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REFINEMENTS OF ACZÉL–POPOVICIU AND BELLMAN

INEQUALITIES FOR LINEAR ISOTONIC FUNCTIONALS

JINYAN MIAO ∗ AND SILVESTRU SEVER DRAGOMIR

(Communicated by M. Krnić)

Abstract. A refinement of reverse Jensen inequality for linear isotonic functionals is established.
As consequences, refinements of the Aczél-Popoviciu and Bellman inequalities for linear iso-
tonic functionals are obtained. Some particular inequalities are also deduced.

1. Introduction

In the following, we recall some notions and results mentioned in [3], [8] about
linear isotonic functionals.

Let E be a nonempty set and L a class of real-valued functions f : E → R satis-
fying the following condition:

(L1) If f ,g ∈ L , then  f +g ∈ L for all , ∈ R .
We consider linear isotonic functionals defined on a class L , that is, a mapping

A : L → R satisfying the following conditions:
(A1) A( f +g) = A( f )+A(g) for all f ,g ∈ L and , ∈ R .
(A2) If f ∈ L and f (t) � 0 for all t ∈ E , then A( f ) � 0.
Now we recall a reverse of Jensen’s inequality for linear isotonic functionals given

in [8, p. 124] and [3].

THEOREM 1. Let E,L and A be as above and  : I → R be a continuous convex
function defined on an interval I ⊆ R . Assume that p ∈ L with p(t) � 0 for all t ∈ E
and 0 < A(p) < u for some u ∈ R . Further, assume that g : E → I is such that pg ∈ L
and p(g) ∈ L. If  ∈ I and (u−A(pg))/(u−A(p))∈ I , then we have

u()−A(p(g))
u−A(p)

� 
(

u−A(pg)
u−A(p)

)
. (1)

The following result was also obtained in [3].
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THEOREM 2. Suppose the assumptions of Theorem 1 are satisfied. Additionally,
let q ∈ L be such that qg, q(g) ∈ L. Also, assume that 0 � q(t) � p(t) for all t ∈ E
and 0 < A(q) < A(p) . If  ∈ I and (u−A(pg))/(u−A(p))∈ I, then we have

0 � A(q(g))−A(q)
(

A(qg)
A(q)

)
(2)

� [u−A(p)]
(

u−A(pg)
u−A(p)

)
− [u()−A(p(g))] .

The following result for Bellman inequality for linear isotonic functionals is also
proved in Theorem 2.5 from [3].

THEOREM 3. Let E,L and A be as above. Assume p,q : E → R are such that
0 � q(t) � p(t) for all t ∈ E . Let f ,g : E → R be given functions with f (t),g(t) � 0
for all t ∈ E and such that p f r , q f r , pgr , qgr , p( f + g)r , q( f + g)r ∈ L for some
r > 1 . If

0 < A(q f r) � A(p f r) < ar, 0 < A(qgr) � A(pgr) < br,

for some a,b > 0 , then we have

0 � [A(q f r)1/r +A(qgr)1/r]r −A(q( f +g)r)

� (a+b)r−A(p( f +g)r)− [(ar −A(p f r))1/r +(br−A(pgr))1/r]r.

Motivated by these results we obtain in this paper other similar results with appli-
cations to Aczél-Popoviciu inequality and Bellman inequality for linear isotonic func-
tionals, as well as some other special cases.

2. Extension for linear isotonic functionals

First we prove an important result that provides a refinement of the inequality (1).
It is similar but actually more accurate than Theorem 2 obtained in [3].

THEOREM 4. Suppose the assumptions of Theorem 1 are satisfied. Additionally,
let q ∈ L be such that qg ∈ L and q(g) ∈ L. Also, assume that 0 � q(t) � p(t)
for all t ∈ E and 0 < A(q) < A(p) . If  ∈ I , (u − A(pg))/(u− A(p)) ∈ I and
(u+A(qg))/(u+A(q))∈ I , then we have

0 � u()+A(q(g))− [u+A(q)]
(

u+A(qg)
u+A(q)

)
(3)

� [u−A(p)]
(

u−A(pg)
u−A(p)

)
− [u()−A(p(g))].

Proof. The first inequality in (3) is a consequence of Jensen’s inequality for linear
isotonic functionals (see [8, pp. 112–113]) and Jensen’s inequality.
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Further, we have A(p− q) = A(p)−A(q) > 0 and 2u−A(p− q) = 2u−A(p)+
A(q) > 0. Also

2u−A((p−q)g)
2u−A(p−q)

=
(u−A(p)) u−A(pg)

u−A(p) + (u+A(q)) u+A(qg)
u+A(q)

u−A(p)+u+A(q)
∈ I.

Therefore, we can apply (1) with p replaced by p−q and u replaced by 2u to obtain

2u()−A(p(g))+A(q(g))
2u−A(p)+A(q)

(4)

� 
(

2u−A(pg)+A(qg)
2u−A(p)+A(q)

)

� u−A(p)
2u−A(p)+A(q)


(

u−A(pg)
u−A(p)

)

+
u+A(q)

2u−A(p)+A(q)


(
u+A(qg)
u+A(q)

)
.

The second inequality in (4) follows by Jensen inequality. Now it is easy to get the
second inequality of (3) from (4). �

Before the main cases, first, as a corollary of Theorem 4, we get the refinement for
Theorem 2.

COROLLARY 1. Suppose the assumptions of Theorem 1 are satisfied. Addition-
ally, let q ∈ L be such that qg ∈ L and q(g) ∈ L. Also, assume that 0 � q(t) � p(t)
for all t ∈ E and 0 < A(q) < A(p) . If  ∈ I , (u − A(pg))/(u− A(p)) ∈ I and
(u+A(qg))/(u+A(q))∈ I , then we have

0 � A(q(g))−A(q)
(

A(qg)
A(q)

)
(5)

� u()+A(q(g))− [u+A(q)]
(

u+A(qg)
u+A(q)

)

� [u−A(p)]
(

u−A(pg)
u−A(p)

)
− [u()−A(p(g))].

Proof. The first and third inequalities in (5) have been proven in Theorem 2 and
Theorem 4. For the second inequality in (5), due to Jensen inequality we have:

A(q)
(

A(qg)
A(q)

)
+u() � [u+A(q)]

(
u+A(qg)
u+A(q)

)
,

which is equivalent to the second inequality. �
From Theorem 4 we get the following refinement of Aczél-Popoviciu inequality.
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THEOREM 5. Let E,L and A be as above. Assume that p,q : E → R are such
that 0 � q(t) � p(t) for all t ∈ E . Also assume that a > 0 and b > 0 are given real
numbers. Let f ,g : E → R be given functions such that f (t) > 0 , g(t) � 0 for all t ∈ E
and p f r , q f r , pgs , qgs , p f g , q f g ∈ L, for some r,s > 1 with 1/r+1/s = 1 . If

0 < A(q f r) � A(p f r) < ar, 0 < A(qgs) � A(pgs) < bs,

then we have

0 � [ar +A(q f r)]1/r[bs +A(qgs)]1/s−ab−A(q f g) (6)

� ab−A(p f g)− [ar−A(p f r)]1/r[bs−A(pgs)]1/s.

Proof. Set u = ar ,  = a−rbs and replace p,q and g with p̃ = p f r, q̃ = q f r and
g̃ = f−rgs , respectively, and then apply Theorem 4 to the convex function (x) =−x1/s

defined on I = (0,) . In this case (3) reduces to (6). �
With Theorem 5 we can prove the following corollary.

COROLLARY 2. Let all the assumptions be as above in Theorem 5, then we have

[ar −A(p f r)]1/r[bs−A(pgs)]1/s

ab−A(p f g)
(7)

� ab+A(q f g)
[ar +A(q f r)]1/r[bs +A(qgs)]1/s

� 1.

Proof. Notice the fact that

[ar +A(q f r)]1/r[bs +A(qgs)]1/s (8)

� ab+A(q f g) � ab−A(p f g)

� [ar −A(p f r)]1/r[bs−A(pgs)]1/s > 0.

Consider (6) and (8) together, from the elementary inequality

y1 � y2 � y3 � y4 > 0, y3− y4 � y1− y2 � 0 ⇒ y4

y3
� y2

y1
� 1

we get (7). �
The following result is similar to Theorem 2.5 in [3] mentioned in the introduction.

THEOREM 6. Let E,L and A be as above. Assume p,q : E → R are such that
0 � q(t) � p(t) for all t ∈ E . Let f ,g : E → R be given functions with f (t),g(t) � 0
for all t ∈ E and such that p f r , q f r , pgr , qgr , p( f + g)r , q( f + g)r ∈ L for some
r > 1 . If

0 < A(q f r) � A(p f r) < ar, 0 < A(qgr) � A(pgr) < br,

for some a,b > 0 , then we have

0 � [ar +A(q f r)]1/r +[br +A(qgr)]1/r − [(a+b)r +A(q( f +g)r)]1/r (9)

� [(a+b)r−A(p( f +g)r)]1/r − [ar−A(p f r)]1/r − [br−A(pgr)]1/r.
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Proof. The first inequality in (9) is a consequence of Minkowski inequality for
linear isotonic functionals [8, p. 114] and Minkowski inequality.

Next, the Bellman inequality for linear isotonic functionals [8, pp. 125–126] can
be restated in the weighted form as follows.

If p, f ,g : E → R are such that p(t), f (t),g(t) � 0 for all t ∈ E and p f r , pgr ,
p( f +g)r ∈ L for some r > 1, then

[(a+b)r−A(p( f +g)r)]1/r � [ar −A(p f r)]1/r +[br −A(pgr)]1/r, (10)

provided ar > A(p f r) , br > A(pgr) .
Now use the proof by contradiction. Assume that

[ar +A(q f r)]1/r +[br +A(qgr)]1/r (11)

+[ar−A(p f r)]1/r +[br−A(pgr)]1/r

> [(a+b)r +A(q( f +g)r)]1/r +[(a+b)r−A(p( f +g)r)]1/r

holds for some functions. From the fact that

[ar +A(q f r)]1/r +[br +A(qgr)]1/r

� [(a+b)r +A(q( f +g)r)]1/r

� [(a+b)r−A(p( f +g)r)]1/r

� [ar −A(p f r)]1/r +[br −A(pgr)]1/r > 0,

and (11), we have

([ar +A(q f r)]1/r +[br +A(qgr)]1/r)r (12)

+([ar −A(p f r)]1/r +[br −A(pgr)]1/r)r

> (a+b)r +A(q( f +g)r)+ (a+b)r−A(p( f +g)r).

However, by reverse Minkowski inequality, we have

([ar +A(q f r)]1/r +[br +A(qgr)])r (13)

+([ar −A(p f r)]1/r +[br −A(pgr)]1/r)r

� ([2ar −A((p−q) f r)]1/r +[2br−A((p−q)gr)]1/r)r.

Further, apply (10) with p replaced by p− q and a,b replaced by 21/ra , 21/rb , we
have

[2ar −A((p−q) f r)]1/r +[2br−A((p−q)gr)]1/r

� [2(a+b)r−A((p−q)( f +g)r)]1/r,

which is equivalent to

([2ar −A((p−q) f r)]1/r +[2br−A((p−q)gr]1/r)r (14)

� (a+b)r +A(q( f +g)r)+ (a+b)r−A(p( f +g)r).
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Combine (13) and (14), (12) can not hold, so the assumption is wrong, hence the in-
equality (9) is proved. �

Set the convex function (x) = − lnx in Theorem 4, and choose the interval I =
(0,) , we have the proposition below.

PROPOSITION 1. Let E,L and A be as above. Assume that p,q ∈ L with p(t) �
q(t) � 0 for all t ∈ E and 0 < A(q) < A(p) < u for some u ∈ R . Further, assume
that g : E → (0,) is such that pg, qg, p lng, q lng ∈ L. If  ∈ (0,) and (u −
A(pg))/(u−A(p))∈ (0,) , then we have

(
u+A(qg)
u+A(q)

)u+A(q) (u−A(pg)
u−A(p)

)u−A(p)

−2u � exp[A((q− p) lng)].

Set the convex function (t) be the entropy function t ln t in Theorem 4, and
choose the interval I = (0,) , with some simplification we can also state the following
result.

PROPOSITION 2. Let E,L and A be as above. Assume that p,q ∈ L with p(t) �
q(t) � 0 for all t ∈ E and 0 < A(q) < A(p) < u for some u ∈ R . Further, assume
that g : E → (0,) is such that pg, qg, pg lng, qg lng ∈ L. If  ∈ (0,) and (u −
A(pg))/(u−A(p))∈ (0,) , then we have

(
u+A(qg)
u+A(q)

)u+A(qg)(u−A(pg)
u−A(p)

)u−A(pg)

−2u � exp[A((q− p)g lng)].

As a unified conclusion of Theorem 2 in [3] and Theorem 4, we explore some
consequence of Corollary 1. Set the convex function (x) = x2 in Corollary 1, we have
the following refinement of Aczél inequality.

THEOREM 7. Let E,L and A be as above. Assume that p,q : E → R are such
that 0 � q(t) � p(t) for all t ∈ E . Also assume that a > 0 and b > 0 are given real
numbers. Let f ,g : E → R be given functions such that p f 2 , q f 2 , pg2 , qg2 , p f g ,
q f g ∈ L. If f (t) �= 0 for all t ∈ E and

0 < A(q f 2) < A(p f 2) < a2,

then we have

0 � A(qg2)− A(q f g)2

A(q f 2)

� b2 +A(qg2)− [ab+A(q f g)]2

a2 +A(q f 2)

� [ab−A(p f g)]2

a2−A(p f 2)
− [b2−A(pg2)].



ACZÉL-POPOVICIU AND BELLMAN FUNCTIONAL INEQUALITIES 817

Proof. Note that a �= 0 so that u = a2 and  = b/a are well defined real numbers.
Also, p̃ = p f 2 , q̃ = q f 2 , and g̃ = g/ f are well defined real-valued functions on E .
Moreover, it is easy to see that we can replace p,q and g with p̃, q̃ and g̃ , respectively,
and then apply Corollary 1 to the convex function (x) = x2 . �

REMARK 1. In [3], the following part of Theorem 7

0 � A(qg2)− A(q f g)2

A(q f 2)
� [ab−A(p f g)]2

a2−A(p f 2)
− [b2−A(pg2)]

has been proven. Here we use a similar approach to deduce a more accurate refinement
of this result in [3].

3. Examples for integral inequalities

Let (,A ,) be a measurable space consisting of a set , a  -algebra A of
parts of  and a countably additive and positive measure  on A with values in
R∪{} . For a  -measurable function w : → R , with w(x) � 0 for  -a.e. (almost
every) x ∈, consider the Lebesgue space

Lw (,) := { f : → R, f is -measurable and
∫


w(x) | f (x)|d (x) < }.

For simplicity of notation we write everywhere in the sequel
∫
wd instead of∫

w(x)d (x) .

THEOREM 8. Let ,Lw (,) be as above. Assume that p,q : → R are such
that 0 � q(t) � p(t) for all t ∈  . Also assume that a > 0 and b > 0 are given real
numbers. Let f ,g :→R be given functions such that f (t) > 0 , g(t) � 0 for all t ∈
and p f r , q f r , pgs , qgs , p f g , q f g ∈ Lw (,) , for some r,s > 1 with 1/r+1/s = 1 .
If

0 <

∫


wq f rd �
∫


wp f rd < ar, 0 <

∫


wqgsd �
∫


wpgsd < bs,

then we have

0 � [ar +
∫


wq f rd ]1/r[bs +
∫


wqgsd ]1/s−ab−
∫


wq f gd (15)

� ab−
∫


wp f gd− [ar −
∫


wp f rd ]1/r[bs−
∫


wpgsd ]1/s.

Proof. In Theorem 4, we can choose L = Lw (,) , because∫


w(x) | f1 (x)+ f2 (x)|d (x)

� ||
∫


w(x) | f1 (x)|d (x)+ | |
∫


w(x) | f2 (x)|d (x) < .
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Further, let

A( f ) =
∫


w(x) f (x)d (x) ,

in Theorem 4, it’s easy to affirm that A is a linear isotonic functional.
Set u = ar ,  = a−rbs and replace p,q and g with p̃ = p f r, q̃ = q f r and g̃ =

f−rgs , respectively, and then apply Theorem 4 to the convex function (x) = −x1/s

defined on I = (0,) . In this case (3) reduces to (15). �

Set  = [a,b] ⊂ R
1 , w(x) ≡ 1, (x) = x in Theorem 8, we get some integral

inequalities in [6].
If  is the discrete measure on a finite set I then for A = i∈I we can get the

discrete case of the integral inequalities stated below.

THEOREM 9. Let E = {2, . . . ,n} , L = R
n−1 . Assume p = (pi) , q = (qi) such that

0 � qi � pi for all i ∈ E . Also assume that a1 > 0 and b1 > 0 are given real numbers.
Let a = (ai) , b = (bi) , w = (wi) be given sequences such that ai > 0 , bi � 0 , wi � 0
for all i ∈ E and r,s > 1 with 1/r+1/s = 1 . If

0 <
n


i=2

wiqia
r
i �

n


i=2

wipia
r
i < ar

1,

0 <
n


i=2

wiqib
s
i �

n


i=2

wipib
s
i < bs

1,

then we have

0 � [ar
1 +

n


i=2

wiqia
r
i ]

1/r[bs
1 +

n


i=2

wiqib
s
i ]

1/s−a1b1−
n


i=2

wiqiaibi (16)

� a1b1−
n


i=2

wipiaibi− [ar
1−

n


i=2

wipia
r
i ]

1/r[bs
1−

n


i=2

wipib
s
i ]

1/s.

Proof. In Theorem 4, let

A( f ) =
n


i=2

wi fi,

it’s easy to affirm that A is a linear isotonic functional on R
n−1 .

Set u = ar
1 ,  = a−r

1 bs
1 and replace p,q and g with p̃ = par, q̃ = qar and g̃ =

a−rbs , respectively, and then apply Theorem 4 to the convex function (x) = −x1/s

defined on I = (0,) . In this case (3) reduces to (16). �

Set wi = 1, pi = qi = 1 in Theorem 9, we get some discrete inequalities in [6].
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