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BO CHEN ∗ AND XIAOQIN YE

(Communicated by X. Wang)

Abstract. This paper studies the basic limit theories for the volatilities in nonstationary
GARCH(1,1) models. Those include the classical results such as the Marcinkiewicz-Zygmund
strong law of large numbers and the Hartman-Wintner law of the iterated logarithm. The main re-
sults precisely characterize asymptotic behaviors of the volatilities in nonstationary GARCH(1,1)
models, and provide more insight into this top. Some numerical simulations are provided to ver-
ify the validity of theoretical results.

1. Introduction

Generalized autoregressive conditional heteroscedastic (GARCH) models, the ex-
tension of autoregressive conditional heteroscedastic models, are treated as the bench-
mark model to capture conditional volatilities, and now have been especially popular in
econometric modeling, statistical inference and financial data analyzing, help econome-
tricians estimate the variance of particular point of a sequence. GARCH models were
found by Bollerslev (1986), who extended the initial models in Engle (1982). From
then on, GARCH models have attracted more attention, and numerous works have been
done. One can refer to Nelson (1990), Lumsdaine (1996), Ling and Li (1997), Hall and
Yao (2003), Chan and Ling (2006), Francq et al. (2012, 2013). A comprehensive ac-
count of GARCH models is available in Francq and Zakoı̈an (2010).

A GARCH(1,1) model is defined as

yt = t

√
ht , t = 1,2, · · · ,

ht = +y2
t−1 +ht−1, (1.1)

with initial values y0 and h0 ,  > 0,  > 0, and  � 0. Both y0 and h0 are nonnega-
tive random variables and independent of {t ,t � 0} , where {t ,t � 0} is a sequence
of independent and identically distributed random variables with 2

1 is nondegenerate.
Let  be a random variable with the same distribution as t , denote

 = E log( +2).
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Then,  is called the top Lyapunov exponent associated to model (1.1). Nelson (1990)
proved that the necessary and sufficient condition is  < 0 for the existence of strict
stationary solution to GARCH(1,1) model. For more associated results of GARCH
models in the case  < 0, we can go through the related articles. For the probabilistic
properties, see Bibi, Aknouche (2009), Posedel (2005), Bougerol and Picard (1992a),
Berkes (2003). For asymptotic behavior, see Lee and Shin (2004), and Carrasco and
Chen (2002). For strict stationarity properties, see Bougerol and Picard (1992b), Francq
and Zakoı̈an (2012).

For the associated results of GARCH models in the case  � 0, one can refer to
Nelson (1990), Kleibergen and van Dijk (1993), Francq and Zakoı̈an (2013), Linton et
al. (2010), Li et al. (2014), and Hong and Hwang (2016). For more details, Nelson
(1990) first studied dynamic behavior of ht in (1.1) when  � 0, and showed that ht

tends to infinity almost surely. Linton et al. (2010) estimated a nonstationary semi-
strong GARCH(1,1) model with heavy-tailed error, showed that ht is divergent, and
renormalized to converge in distribution to a nondegenerate limit. Francq and Zakoı̈an
(2013) studied the inference in nonstationary asymmtric GARCH models which in-
cludes model (1.1), and proved that

 tht →  a.s. (1.2)

as t →  for any  > e− when  > 0. Li et al. (2014) characterized asymptotic
behaviors of the volatilities in nonstationary GARCH(1,1) models by showing that the
volatility converges in distribution to a non-degenerate limit after suitable renormaliza-
tion. Hong and Hwang (2016) extended the result of Li et al. (2014).

Due to the works in the nonstationary case, in particular to the work of Li et al.
(2014), a question is nature to rise, whether can we give more precise convergence rate
than (1.2) after suitable renormalization? This paper will give the positive answer to
the question, and study the basic limit theories, such as the Marcinkiewicz-Zygmund
strong law of large numbers and the Hartman-Wintner law of the iterated logarithm,
for the volatilities in nonstationary GARCH(1,1) models. These classical results will
provide more insight into this top.

2. Main results

We first recall the Marcinkiewicz-Zygmund strong law of large numbers, the Hart-
man-Wintner law of the iterated logarithm and some automatic results. Let {Yt ,t � 1}
be a sequence of independent random variables with common distribution as Y . For
1 � p < 2, the Marcinkiewicz-Zygmund strong law of large numbers states that

t−1/p
t


j=1

Yj→ 0 a.s. (2.1)

if and only if EY = 0 and E|Y |p <  . By (2.1), it is easy to show that

t−1/p max
1�k�t

|
k


j=1

Yj| → 0 a.s. (2.2)
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Note that
t−1


j=1

Yj � max
1�k�t−1

k


j=1

Yt− j �
t−1


j=1

Yj + max
1�k�t−1

∣∣∣∣∣
k


j=1

Yj

∣∣∣∣∣ .
By (2.1) and (2.2),

t−1/p max
1�k�t−1

k


j=1

Yt− j → 0 a.s. (2.3)

Meanwhile, E|Y |p <  implies that

t−1/pYt → 0 a.s. (2.4)

The Hartman-Wintner law of the iterated logarithm (see Hartman and Wintner, 1941)
states that if EY = 0 and 2 = EY 2 ∈ (0,) , then

limsup
t→

t
j=1Yj


√

2t loglog t
= 1 a.s., liminf

t→

t
j=1Yj


√

2t loglogt
=−1 a.s., (2.5)

and the cluster set of the sequence {(√2t loglogt)−1t
j=1Yj,t � 3} is [−1,1] with

probability one. Furthermore, by the Strassen’s strong invariance principle (see, Corol-
lary of Theorem 3 in Strassen, 1964),

limsup
t→

max1�k�t−1k
j=1Yt− j


√

2t loglogt
= 1 a.s., liminf

t→

max1�k�t−1k
j=1Yt− j


√

2t loglog t
= 0 a.s., (2.6)

and the cluster set of the sequence {(√2t log logt)−1 max1�k�t−1k
j=1Yt− j,t � 3} is

[0,1] with probability one. Conversely, if (2.5) holds for some 0 <  <  , Strassen
(1966) showed that EY = 0 and EY 2 = 2 .

Now we state the main results. Some preliminary lemmas and the proofs of the
main results will be detailed in the next section.

THEOREM 2.1. Let 1 � p < 2 , { ,t ,t � 0} be a sequence of independent and
identically distributed random variables in (1.1) with  = E log( +2) ∈ [0,) .
Assume E| log( +2)|p < , then

(
ht

et

)t−1/p

→ 1 a.s. (2.7)

COROLLARY 2.1. Let { ,t ,t � 0} be a sequence of independent and identically
distributed random variables in (1.1) with  = E log( +2) ∈ [0,) . Then

 tht →
{

0 a.s., if 0 <  < e− ,

 a.s., if  > e− .
(2.8)

And when  > 0 ,

0 = liminf
t→

e−t ht < limsup
t→

e−t ht =  a.s. (2.9)
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THEOREM 2.2. Let { ,t ,t � 0} be a sequence of independent and identically
distributed random variables in (1.1) with  = E log( +2) ∈ [0,) . Assume that
2 = Var[log( +2)] ∈ (0,) , then when  > 0 ,

limsup
t→

(
ht

et

)(
√

2t log logt)−1

= e a.s., liminf
t→

(
ht

et

)(
√

2t log logt)−1

= e−1 a.s.,

(2.10)
and the cluster set of the sequence {(ht/et)(

√
2t loglogt)−1

,t � 3} is [e−1,e] with prob-
ability one. When  = 0 ,

limsup
t→

h(
√

2t log logt)−1

t = e a.s., liminf
t→

h(
√

2t loglog t)−1

t = 1 a.s., (2.11)

and the cluster set of the sequence {h(
√

2t loglog t)−1

t , t � 3} is [1,e] with probability
one.

REMARK 2.1. Theorem 2.2 shows that the dynamic behavior of ht at the bound-
ary (i.e.,  = 0) is sharply different from that in the explosive region (i.e.,  > 0), but
Theorem 2.1 does not.

REMARK 2.2. Corollary 2.1 gives more details than (1.8). In particular, (2.9)
shows the limit behavior of  tht in the critical case  = e− when  > 0.

3. Lemmas and proofs of main results

By (1.1), it is easy to get the expression of ht as

ht = h0

t−1


j=0

( +2
j )+

{
1+

t−1


k=1

k


j=1

( +2
t− j)

}
, t � 1, (3.1)

where set 0
k=1 xk = 0 for any sequence {xn,n � 1} .

To prove the main results, the following lemmas are needed.

LEMMA 3.1. Assume that 0 <  <  , then the series




k=1

k−1


j=0

1

 +2
j

converges almost surely.

Proof. Using the Kolmogorov strong law of large numbers, i.e., using (2.1) by
taking p = 1 and Yj = log( + j)−  ,{

k−1


j=0

1

 +2
j

}1/k

= exp

{
−1

k

k−1


j=0

log( +2
j )

}
→ e− < 1 a.s.,

which follows the desired result by Cauchy root test for series. �
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LEMMA 3.2. Let 0 < a1n, · · · ,amn <  , 0 < bn→ 0 , where m � 1 . Assume that
abn

in → 1 for all i = 1, · · · ,m, then

(
m


i=1

ain

)bn

→ 1.

Proof. For all  ∈ (0,1) , there exists a natural number N , such that 1− < abn
in <

1+  , and so (1− )b−1
n < ain < (1+ )b−1

n for all n > N and i = 1, · · · ,m . Therefore,

mbn(1− ) <

(
m


i=1

ain

)bn

< mbn(1+ ),

which implies the desired result by the fact mbn → 1 and the arbitrariness of  . �

Proof of Theorem 2.1. We first prove the case  > 0. By (3.1),

ht =

{
h0 +

t


k=1

k−1


j=0

1

 +2
j

}
t−1


j=0

( +2
j ),

and hence,

(
ht

et

)t−1/p

=

{
h0 +

t


k=1

k−1


j=0

1

 +2
j

}t−1/p{
t−1

j=0( +2
j )

et

}t−1/p

. (3.2)

Consider the first factor in (3.2). Set

St =
t


k=1

k−1


j=0

1

 +2
j

.

Note that St is nondecreasing, and S = limt→ St is finite almost surely by Lemma
3.1, hence

1← (h0 +S1)
t−1/p

� (h0 +St)t
−1/p � (h0 +S)t

−1/p → 1 a.s. (3.3)

Consider the second factor in (3.2). Using (2.1) by taking Yj = log( +2
j )−  ,

{
t−1

j=0( +2
j )

et

}t−1/p

= exp

{
t−1

j=0 log( +2
j )− t

t1/p

}

→ exp(0) = 1 a.s.,

which and (3.2), (3.3) imply that (2.7) holds.



870 B. CHEN AND X. YE

We now prove the case  = 0. Set

Mt = max
1�k�t−1

k


j=1

( +2
t− j). (3.4)

We have

ht
t−1/p

=
(

ht

Mt

)t−1/p

Mt
t−1/p

. (3.5)

Consider the first factor in (3.5), by (3.1),

ht

Mt
=


Mt

+
t−1

k=1
k
j=1( +2

t− j)
Mt

+
t−1

j=1 ( +2
j )

Mt
h0( +2

0 ).

Note that Mt >  +2
t−1 > 0 a.s , and

1 �
t−1

k=1
k
j=1( +2

t− j)
Mt

� t, 0 �
t−1

j=1 ( +2
j )

Mt
� 1.

Therefore,

 � ht

Mt
� 

 +2
t−1

+t +h0( +2
0 ).

Note that t−1/p → 1, (t)t
−1/p → 1, (h0( +2

0 ))t
−1/p → 1 a.s., and using (2.4) by

taking Yt−1 = log( +2
t−1) ,

(


 +2
t−1

)t−1/p

= exp
{
t−1/p (log− log( +2

t−1)
)}→ e0 = 1 a.s.

Hence, by Lemma 3.2,

1← t−1/p �
(

ht

Mt

)t−1/p

�
{


 +2

t−1

+t +h0( +2
0 )

}t−1/p

→ 1 a.s. (3.6)

Consider the second factor in (3.5),

Mt
t−1/p

= exp
{
t−1/plogMt

}

= exp

{
t−1/p log

[
max

1�k�t−1

k


j=1

( +2
t− j)

]}

= exp

{
t−1/p max

1�k�t−1

k


j=1

log( +2
t− j)

}
.
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Then using (2.3) by taking Yj = log( +2
j ) ,

Mt
t−1/p → 1 a.s.,

which and (3.5), (3.6) imply that (2.7) holds. The proof is completed. �

Proof of Corollary 2.1. Taking p = 1, then (2.7) is equivalent to

P
{

ht /∈ (e(−)t ,e(+)t), infinitely often
}

= 0, ∀  > 0,

which follows that (2.8) holds. By the Chung-Fuchs theorem (see, for instance, Chow
and Teicher, 1997),

liminf
t→

t−1


j=0

[log( +2
j )−  ] =− a.s., limsup

t→

t−1


j=0

[log( +2
j )−  ] =  a.s.

By (3.1),

ht

et =

{
h0 +

t


k=1

k−1


j=0

1

 +2
j

}
exp

{
t−1


j=0

[log( +2
j )−  ]

}
.

By Lemma 3.1, (2.9) follows from the above two formulas. The proof is completed. �

Proof of Theorem 2.2. Set at = 
√

2t log logt . We first prove the case  > 0. By
(3.1),

(
ht

et

)a−1
t

=

{
h0 +

t


k=1

k−1


j=0

1

 +2
j

}a−1
t
{
t−1

j=0( +2
j )

et

}a−1
t

. (3.7)

Consider the first factor in (3.7). Similar as (3.3),

1← (h0 +S1)
a−1
t � (h0 +St)a−1

t � (h0 +S)a−1
t → 1 a.s. (3.8)

Consider the second factor in (3.7). Using (2.5) by taking Yj = log( +2
j ) ,

limsup
t→

{
t−1

j=0( +2
j )

et

}a−1
t

= exp

{
limsup

t→

t−1
j=0 log( +2

j )− t
at

}
= e a.s.,

and

liminf
t→

{
t−1

i=0( +2
i )

et

}a−1
t

= exp

{
liminf

t→

t−1
j=0 log( +2

j )− t
at

}
= e−1 a.s.,

which and (3.7), (3.8) imply that (2.10) holds. Meanwhile, the cluster set of the se-

quence {(ht/et)(
√

2t log logt)−1
,t � 3} is [e−1,e] with probability one.
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We now prove the case  = 0. Set Mt as (3.4), we have

ht
a−1
t =

(
ht

Mt

)a−1
t

Mt
a−1
t . (3.9)

Consider the first factor in (3.9), similar as (3.6),

1← a−1
t �

(
ht

Mt

)a−1
t

�
{


 +2

t−1

+t +h0( +2
0 )

}a−1
t

→ 1 a.s. (3.10)

Consider the second factor in (3.9),

Ma−1
t

t = exp

{
1
at

logMt

}

= exp

{
1
at

log

[
max

1�k�t−1

k


j=1

( +2
t− j)

]}

= exp

{
1
at

max
1�k�t−1

k


j=1

log( +2
t− j)

}
.

Using (2.6) by taking Yj = log( +2
j ) , we have

limsup
t→

Ma−1
t

t = e a.s., liminf
t→

Ma−1
t

t = 1 a.s.,

which and (3.9), (3.10) imply that (2.11) holds. Meanwhile the cluster set of the

sequence {h(
√

2t loglogt)−1

t ,t � 3} is [1,e] with probability one. The proof is com-
pleted. �

4. Simulation

In this section, we will present a simulation study based on the model (1.1) by R

software and show the limit behavior of the paths of (ht/et)t
−1/p

.
Let  > 0, and  ∼ U(−1,1) , then  = E log( + 2) = log(1 +  )− 2 +

2
√
 arctan(1/

√
 ) . Set

log(1+ )−2+2
√
 arctan(1/

√
 ) = 0,

then the unique solution is 0 ≈ 0.706461201.
Take the initial values y0 = h0 = 1, and the parameters  =  = 1, we give

one path of (ht/et)t
−1/p

for each of the two case:  = 0 ( = 0 , correspondingly)
and  = 0.839451791 ( = 2, correspondingly), with size T = 800, by taking p =
1,1.4,1.8.

From Figure 1 and Figure 2, we can see that the path of (ht/et)t
−1/p

approaches
to 1 as t increases. These simulation results agree with the theoretical results.
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Figure 1:  = 0 . Figure 2:  > 0 .

Conclusions

In this paper, we have precisely characterized the dynamic behavior of ht in a non-
stationary GARCH(1,1) model, via the Marcinkiewicz-Zygmund strong law of large
numbers and the Hartman-Wintner law of the iterated logarithm. The Hartman-Wintner
law of the iterated logarithm shows that the dynamic behavior of ht at the boundary is
sharply different from that in the explosive region, but the Marcinkiewicz-Zygmund
strong law of large numbers does not.
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