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STRONG LAWS FOR NONSTATIONARY GARCH MODELS
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Abstract. This paper studies the basic limit theories for the volatilities in nonstationary
GARCH(1,1) models. Those include the classical results such as the Marcinkiewicz-Zygmund
strong law of large numbers and the Hartman-Wintner law of the iterated logarithm. The main re-
sults precisely characterize asymptotic behaviors of the volatilities in nonstationary GARCH(1,1)
models, and provide more insight into this top. Some numerical simulations are provided to ver-
ify the validity of theoretical results.

1. Introduction

Generalized autoregressive conditional heteroscedastic (GARCH) models, the ex-
tension of autoregressive conditional heteroscedastic models, are treated as the bench-
mark model to capture conditional volatilities, and now have been especially popular in
econometric modeling, statistical inference and financial data analyzing, help econome-
tricians estimate the variance of particular point of a sequence. GARCH models were
found by Bollerslev (1986), who extended the initial models in Engle (1982). From
then on, GARCH models have attracted more attention, and numerous works have been
done. One can refer to Nelson (1990), Lumsdaine (1996), Ling and Li (1997), Hall and
Yao (2003), Chan and Ling (2006), Francq et al. (2012, 2013). A comprehensive ac-
count of GARCH models is available in Francq and Zakoian (2010).

A GARCH(1,1) model is defined as

yl:nl\/h_la 1= 1727"'a
I =+ oy;_ +Bh_1, (1.1)

with initial values yo and hy, ® >0, >0, and > 0. Both yg and k¢ are nonnega-

tive random variables and independent of {n,,z > 0}, where {n;,# > 0} is a sequence

of independent and identically distributed random variables with nf is nondegenerate.
Let 1 be a random variable with the same distribution as 1), , denote

= Elog( +an?).
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Then, u is called the top Lyapunov exponent associated to model (1.1). Nelson (1990)
proved that the necessary and sufficient condition is i < 0 for the existence of strict
stationary solution to GARCH(1,1) model. For more associated results of GARCH
models in the case u < 0, we can go through the related articles. For the probabilistic
properties, see Bibi, Aknouche (2009), Posedel (2005), Bougerol and Picard (1992a),
Berkes (2003). For asymptotic behavior, see Lee and Shin (2004), and Carrasco and
Chen (2002). For strict stationarity properties, see Bougerol and Picard (1992b), Francq
and Zakotan (2012).

For the associated results of GARCH models in the case u > 0, one can refer to
Nelson (1990), Kleibergen and van Dijk (1993), Francq and Zakoian (2013), Linton et
al. (2010), Li et al. (2014), and Hong and Hwang (2016). For more details, Nelson
(1990) first studied dynamic behavior of 4, in (1.1) when u > 0, and showed that &,
tends to infinity almost surely. Linton et al. (2010) estimated a nonstationary semi-
strong GARCH(1,1) model with heavy-tailed error, showed that &, is divergent, and
renormalized to converge in distribution to a nondegenerate limit. Francq and Zakoian
(2013) studied the inference in nonstationary asymmtric GARCH models which in-
cludes model (1.1), and proved that

p'hy — oo as. (1.2)

as t — oo for any p > e ® when u > 0. Liet al. (2014) characterized asymptotic
behaviors of the volatilities in nonstationary GARCH(1,1) models by showing that the
volatility converges in distribution to a non-degenerate limit after suitable renormaliza-
tion. Hong and Hwang (2016) extended the result of Li et al. (2014).

Due to the works in the nonstationary case, in particular to the work of Li et al.
(2014), a question is nature to rise, whether can we give more precise convergence rate
than (1.2) after suitable renormalization? This paper will give the positive answer to
the question, and study the basic limit theories, such as the Marcinkiewicz-Zygmund
strong law of large numbers and the Hartman-Wintner law of the iterated logarithm,
for the volatilities in nonstationary GARCH(1,1) models. These classical results will
provide more insight into this top.

2. Main results

We first recall the Marcinkiewicz-Zygmund strong law of large numbers, the Hart-
man-Wintner law of the iterated logarithm and some automatic results. Let {¥;,7 > 1}
be a sequence of independent random variables with common distribution as Y. For
1 < p < 2, the Marcinkiewicz-Zygmund strong law of large numbers states that

t
PN Y -0 as. (2.1)
j=1

if and only if EY =0 and E|Y|” < ec. By (2.1), it is easy to show that

k
77 max | Y ¥j[ — 0 as. (2.2)
j=1

1<kt i Z
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Note that
—1

2Y< max 2)’,, ZY—F max

1<k<t— 1 1<k<r—1

k

2Y.i~

=1

By (2.1) and (2.2),
t~1/P max ZYf ;—0 as. (2.3)

1<ksi—1
Meanwhile, E|Y |7 < oo implies that
1Py, -0 as. (2.4)

The Hartman-Wintner law of the iterated logarithm (see Hartman and Wintner, 1941)
states that if EY =0 and 6% = EY? € (0,), then

t'_ Y t Y
limsupﬂ =1 as., liminf— ==L — 1 as, (2.5)
1—e0  O4/2tloglogt t—e  o/2tloglogt
and the cluster set of the sequence {(o 2tloglogt)’1 1Yt >3} is [—1,1] with

probability one. Furthermore, by the Strassen’s strong invarlance principle (see, Corol-
lary of Theorem 3 in Strassen, 1964),

limsu maka@ilzI;’:lYti’f =1 as liminfmaXKkgilzl;zlypj
P oy/2tloglogt 7 o o+/2tloglogt

1

=0 as., (2.6)

and the cluster set of the sequence {(o+/2rloglogt)™ max;<r<—1 Z’;ZI Y_j,t >3} is
[0,1] with probability one. Conversely, if (2.5) holds for some 0 < ¢ < oo, Strassen
(1966) showed that EY =0 and EY? = ¢2.

Now we state the main results. Some preliminary lemmas and the proofs of the
main results will be detailed in the next section.

THEOREM 2.1. Let 1 < p <2, {n,n:,t >0} be a sequence of independent and
identically distributed random variables in (1.1) with u = Elog(B + an?) € [0,).
Assume E|log(B + an?)|P < oo, then

~p

(%) —1 as. (2.7)

COROLLARY 2.1. Let {n,n;,t >0} be a sequence of independent and identically
distributed random variables in (1.1) with u = Elog(B + an?) € [0,). Then

[ —u
ol — 0 as., lf 0< ,0_< e M (2.8)
o as., if p>e M

And when u >0,

0 = liminfe "5, < limsupe " h; = a.s. (2.9)

1—00 [—o0
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THEOREM 2.2. Let {n,n,,t > 0} be a sequence of independent and identically
distributed random variables in (1.1) with i = Elog(B + an?) € [0,). Assume that
0% = Var[log(B + an?)] € (0,), then when u >0,

h (0/2tToglogr) ! h (o/2tToglogr) !
limsup - =e a.s., liminf L =e ! as.,
t—so0 #t t—o0 eMt
(2.10)
—1
and the cluster set of the sequence {(h,/e’”)(c 2rloglogt)™" 4 > 3} is [e™!, e] with prob-
ability one. When u =0,

. o+/2tToglogr) ! . c+/2tToglogr) !
hmsupht( oglogr)™" _ e a.s., hmmfht( oglog?)
{—o00

[—o0

=1 as., (2.11)

2iToglogr) !

and the cluster set of the sequence {h,(G ,t =3} is [1,e] with probability

one.

REMARK 2.1. Theorem 2.2 shows that the dynamic behavior of #; at the bound-
ary (i.e., u = 0) is sharply different from that in the explosive region (i.e., u > 0), but
Theorem 2.1 does not.

REMARK 2.2. Corollary 2.1 gives more details than (1.8). In particular, (2.9)
shows the limit behavior of p'h, in the critical case p = e when u > 0.

3. Lemmas and proofs of main results

By (1.1), it is easy to get the expression of A; as

hOH (B+an;) +w{1+t21]£[ (B+oan? J)} r>1, (3.1)

1j=1
where set 22: X = 0 for any sequence {x,,n > 1}.
To prove the main results, the following lemmas are needed.
LEMMA 3.1. Assume that 0 < U < oo, then the series
o k—1 1
Z‘l Jl:% B+an;
converges almost surely.

Proof. Using the Kolmogorov strong law of large numbers, i.e., using (2.1) by
taking p =1 and ¥; =log(B +on;) — 1,

1 1/k =
-—= =exp ——Zlogﬁ+an) —e <l as.,

j=o B +omj k iz

which follows the desired result by Cauchy root test for series. O
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LEMMA 3.2. Let O < ay,, - ,amy <<, 0 <b,, — 0, where m > 1. Assume that
af’r’; — 1 foralli=1,---,m, then

m bn
(261,‘,1) — 1.
i=1

Proof. Forall € € (0,1), there exists a natural number N, such that 1 — & < a?" <
1+¢€,and so (I—E)b;l <ap < (1+&)n " forall n> N and i=1,---,m. Therefore,

bn
mh(1—¢) < <2am> <mbr(14¢),
i=1

which implies the desired result by the fact m? — 1 and the arbitrariness of £. [J

Proof of Theorem 2.1. We first prove the case u > 0. By (3.1),

t k—1 t—1
{ho+wZH }H(ﬁ+an?)7

k=1j OB+anJ j=0

and hence,

-1/p i 1—1 oy
ho\! r k-1 [T—o(B+an;)
- h =0 Y ) 32
(6“’) {0+w21/1_!)6+0“71 ekt 32

Consider the first factor in (3.2). Set

t k—1

P23 Vo

=1j= OB—FO(T),

Note that S; is nondecreasing, and Se. = lim;—...S; is finite almost surely by Lemma
3.1, hence

-1/p t*l/p t—l/p

1 (ho+wS)) " <(ho+wS) " <(h+wSe) "~ —1 as. (3.3)

Consider the second factor in (3.2). Using (2.1) by taking Y¥; = log(p + omjz) —u,

MZh(B+an}) )"
P

which and (3.2), (3.3) imply that (2.7) holds.

1/p

t1/p

{ Siolog(B +anj) —1u }
=exp

—exp(0) =1 as.,
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We now prove the case u = 0. Set

M’:1<I?3:(1H B+ant)). (34)
We have
1/ h i 1/
=L M. 3.5
, (Mt : (3.5)

Consider the first factor in (3.5), by (3.1),

ho_ o SAMLBrant) o (B+an)

M P
AR M " ho(B + ang).

Note that M; > B+ an? | >0 as, and

S Bront) T (Bromd)

1< X by 0\
Mt Mt

N

Therefore,
<ht < ——Fu— +wt+h(B+om)
B 0 0

t*I/P t*I/P

Note that o' " — 1, (wz)" " — 1, (ho(B+ ocng))fl/p — 1 a.s., and using (2.4) by

taking ¥, = log(B + an? ),

~p
()
(W) =exp{t’1/” (logw—log(BJran{“_l))}eeozl as.
t—1

Hence, by Lemma 3.2,

t*I/P
t*I/P ht
< -
l—w \< t) {[3+ +wt+ho(B+an0)}

— 1 a.s. (3.6)

—1/p

Consider the second factor in (3.5),

M,’fl/p =exp {t’l/l’logM,}
— =1/p
= t 1 m +o
exp{ og [Kkgtx N | | (B n. j)] }

zexp{ ~1/P max Zlog B+ an’ j)}

1<k<t—1



STRONG LAWS FOR NONSTATIONARY GARCH MODELS 871

Then using (2.3) by taking ¥; = log(8 + an;),

t*I/P

M; — las.,

which and (3.5), (3.6) imply that (2.7) holds. The proof is completed. [
Proof of Corollary 2.1. Taking p =1, then (2.7) is equivalent to
P {h, ¢ (eM=e o(H+ey infinitely often} —0, Ve>0,

which follows that (2.8) holds. By the Chung-Fuchs theorem (see, for instance, Chow
and Teicher, 1997),

-1 -1
hmmfz log(B + anj; 2y — U] = —o0 a.s., limsup Z[log(ﬁ + Omjz) — U] =00 a.s.

t—o0 1—=e0 G0

By (3.D),

-1
ht — {h0+wznﬁ+an }exp{Z[log(B—i—aﬂ?)—y}}.
j

1j=0 Jj=0

By Lemma 3.1, (2.9) follows from the above two formulas. The proofis completed. [l

Proof of Theorem 2.2. Set a; = o+/2tloglogt. We first prove the case 1 > 0. By

(3.1),
o\ “ IT—6(B+an?) a'
(W) {ho+m2]‘[ﬁ+am} {—~’ 0 T } . (3.7)

Consider the first factor in (3.7). Similar as (3.3),
1 (ho+ 08)% < (ho+08)% < (ho+wS)% —1as.  (3.8)

Consider the second factor in (3.7). Using (2.5) by taking Y; = log(p + omjz),

ufl _
. "—o(B+an?) _ Yilog(B+an?) —iu
limsup { ——— =expy limsup . =e as.,

eMt o0 a;

t—o0

and

—1
—1 2y ) %4 =1 2y _
/ oan: > log(B+oan?) —t
1iminf{w} ZeXp{litminf j=0 8( i) ‘u}:e_l 05,

f—00 ekt ay

which and (3.7), (3.8) imply that (2.10) holds. Meanwhile, the cluster set of the se-
-1
quence {(hy /et!)(OVZI0RI 4 5 3% 4¢ [o=1 ¢] with probability one.
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We now prove the case u = 0. Set M, as (3.4), we have

Consider the first factor in (3.9), similar as (3.6),

-1

~1 aq
—1 h[ LI,
l—o% <(2) <
—w (Mz) {B-i- +wt+ho([3+an0)}
— 1 a.s. (3.10)

Consider the second factor in (3.9),

—1 1
M :exp{a—logM,}
t
=ex i10 max Hﬁ+a )
= &P a £ 1<k 1 n”
1
:exp{— max Zlogﬁ+ant j)}

ay 1<k<r-1 4
Using (2.6) by taking ¥; = log(B + any), we have

-1 —1
. a. . . a,
limsupM," =e as., liminfM," =1 as.,
[—00 [—o0

which and (3.9), (3.10) imply that (2.11) holds. Meanwhile the cluster set of the

o/2tloglogr) ™!
sequence {h,f oglogr)

pleted. U

t >3} is [l,e] with probability one. The proof is com-

4. Simulation

In this section, we will present a simulation study based on the model (1.1) by R
software and show the limit behavior of the paths of (h,/e"") o
Let B >0, and n ~ U(—1,1), then u = Elog(B +n?) = log(1 +B) —

2y/Barctan(1/1/B). Set

log(1+B) —2+2+/Barctan(1/+/B) =0

then the unique solution is By ~ 0.706461201 .

Take the initial values yg = hg = 1, and the parameters w = o0 = 1, we give
one path of (h;/ e“t)fl/p for each of the two case: u =0 (f = By, correspondingly)
and u = 0.839451791 (f3 = 2, correspondingly), with size T = 800, by taking p =
1,1.4,1.8.

From Figure 1 and Figure 2, we can see that the path of (A, /et )’71/” approaches
to 1 as ¢ increases. These simulation results agree with the theoretical results.



STRONG LAWS FOR NONSTATIONARY GARCH MODELS 873

30 20

— pet — p=t
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25 e p=18 —s p=18

800

Figure 1: u=0. Figure 2: u > 0.

Conclusions

In this paper, we have precisely characterized the dynamic behavior of /4; in a non-
stationary GARCH(1,1) model, via the Marcinkiewicz-Zygmund strong law of large
numbers and the Hartman-Wintner law of the iterated logarithm. The Hartman-Wintner
law of the iterated logarithm shows that the dynamic behavior of #; at the boundary is
sharply different from that in the explosive region, but the Marcinkiewicz-Zygmund
strong law of large numbers does not.
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