e < \frac{\left(n^2+1\right)^{n^2+\frac{1}{2}}}{n^{2n^2+1}}, \quad (n \in \mathbb{N}).$$

Declarations

Availability of data and materials. Not applicable.

Competing interests. The authors declare that they have no competing interests.

Funding. This research is supported by a grant (JSPS KAKENHI, Grant Number: 21K03341) awarded to the author, S. Furuichi.

Authors' contributions. Authors declare that they have contributed equally to this paper. All authors have read and approved this version.

REFERENCES

- [1] A. AZÓCAR, K. NIKODEM AND G. ROA, Fejér-type inequalities for strongly convex functions, Annales Mathematicae Silesianae, 26 (2012), 43–54.
- [2] S.-P. BAI AND F. QI, Some inequalities for $(s_1,m_1)-(s_2,m_2)$ -convex functions on the co-ordinates, Glob. J. Math. Anal., 1 (1) (2013), 22–28.
- [3] H. BARSAM AND A. R. SATTARZADEH, Hermite-Hadamard inequalities for uniformly convex function and its applications in means, Miskolc mathematical notes, 21 (2) (2020), 621–630.
- [4] H. BARSAM AND Y. SAYYARI, On some inequalities of differentable uniformly convex mapping with applications, Numer. Funct. Anal. Optim., 44 (2), (2023), 368–381.
- [5] R.-F. BAI, F. QI AND B.-Y. XI, Hermite–Hadamard type inequalities for the m- and (α,m)-logarithmically convex functions, Filomat, 27 (1) (2013), 1–7.
- [6] P. S. BULLEN, Handbook of means and their inequalities, Kluwer Academic Publisgers, 2003.
- [7] S. I. BUTT, P. AGARWAL, S. YOUSAF AND J. L. GUIRAO, Generalized fractal Jensen and Jensen– Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022 (2022), 1–18.

- [8] T. M. COVER AND J. A. THOMAS, Elements of information theory, Wiley and Sons, second edition, 2006.
- [9] S. S. DRAGOMIR, Inequalities of Jensen type for HA-convex function, Annals of Oradea University

 Mathematics Fascicola, 27 (1) (2020), 103–124.
- [10] S. S. DRAGOMIR, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math., 5 (18) (2009), 269–278.
- [11] S. S. DRAGOMIR AND C. E. M. PEARCE, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- [12] R. J. DWILEWICZ, A short history of Convexity, Differential Geometry Dynamical Systems, 11 (2009), 112–129.
- [13] T. FURUTA, J. MICIC HOT, J. PECARIC AND Y. SEO, Mond–Pecaric method in operator inequalities: Inequalities for bounded selfadjoint operators on a Hilbert space, Element, Zagreb, 2005.
- [14] J. HADAMARD, Etude sur les proprietes des fonctions entieres et en particulier dune fonction consideree par Riemann, J. Math. Pures Appl., **58** (1893), 171–215.
- [15] J. Hua, B.-Y. Xi and F. Qi, Inequalities of Hermite-Hadamard type involving an s-convex function with applications, Appl. Math. Comput., 246 (2014), 752–760.
- [16] S. HUSSAIN, M. I. BHATTI AND M. IQBAL, Hadamard-type inequalities for s-convex functions I, Punjab Univ. Jour. of Math., 41 (2009), 51–60.
- [17] D. Y. HWANG, Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables, Appl. Math. Comput., 217 (23) (2011), 9598–9605.
- [18] D. A. ION, Some estimates on the Hermite–Hadamard inequality through quasi-convex functions, Annals of University of Craiova Math. Comp. Sci. Ser., 34 (2007), 82–87.
- [19] I. ISCAN, Hermite–Hadamard type inequaities for harmonically functions, Hacettepe Journal of Mathematics and Statistic, 43 (6) (2014), 935–942.
- [20] J. L. W. V. JENSEN, Sur les fonctions convexes et les inegalites entre les voleurs mogernmes, Acta. Math., 30 (1906), 175–193.
- [21] G. LORENZEN, Why means in two arguments are special, Elem. Math., 49 (1994), 32-37.
- [22] A. M. MERCER, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math., 4 (4) (2003).
- [23] C. NICULESCU AND L. E. PERSSON, *Convex functions and their applications*, 2nd ed., Springer: Berlin, Germany, 2018.
- [24] M. E. ÖZDEMIR, M. AVCI AND E. SET, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 23 (2010), 1065–1070.
- [25] G. PÓLYA AND G. SZEGÖ, Theorems and problems in analysis, Springer-Verlag, 1978.
- [26] J. ROOIN, Some aspects of convex functions and their applications, J. Inequal. Pur. Appl. Math., 2 (1) (2001).
- [27] Y. SAYYARI, H. BARSAM AND L. CIURDARIU, A new refinement of Jensen-type inequality with respect to uniformly convex functions with applications in information theory, J. Math. Inequal., 17 (4) (2023), 1311–1322.
- [28] Y. SAYYARI, A refinement of the Jensen-Simic-Mercer inequality with applications to entropy, J. Korean Soc. Math. Educ. B: Pure Appl. Math. 29 (1) (2022), 51–57.
- [29] Y. SAYYARI, An extension of Jensen–Mercer inequality with applications to entropy, Honam Math. J. 44 (4) (2022), 513–520.
- [30] Y. SAYYARI, New entropy bounds via uniformly convex functions, Chaos Solitons Fract. 141 (2020), Article ID 110360.
- [31] Y. SAYYARI, New refinements of Shannon's entropy upper bounds, J. Inf. Optim. Sci. 42 (8) (2021), 1869–1883.
- [32] Y. SAYYARI AND H. BARSAM, New inequalities related to entropy and relative entropy with respect to Hermite–Hadamard inequality, Filomat, 38 (2024), 1265–1277, doi.org/10.2298/FIL2404265S.
- [33] Y. SAYYARI, H. BARSAM AND A. SATTARZADEH, On new refinement of the Jensen inequality using uniformly convex functions with applications, Appl. Anal., 102 (2023), 5215–5223, doi.org/10.1080/00036811.2023.2171873.
- [34] Y. SAYYARI, M. R. MOLAEI AND A. MEHRPOOYA, Complexities of information sources, J. Appl. Stat., 50 (15) (2023), 3125–3141.

- [35] Y. SHUANG, H.-P. YIN AND F. QI, Hermite-Hadamard type integral inequalities for geometricarithmetically s-convex functions, Analysis (Munich), 33 (2) (2013), 197–208.
- [36] C. TSALLIS, Possible generalization of Bolzmann-Gibbs statistics, J. Stat. Phys., 52 (1988), 479-487.
- [37] A. VERNESCU, About four convergences to e and 1/e, General Mathematics, 20 (5) (2012), 153-157, generalmathematics.ro/wp-content/uploads/2020/03/GM-Referee-Report.pdf.

(Received August 23, 2024)

Yamin Sayyari Department of Mathematics Sirjan University Of Technology Sirjan, Iran

e-mail: ysayyari@gmail.com

Shigeru Furuichi Department of Information Science College of Humanities and Sciences, Nihon University Setagaya-ku, Tokyo, Japan

> Department of Mathematics Saveetha School of Engineering, SIMATS Thandalam, Chennai-602105, Tamilnadu, India e-mail: furuichi.shigeru@nihon-u.ac.jp

> > Hasan Barsam
> > Department of Mathematics
> > Faculty of Science, University of Jiroft
> > P.O. Box 78671-61167, Jiroft, Iran
> > e-mail: hasanbarsam@yahoo.com
> > hasanbarsam@ujiroft.ac.ir