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REFINEMENTS OF ACZEL-POPOVICIU AND BELLMAN
INEQUALITIES FOR LINEAR ISOTONIC FUNCTIONALS

JINYAN MIAO* AND SILVESTRU SEVER DRAGOMIR

(Communicated by M. Krni¢)

Abstract. A refinement of reverse Jensen inequality for linear isotonic functionals is established.
As consequences, refinements of the Aczél-Popoviciu and Bellman inequalities for linear iso-
tonic functionals are obtained. Some particular inequalities are also deduced.

1. Introduction

In the following, we recall some notions and results mentioned in [3], [8] about
linear isotonic functionals.

Let E be a nonempty set and L a class of real-valued functions f: E — R satis-
fying the following condition:

(L) If f,ge L, then af +Pge L forall o, € R.

We consider linear isotonic functionals defined on a class L, that is, a mapping
A : L — R satisfying the following conditions:

(A1) A(of +Bg) = aA(f) + BA(g) forall f,g €L and o, € R.

(A2) If feLand f(r) >0 forall t € E, then A(f) > 0.

Now we recall a reverse of Jensen’s inequality for linear isotonic functionals given
in [8, p. 124] and [3].

THEOREM 1. Let E,L and A be as above and ¢ : I — R be a continuous convex
Sfunction defined on an interval I C R. Assume that p € L with p(t) >0 forall t € E
and 0 < A(p) < u for some u € R. Further, assume that g : E — I is such that pg € L
and po(g) € L. If oo € I and (uot —A(pg))/(u—A(p)) € I, then we have

up(a) —Alpe(g)) _  (uo—Apg) 1
) SO\~ —a ) ey
u—A(p) u—A(p)
The following result was also obtained in [3].
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THEOREM 2. Suppose the assumptions of Theorem 1 are satisfied. Additionally,
let g € L be such that qg, q(g) € L. Also, assume that 0 < q(t) < p(t) forallt € E
and 0 <A(q) <A(p). If a €I and (ua—A(pg))/(u—A(p)) € I, then we have

0<ao) Ao (52 e
<l-ap)o ("S5 ) - fwole) - Alpate))].

The following result for Bellman inequality for linear isotonic functionals is also
proved in Theorem 2.5 from [3].

THEOREM 3. Let E,L and A be as above. Assume p,q:E — R are such that
0<q(t)<p(t) forallt €E. Let f,g:E — R be given functions with f(t),g(t) >0
for all t € E and such that pf", qf", pg", qg", p(f+¢&)", q(f+g)" €L for some
r>1.1If

0<A(qf") <A(pf')<a", 0<A(qg") <A(pg") <V,

for some a,b > 0, then we have

0 < [A(gf")"" +Alqg") ") — Alq(f +2)")
<(a+b) —A(p(f+8)") — (@ —A(pf N+ —A(pg") """

Motivated by these results we obtain in this paper other similar results with appli-
cations to Aczél-Popoviciu inequality and Bellman inequality for linear isotonic func-
tionals, as well as some other special cases.

2. Extension for linear isotonic functionals

First we prove an important result that provides a refinement of the inequality (1).
It is similar but actually more accurate than Theorem 2 obtained in [3].

THEOREM 4. Suppose the assumptions of Theorem 1 are satisfied. Additionally,
let q € L be such that qg € L and q@(g) € L. Also, assume that 0 < q(t) < p(t)
forall t € E and 0 < A(q) < A(p). If o €1, (u—A(pg))/(u—A(p)) €I and
(ua+A(qg))/(u+A(q)) €1, then we have

3)

0 < up(er) + Alg(s)) — [u+A@)o (M)

u+A(q)

<Ju—Ap)o (%gj?) — (@) ~ A(po ()]

Proof. The first inequality in (3) is a consequence of Jensen’s inequality for linear
isotonic functionals (see [8, pp. 112—113]) and Jensen’s inequality.
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Further, we have A(p —q) =A(p) —A(g) >0 and 2u —A(p —q) =2u—A(p) +
A(g) > 0. Also

2uo—A((p—q)g)

2u—A(p—q)
(10— A(p)) S 28 4 (u+ A(q)) g )

- u—A(p)+u+A(q) el

Therefore, we can apply (1) with p replaced by p — ¢ and u replaced by 2u to obtain

2up(a) —A(pe(g)) +A(qe(g))
2u—A(p) +A(g)
2uo—A(pg) +A(qg)
< ( 2u—A(p) +Alq) )
u—A(p) (ua—A(pg)>
= 2u—A(p) +A(q) u—A(p)
u-+A(q) uo+A(qg)
"= Ap) +ag)? ( )

)

The second inequality in (4) follows by Jensen inequality. Now it is easy to get the
second inequality of (3) from (4). O

Before the main cases, first, as a corollary of Theorem 4, we get the refinement for
Theorem 2.

COROLLARY 1. Suppose the assumptions of Theorem 1 are satisfied. Addition-
ally, let q € L be such that qg € L and q(g) € L. Also, assume that 0 < q(t) < p(t)
forall t € E and 0 < A(q) < A(p). If o €1, (u—A(pg))/(u—A(p)) €I and
(ot +A(qg))/(u+A(q)) € I, then we have

0<A(qp(g)—Aq) @ (%)

<u<p<a>+A<q<p<g>>—[u+A<q>1<p(

®)

uoH—A(qg))
u+A(q)

< Ju—Ap)o (%gj?) — (@) ~ A(po ()]

Proof. The first and third inequalities in (5) have been proven in Theorem 2 and
Theorem 4. For the second inequality in (5), due to Jensen inequality we have:

Alg)o (%) +up(a) = [u+A(g)e (%ﬁ((;i)g)) ,

which is equivalent to the second inequality. [

From Theorem 4 we get the following refinement of Aczél-Popoviciu inequality.
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THEOREM 5. Let E,L and A be as above. Assume that p,q: E — R are such
that 0 < q(r) < p(t) forall t € E. Also assume that a >0 and b > 0 are given real
numbers. Let f,g: E — R be given functions such that f(t) >0, g(t) >0 forallt € E
and pf", qf", pg’, q¢°, pfg, qfg € L, for some r;s > 1 with 1 /r+1/s=1.If

0<A(gqf") <A(pf)<d’, 0<A(gg’) <A(pg’) <b',
then we have
0< [a +A(af)]" [b*+A(gg")"* —ab - Alqfg) 6)
<ab—A(pfg)—[a" = Apsf")])"" b —Alpg")) /",
Proof. Setu=ad", oo =a"b* and replace p,q and g with p=pf", g=¢qf" and

g=f""g*, respectively, and then apply Theorem 4 to the convex function ¢ (x) = —x!/s
defined on I = (0,%0). In this case (3) reduces to (6). O

With Theorem 5 we can prove the following corollary.

COROLLARY 2. Let all the assumptions be as above in Theorem 5, then we have

[a" —A(ps)]V"[b* — Alpg")]/*
ab—A(pfg)

- ab+A(qfg) P

S e+ A+ Alge)]s

(7

Proof. Notice the fact that

[a"+A(qf")]""[b* +Algg")]/* ®)
ab+A(qfg) > ab—A(pfg)
[a" — A(pf)' b — A(pg*)]* > 0.

Consider (6) and (8) together, from the elementary inequality

>
2

4 W
yiZy22y32y4>0, Y3—}’4>Y1—}’2>0=>;)—3<§—
1

N

1

we get (7). U

The following result is similar to Theorem 2.5 in [3] mentioned in the introduction.

THEOREM 6. Let E,L and A be as above. Assume p,q:E — R are such that
0<q(t)<p(t) forallt €E. Let f,g:E — R be given functions with f(t),g(t) >0
forall t € E and such that pf", qf", pg", qg", p(f+¢g)", q(f+g)" €L for some
r>1.1If

0<A(af) <A(pf) <, 0<Algg’) <Alpg) <P

for some a,b > 0, then we have
0< [ +A(qf")]"" + [ +Aag)]" ~[(a+b) +AGq(F+&))'" O
<[(a+b) = A(p(f+))N"" —la" = A(pf)V" — b~ Alpg")"/".
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Proof. The first inequality in (9) is a consequence of Minkowski inequality for
linear isotonic functionals [8, p. 114] and Minkowski inequality.

Next, the Bellman inequality for linear isotonic functionals [8, pp. 125-126] can
be restated in the weighted form as follows.

If p,f,g: E — R are such that p(z),f(t),g(t) >0 forall t € E and pf", pg’,
p(f+g)" €L forsome r > 1, then

[(a+5) —A(p(f+8) )" = [~ Apf)]" "~ AP, (10)
provided a" > A(pf"), b" > A(pg").
Now use the proof by contradiction. Assume that
"+ Algf NV + b +Alag)" (11)
+[a = AN+ b~ A(pg )"
> [(a+b)" +A(q(f +)")]V" +[(a+b) = A(p(f+8) """
holds for some functions. From the fact that
[+ A(q M)+ b+ Algg]"
> [(a+b) +A(a(f+8))]""
> [(a+b)"—A(p(f+8))N""
> [a" —A(pf))V"+ B~ A(pg)]'" >0,

and (11), we have

(la" +AGqf )]V +[b" +Algg")]'") (12)
+ ([ = A(pf"+ b= Alpg )Y
> (a+b)" +A(q(f+8)") + (a+b) —Alp(f+38)")-
However, by reverse Minkowski inequality, we have
(la"+Aqf )"+ 6"+ Algg"))" (13)
+ ([ = A(pf)"+ [0 = Alpg NV
< ([2a"=A((p—a)f '+ 26" = A(p — 9)g"]"")"-

Further, apply (10) with p replaced by p —¢ and a,b replaced by 2'/7a, 21/7b, we
have

[2a"—A((p—q)f")"" + 267 = A((p — q)g")]""
< [2(a+b) —A(p—a)(f+8))]"",
which is equivalent to

(2a"—A((p—q) )] + 26" - A(p—q)8""")" (14)
<(a+b)" +A(q(f+g))+(a+b) —A(p(f+g)).
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Combine (13) and (14), (12) can not hold, so the assumption is wrong, hence the in-
equality (9) is proved. [

Set the convex function ¢(x) = —Inx in Theorem 4, and choose the interval I =
(0,00), we have the proposition below.

PROPOSITION 1. Let E L and A be as above. Assume that p,q € L with p(t) >
q(t) 20 forall t € E and 0 < A(q) < A(p) < u for some u € R. Further, assume
that g : E — (0,e0) is such that pg, qg, plng, glng € L. If o € (0,%0) and (uo —
A(pg))/(u—A(p)) € (0,00), then we have

(ua+A<qg>)"+A<‘” (ua —A(pg)

u=A(p) e
u+A(q) “—A(p) ) o™ < explA((g — p)Ing)].

Set the convex function @(¢) be the entropy function ¢1Inz in Theorem 4, and
choose the interval I = (0,o0), with some simplification we can also state the following
result.

PROPOSITION 2. Let E L and A be as above. Assume that p,q € L with p(t) >
q(t) 20 forall t € E and 0 < A(q) < A(p) < u for some u € R. Further, assume
that g : E — (0,00) is such that pg, qg, pglng, gglng € L. If a. € (0,) and (uot —
A(pg))/(u—A(p)) € (0,00), then we have

(ua+A<qg>>“a+A<qg> (ua—A(pg)
u+A(q) u—A(p)

As a unified conclusion of Theorem 2 in [3] and Theorem 4, we explore some
consequence of Corollary 1. Set the convex function ¢(x) = x? in Corollary 1, we have
the following refinement of Acz€l inequality.

ua—A(pg) 5
) o2 > explA((q — p)gIng)].

THEOREM 7. Let E,L and A be as above. Assume that p,q:E — R are such
that 0 < q(r) < p(t) forall t € E. Also assume that a >0 and b > 0 are given real
numbers. Let f,g:E — R be given functions such that pf*, qf*, pg’, qs, pfg.
qfge L. If f(t)#0 forall t € E and

0<A(qf?) <A(pf*) < &,

then we have

2
0<A(ge®) - i((qqffgz))
4 2
< b2—|—A(qg2) _ [;1‘:((2];%))}

lab—A(pf3)]?

a2 _A(pr) - [b2 _A(pgz)]
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Proof. Note that a # 0 so that u = a® and o = b/a are well defined real numbers.
Also, p=pf?, §=qf?, and g = g/f are well defined real-valued functions on E.
Moreover, it is easy to see that we can replace p,q and g with p,q and g, respectively,
and then apply Corollary 1 to the convex function ¢(x) =x>. [

REMARK 1. In [3], the following part of Theorem 7

Alafs)® _ lab—A(pfe)l?
Alqf?) ~ a®—A(pf?)

has been proven. Here we use a similar approach to deduce a more accurate refinement
of this result in [3].

0<A(gg?) — —[1*—A(pg?)]

3. Examples for integral inequalities

Let (Q,47,u) be a measurable space consisting of a set Q, a o -algebra &/ of
parts of € and a countably additive and positive measure u on </ with values in
R U {eo}. For a u-measurable function w: Q — R, with w(x) > 0 for u-a.e. (almost
every) x € Q, consider the Lebesgue space

L, (Q,u):={f:Q—R, fis u-measurable and /Qw(x) |f (x)]dp (x) < oo}

For simplicity of notation we write everywhere in the sequel [, wdp instead of
Jow(x)dp (x).
THEOREM 8. Let Q. L, (Q, 1) be as above. Assume that p,q: Q — R are such

that 0 < q(t) < p(t) for all t € Q. Also assume that a > 0 and b > 0 are given real
numbers. Let f,g:Q — R be given functions such that f(t) >0, g(t) >0 forall t € Q

and pf", qf", pg’, qg°, pfg, qfg € Ly, (Q,u), for some r,s > 1 with 1/r+1/s=1.
If
O</wqfrd,u</wpfrd,u<ar, 0</wqg“'d,u</wpig,>“‘a',u<b“'7
Q Q Q Q
then we have

0< [a’+/ wqf’du}l/’[b“#/ qu“'du]l/“'—ab—/wqudu (15)
Q Q Q

<ab— [ wpsedu—1a" ~ [ wpfrau]'"e ~ [ wpgd)'".
Q Q Q
Proof. In Theorem 4, we can choose L = L,, (Q, i), because

Jwlecsi 0+ B ) ()
<Jo| [ wlfi (9] du )+ 18] [ w1 ()] (x) <
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Further, let
A= [ Wl f Wdn ().

in Theorem 4, it’s easy to affirm that A is a linear isotonic functional.

Set u=ad", & =a "b* and replace p,q and g with p=pf", ¢g=¢qf" and g =
f~"g*, respectively, and then apply Theorem 4 to the convex function @(x) = —x!/s
defined on I = (0,00). In this case (3) reduces to (15). O

Set Q = [a,b] C R, w(x) =1, u(x) = x in Theorem 8, we get some integral
inequalities in [6].

If u is the discrete measure on a finite set I then for A = Y;.; we can get the
discrete case of the integral inequalities stated below.

THEOREM 9. Let E={2,....,n}, L=R""'. Assume p=(p;), q=(q;) suchthat
0< g <piforallieE. Also assume that a; > 0 and b; > 0 are given real numbers.
Let a = (a;), b= (b;), w= (w;) be given sequences such that a; >0, b; >0, w; >0
forall i€ E and r;s > 1 with 1/r+1/s=1.1If

n

n
0< 2 wigia; < Y wipia; < aj,

i=2 i=2
n n
0 < Y wigib} < Y, wipib} < bi,
i=2 i=2
then we have
n n n
0< [a]+ Z W,'qia;]l/r[bsl + Z W,'qibﬂl/s —ayb) — Z wiqiaib; (16)
i=2 i=2 i=2
<aib — szpza bi — Z wipid; l/r 1 Z wipibj] 1/S
i=2 i=2

Proof. In Theorem 4, let
n
= Y wifi,
i=2

it’s easy to affirm that A is a linear isotonic functional on R"~!,

Set u = aj, a=a,"b} and replace p,q and g with p = pa”, g =ga" and g =
a”"b*, respectively, and then apply Theorem 4 to the convex function ¢(x) = —x!/s
defined on I = (0,e0). In this case (3) reduces to (16). O

Set w; =1, p;i =¢; =1 in Theorem 9, we get some discrete inequalities in [6].



[1]

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]

ACZEL-POPOVICIU AND BELLMAN FUNCTIONAL INEQUALITIES 819

REFERENCES

J. ACZEL, Some general methods in the theory of functional equations in one variable. New ap-
plications of functional equations, Uspekhi Matematicheskikh Nauk (N.S.), 11, 3 (69), 3-68, 1965
(Russian).

R. BELLMAN, On an inequality concerning an indefinite form, Amer. Math. Monthly, 63, 108-109,
1965.

Y. J. CHO, M. MATIC, J. PECARIC, Improvements of Some Inequalities of Aczél’s Type, Journal of
Mathematical Analysis and Applications, 259, 226-240, 2001.

S. S. DRAGOMIR, Y. J. CHO, On Aczél’s Inequality for Real Numbers, Tamkang Journal of Mathe-
matics, 32 (2), 137-142, 2001.

M. MATIC, J. E. PECARIC, On Popoviciu’s and Bellman’s Inequality, Nonlinear Functional Analysis
and Applications, 5 (1), 85-91, 2000.

J. Y. MIAO, S. S. DRAGOMIR, Refinements of Aczél-Popoviciu and Bellman Inequalities, Annals of
West University of Timisoara-Mathematics and Computer Science, 61 (1), 31-40, 2025.

D. S. MITRINOVIC, J. E. PECARIC, A. M. FINK, Classical and New Inequalities in Analysis, Kluwer
Academic Publishers, Dordrecht, 1993.

J. E. PECARIC, F. PROSCHAN, Y. L. TONG, Convex Functions, Partial Orderings, and Statistical
Applications, Academic Press, New York, 1992.

T. POPOVICIU, On an Inequality, Gazeta Matematica si Fizica, Seria A, 11 (64), 451461, 1959
(Romanian).

J.-F. TIAN, Reversed Version of a Generalized Aczél’s Inequality and Its Application, Journal of In-
equalities and Application, 202, 2012.

J. F. TIAN, S. H. WU, New Refinements of Generalized Aczél’s Inequality and Their Applications,
Journal of Mathematical Inequalities, 10 (1), 247-259, 2016.

WENGUI YANG, Refinements of Generalized Aczél-Popoviciu's Inequality and Bellman’s Inequality,
Computers and Mathematics with Applications, 59, 3570-3577, 2010.

L. YUTONG, Z. YUZHANG, The Generalization of Aczél’s Inequality for Integrals, Journal of Math-
ematics for Technology, 10 (2), 9-12, 1994 (Chinese).

(Received October 19, 2024) JinYan Miao

ISILC

Victoria University
Melbourne, Australia
e-mail: 954599851@qq. com

Silvestru Sever Dragomir

ISILC

Victoria University

Melbourne, Australia

e-mail: sever .dragomir@vu.edu.au

Journal of Mathematical Inequalities

v.ele-math.com

jmi@ele-math.com



