lournal of
athematical
nequalities
Volume 19, Number 3 (2025), 875-892 doi:10.7153/jmi-2025-19-56

SOME NEW NUMERICAL RADIUS INEQUALITIES VIA
AN IMPROVED VERSION OF KATO’S INEQUALITY

YONGHUI REN AND MOHAMED AMINE IGHACHANE *

(Communicated by M. Sababheh)

Abstract. In this paper, we present new refinements of Kato’s inequality. These refinements
are then applied to derive improved upper bounds for specific numerical radius and norm in-
equalities. Our findings strengthen and extend several well-known numerical radius inequalities,
providing more precise estimates than those previously established. In particular, we introduce
two distinct refinement approaches based on improved versions of Young’s inequality and a
generalized Buzano’s inequality. These results yield sharper bounds and wider applicability to
bounded linear operators. Furthermore, we demonstrate the utility of these refinements through
applications to triangle inequalities and Furuta-type inequalities, illustrating the robustness and
versatility of our methods.

1. Introduction and preliminaries

Let B(7) represent the C*-algebra consisting of all bounded linear operators
on a complex Hilbert space ¢ equipped with an inner product (,). An operator .7 €
B(.2) is called positive, denoted .7 > 0, if it satisfies (7 x,x) > 0 forall x € 7. The
set of all positive operators is indicated by Z()". For an operator .7 € B(.¢), we

denote |T|:=(T*T )% The Schwarz inequality applied to positive operators states
that if .7 is a positive operator in B(.5¢), then for any x,y € JZ,

(T <A(Tx,x)(Ty,y). (1.1)

In 1952, Kato [11] proposed an associated inequality to (1.1), known as the mixed
Schwarz inequality, which states

(Tx) P < (17P0xx) (177 P4 s). (1.2)

for every 7 € B(J#), 0< 0 <1 and x,y € 5. Furuta [8] presented a generalized
form of Kato’s inequality (1.2) as follows:

(17101 P < 1700 (17 ) 1)
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where x,y €  and 0,y € (0,1) with 6 4+ y > 1. Another extension of the mixed
Schwarz inequality, established by Kittaneh [12], states that for x,y € JZ,

(TP <17 Dalllg (| 7Dy, (1.4)

here f and g are non-negative continuous functions defined on [0,c), with the property
that f(a)g(o) = o forall o € [0,00).

One of the significant scalar quantities associated with an operator 7 € B(J¢),
are the standard operator norm and the numerical radius, defined as

|71l = sup [[Zx||and @(F) = sup [(Tx,x)].

[Ixl[=1 [Ixl[=1

The equality w(.7) = ||.7|| holds true if .7 is normal. Further, the numerical radius
o(T) establishes a norm on B(.7), that is equivalent to the operator norm ||.||. Fur-
thermore, it follows that:

1
171 <o(7) <1171, (1.5)

the first inequality becomes an equality between the operator norm and the numerical
radius under the condition that .7 is square-zero (i.e., 7% =0). As demonstrated in
[2, 9, 10], operators and matrices have been crucial in deriving more precise and strin-
gent relationships between the operator norm and the numerical radius. An improved
version of the second inequality in (1.5) has been provided in [13]. It says that for

T eB(H),
1 1 1
o(7) <SNZ1+17°0 <5 (171+17%)1F). (1.6)
2 2
Two years later, Kittaneh [14] proved his celebrated two-sided inequalities
1 1
77+ 77| <w2(9)<§\\39*+§*§”. (1.7)

Using Kato’s inequality (1.2), El-Haddad and Kittaneh [7] showed a generalization of
the second inequality in (1.7). For 0 € (0,1) and s > 1, we have

0*(7) <[]+ (1-0)|.7[*| (1.8)
and
; 1 : w12s(1—
0 (7)< ST+ 7). (19)

For some recent developments on the numerical radius, the reader is encouraged to
consult the following papers: [6, 17, 18, 19].

Additionally, we will incorporate concepts related to convexity into our discussion.
Recall that if y : [0,00) — [0,0), then y is referred to as doubly convex if y is convex
in the conventional sense and

v (') <u (@' (0); ab>0, 0<O <. (1.10)
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The functions y(¢) = sinhs and y/(7) = coshr are examples of functions that are doubly
convex on on [0,c0).

In this work, further refinements of the previously mentioned inequalities are pre-
sented. We propose new upper bounds for Kato’s inequality. Utilizing these bounds,
we refine several classical numerical radius inequalities and the triangle inequality.

The structure of the paper is organized to progressively build upon foundational
operator inequalities toward more refined numerical estimates. Following a brief over-
view of preliminary concepts and key results from the literature, the second section
introduces novel generalizations of the mixed Cauchy—Schwarz inequality, developed
through enhanced forms of Young’s inequality and a generalized version of Buzano’s
inequality. These formulations not only extend earlier contributions but also serve as
pivotal tools for subsequent refinements. Furthermore, in the third section, we apply the
derived inequalities to establish improved upper bounds for the numerical radius and
operator norms. These results significantly sharpen known estimates and highlight the
broader applicability of our approach to bounded linear operators on Hilbert spaces.

2. Some new improvements of Kato’s inequality

This section is structured into two parts. The initial part focuses at presenting
some new refinements of Kato’s inequality via some recent improvement of Young’s
inequality and other related consequences. In the second part, by the famous general-
ized Buzano’s inequality, we present a new refinement of the mixed Schwarz inequality,
which generalizes the obtained results in [15].

2.1. Refined Kato’s inequality via Young’s inequality

To accomplish our objective in this paper, we require the following four lemmas.
The first Lemma is a refined version of the classical Young’s inequality, which can
easily be derived from Theorem 2.2 in [3].

LEMMA 2.1. Consider a and b as two positive numbers and J be a set such that
(0,1) C JCR, and let h be a mapping h:J — R such that h(u)+h(1 —u) =1 for
w € (0,1). Then forall n > 1, we have

a"Wp" W U, g (1,a,b) < h(w)a+h(1— p)b, 2.1)
where U, (U, a,b) == (h(u)a% +h(l— y)b%)n. Moreover, we have (U(mh)(y,a,b))
is a non-increasing sequence satisfying

lim U, (1,a,b) =a"Wp"1-H),

n— oo

n>1

The second lemma concerns operators and is referred to as McCarthy’s inequality.

LEMMA 2.2. Let F € B(J) be self-adjoint with spectrum in the interval J. If
v :J — R is convex, then

Y((Tx.x) < (W(T)x,x) (2.2)
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forall x e A, with ||x|| = 1. Furthermore, when f is concave, then the inequality is
reversed.

The third lemma deals with operators in B(.7¢”), which was demonstrated by Kit-
taneh in [12].

LEMMA 2.3. Let T,/ , B € B(H) be such that «f , B > O. Then

{d T*

7 2 } >0 (Txy) [ < (Fx,x)(By,y) fordl x,yc H. (2.3)

The fourth and last lemma is available in [12].

LEMMA 2.4. Let T € B(J%) and let f and g be non-negative continuous func-
tions defined on [0,o0) satisfying f(o)g(ot) = a for all o € [0,00). Then

L1y o
[ 7 g2<|9*|>]>0'

For 7 € B(#), 2°,% € BT (), u€(0,1] and h is a function as in Lemma
2.1, we consider the following sequence:

?/(n,h)(.uﬂ%?g) = |h(u) 3 (T x,9) W2 x,x)(Zy,y)

2n
+h(1—p) /(2 x,x) @’%ﬁ] :

is a nonincreasing sequence satisfying:

We have (%, (1, 2,%))

n>1

i Uy (1, 2. 2) = (KT x) V(2 x03) <@y7y>>h(u) (Zxx) (@ yy))

We are now prepared to present our first main result regarding Kato’s inequality,
which refines Lemma 2.3.

THEOREM 2.1. Let T,/ , B € B(H) be suchthat </ , B > 0. Then

[g ; } >0 (Tx ) < Uy (1,9, B) forall n € N'and for all x,y € H.

2.4)

o T

Proof. We assume that [ T B

] > 0. Then by Lemma 2.3, we have

T x,y)| <V (Fx,x) (By,y). (2.5)
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Now, we have
(T x,y)| = [(Tx,y) [0 +0=1)
(T x,y) "W\ x,x) (By,y)

h(

)
<HTx))|F

h(1—u)

N

(by inequality (2.5))

h h(1—
S emn) By Ty By

(by inequality (2.5))

2h(1-u)

h(u)
— (Vizs Viama o) Vo 70
(h YT B3+ 10 - ) ¥ ) )

=\ U (14, T, B).

The last inequality is derived from Lemma 2.1.
For the converse, we assume that

(T x,9)* < Uy (14,7, B) foralln € N*. (2.6)

Then by taking the limit as n — +eo in inequality (2.6), we get

h(1—
(Tx P < ((Tx)| T x ) B - (e (B

= (T ) [0 /T x) () *h‘“%

which is equivalent to
(T x| < V{(x,x) (By,y).

of T
T B

For the rest of this paper, we assume that f and g are non-negative continuous
functions on [0, ) satisfying f(o)g(ca) = o forall o € [0,0), and y : [0,00) — [0,00)
is an increasing doubly convex function.

Combining Lemma 2.4 with Theorem 2.1, the following result is obtained.

Then we conclude from Lemma 2.3 that [ } >0. O

THEOREM 2.2. Let F € B(SZ). Then for all x,y € H,
(T3P < Uiy W (17 1), 82(177)) foralln € N 2.7)
Specifically, for any 0 < 0 < 1,
(T < Uy (| 712, | 77 P170)) foralln e N*. (2.8)
THEOREM 2.3. Let F € B(S). Then the following holds

W ((Tx) < Uiy (v (FP(TD) s w (82(177))) forallne N, (2.9)
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In particular, for any 0 < 6 < 1,

V(72 < Yy (0w (17P°) w (17°P0°0)) foraline N, @.10)

where

Uni) (W, 2 V) 1=

h(w) 3w (T3 )V (T o) (D)
+h(1 - ) %/ (T o) <@/y,y>] |

Proof. By Theorem 2.2, we have

T2 <\ Yy (0 P21 7)), 82 77))

= Z ( ) W (L~ p)an b

where

= \/I (Tx%) I\/<f2(|9|)x,X> (17 Dy.y)

and

b=/ (P(T )50 (2 T )y.5).

The fact that y is an increasing doubly convex function implies that

w<<9x,y>|><w<i (k)hkw" K1 p)akb )

k=0 \"

g( ) Wk (1 u)w(af b )
Z( Yo+ u)w%)ﬁ(b), @11)

where the second inequality is derived from Jensen’s inequality. Given that y is an
increasing doubly convex function, and by applying Lemma 2.2, we obtain

w(a) < \/1//( (T2 \/(ll/(fz(ly\))nﬂ (w (7)) (2.12)

and

w(b) </ (w (P27 1)xx) (W (277w, (2.13)

Combining inequalities (2.11), (2.12) ad (2.13), we get the desired result. [J
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THEOREM 2.4. Let /T, 2, % € B(A) and let h be a function defined as in
lemma 2.1. Then

(ST XY sy WY ZHNTNXZY S\ T*S*) foralln € N*, (2.14)
where

Yoy (WG 2NTNXY LT |S7)

W) XS T2V xR (TS50

2n
—I—h(l—‘u) 3 <‘9px7x> <‘y|y‘y*y7y> )

where & =Y * X T|\X Y.

Proof. By Theorem 2.2, for f(t) = g(t) = \/t, we have
(T3> < Uy (1,1 71,1 T77|) foralln e N*. (2.15)
By taking x = 2% x and y = .%*y in inequality (2.15), we get the desired result. [J
Due to Theorem 2.4, we have the following refinement of Furuta’s inequality (1.3).

THEOREM 2.5. Let T € B(J) and 0 > —1, y > 2. Then for all x,y € F,

(T T P < Uy (0|74, 7)) foralln e N (2.16)

Proof. First, let 7 = U|.7| represent the polar decomposition of .7 . By setting
S =U, T =7, 2 =I,and % =|.7|% in Theorem 2.4, we obtain the desired
result. [

2.2. Refined Kato’s inequality via generalized Buzano’s inequality

In this subsection, by adopting some ideas from [15], we extend some recent re-
sults in [15] by the famous generalized Buzano’s inequality. First we need the following
lemmas. The first lemma presents a generalized version of Buzano’s inequality [5].

LEMMA 2.5. ([1]) Let x,y,z € . and 7 € [0,1]. Then we have

5.2} < BelP (5 b1+ 7 ] ) @17)

The second lemma is the following, which is equivalent to Lemma 2.3.
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LEMMA 2.6. ([4], Proposition 1.3.2) Let I,/ ,% € B(I) be such that </ , %
> 0. Then [g 9@ } >0 ifandonly T = A KB for some contraction K.

LEMMA 2.7. Let F € B(J) be represented by the polar decomposition T =
V|Z|. Then for all vectors x,y € 7 and 7 € [0,1],

-7 . 1+ X
(el <171 (v vl ). @)

Proof. Consider .7 € B(s¢) as a positive contraction. Thus, 0 < .7 < I. Given
T?* < .7, the following inequality holds for all x,y € .7,

17 xI|{Tx,)]

(Tx, Tx)(Txy)|
(T%x,x) (T x,y)|
(T xx) (T x,y)|

-7 I+71
1731 (A5 ol + S5 ).

N

where the last inequality follows by applying the Lemma 2.5. So,

1—-7 1+7
<9x,y>|<( |+ — ||xy||),

for any positive contraction .7 . Considering an arbitrary positive operator .7 € B(.%¢),
substituting .7 with %7 yields the desired inequality in Lemma 2.7. Alternatively,

for an arbitrary operator .7 € B(s¢), we utilize the polar decomposition .7 = V|.7|
to complete the proof of the lemma. [J

Our primary theorem in this subsection is as follows.

THEOREM 2.6. Let T,/ , B € B(H) with o/, > O and t € [0,1]. Then

*
f; 2 > O if and only if for all x,y € F€ and for a certain partial isometry V €

B(7), we have

1—-7 1 1 1+7
(Txy)| < S (BIVartey) + —(Txx)(@yy).  @19)

Proof. Assume that [g ‘2 ] > 0. According to Lemma 2.3, there exists a con-

traction K such that 7 = B2K.a/% . Let K = V|K| denote the polar decomposition of
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K. Then

(T x,y)| = ’<<@%K%%x,y>’ (by Lemma 2.6)

1
—l—'c HV*%W

o

<]l (I%T (#Hvertny)|+ D

(by Lemma 2.7)

< I_T’<<@%VA%x,y>’ 1+THV %’w

2

‘ (since [|K]| < 1)

l—7|/ 1 1 147 PR
=— <%2Vﬂ2x,y>)+—2 \/<$2VV ﬂzy’y> (Ax,x)
1- 1
< 5 T <%%Vﬂ’ﬂ,y>) —+ —_;T <JZ%.X,.X> <@y,y> (Since vV* < I)

for all vectors x,y € 7. For the converse, if for all x,y € 77, the inequality

14+7

(Tl < 50| (Bt )+ 2T Tm .

holds for some partial isometry V € B(¢), then by using the well-known Cauchy-
Schwarz inequality, we have

(bvartao) =[ (vt

< HV;zf%x

2

|
— \/<Vﬁf%x,Vﬂ7%x> (#%y,2%y)
_ \/<d%V*V%%x7x> (By.y)

(o x,x)(ABy,y) (by the fact that V¥V < I).

Then we have

1-— 1
(T3] < — (BVerbny) + 5 (a0 Bry)
1— 1+7
< —_ -
< <%7V%7x y> + 5 (/' x,x)(By,y)
1—-7 1+7

S 5 VAT XX (Byy) + = VA xx) (By,y)

< (5545 Vi@

(%, x) (B, )

Now the result is a consequence of Lemma 2.3. [
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REMARK 2.1. A special case of the above theorem is Theorem 2.1, which is al-
ready proved in [15] for 7 =0.

Based on Theorem 2.6 and Lemma 2.4, we refine inequality (1.4) as follows.

THEOREM 2.7. Let T € B(A) and T € [0,1]. Then for all x,y € A, a partial
isometry V € B(J) exists such that

(T < T HAT DV (7 D)+ 216 (177w (7217 D).

(2.20)
Specifically, forany 0 < 0 < 1,

(< ST (1710V 17710 x| + ¥¢ (17 P00 x5} (| 7 20y, ).
(2.21)

In our next theorem, based on the double convexity properties presented in in-
equality (1.10), we obtain an extension of the above theorem as follows.

THEOREM 2.8. Let 7 € B(A) and v € [0,1]. Then a partial isometry V €
B(H) exists such that for all unit vectors x,y € 7€,

w((Txn)) < 5w ATV (7))

1+7
+T\/<W(82(|7*|))x,X> (w(2(17)y)-
In particular, forany 0 < 0 <1l and s > 1,
s 1=z el 14+71 o12s(1— !
(Tx)lF <= [(171VI7 1 xy)| + 5 (170 k) (17 205.).

(2.22)

Proof. Let x,y € 2 with ||x|| = ||y|| = L. Beginning with the first inequality in
Theorem 2.7, the property that y is an increasing doubly convex function implies that

v([(Tx3))
+7

v (G zve 7 o+ R (7 D (7 )

< Sl 7 Ve D)+ 5 (v (Ve (7 D) (P17 D) ) )

) 2
< WAUUZIVEIT DE)+ 5 @ 1770050 (7 D))

where the second inequality is a consequence of the convexity of the function v, the
third inequality is established using inequality (1.10), and the last inequality follows
from Lemma 2.2. [
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We conclude this section with the following alternative form of Furuta’s inequality
(1.3).

THEOREM 2.9. Let ./, 7, %, % € B(J) and T € (0,1]. Thenforall x,y € I,

(ST Xy < % )<5ﬂ\ﬂ|%V|y*|% %%M

+ T T T T AT )

Sor some partial isometry V € B(5€).

Proof. By Theorem 2.6, for any o/ € B(.57), there is a partial isometry V such
that

1—7 1 ol I+
(x)| < = [(1913V 1 2y |+ VA T (7). (2:23)

If we replace x by 2% x,«/ by 7, and y by /"y, in inequality (2.23), we obtain
the desired result. [

As a consequence of the theorem above, we derive the following generalized re-
finement of Furuta’s inequality (1.3).

THEOREM 2.10. Let 7 € B(A) and 6 > —1 y > 2, and 7 € [0,1]. Then for
all x,y € 72,

-7 v
(71T e < = |( 171571V 17150 xy)|

I+ 0 N
+ TR0 | 747,

3. Applications to numerical radius and norm inequalities

The objective of this section is to improve several inequalities mentioned in the
introduction in a novel way by using inequalities given in Section 2. Furthermore, in
the end, we present a new refinement of the triangle inequality for norms of operators.

We begin this section with the following improvement of inequality (1.9).

THEOREM 3.1. Let 7 € B(). Then we have
w(@() < 00 VTt h1 - 4| foratnenr, Gy

where u =3 |\w (g (7)) +w (f2(|Z)))||. In particular, for any 0 < 6 <1 and
s>1,

0*(T) < [h(,u) \/ @ (T )v+h(1 —,u){’/\_/r foralln € N*, (3.2)

where v =3 H\§|2S9 + \§*|2S(1_6)H :
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886
Proof. By Theorem 2.3, we have for any x € 77,
W ((Tx,2)]) < Uy (0w (F2(7)) W (£%(177))

=[h<u>" w(<ﬁx,x>)a+h(l—u)x”/5]7 (33)

where a = /(w (£2(|7])) x,x) (w (g2(|7*]) x,x). Now, by the arithmetic-geometric
mean inequality, we have

Vw1702 (w (217 yy) <

[(w (72(7D) xx) (w (821 77) .x)]

| =N =

(v (FP17D) +w (&(77) xx)]-
3.4

Combining inequalities (3.3) and (3.4) and taking the supremum over all unit vectors

x € J£, we obtain the desired result. [
A non trivial refinement of inequality (1.8) is considered in the following result.

THEOREM 3.2. Let T € B(), 0< 0 < 1 and s > 1. Then forall x,y € 7,

0*(7) < [h(,u) (/v @ (T )u+h(1 —,u)\”/ﬁr foralln € N,

where u= ||6].7[* + (1-0)|.7**|.

Proof. By using Theorem 2.2, we have
(Tx,x)[* < Uiy (1, | 7170, 709

[h(u)" (Txla+ (1 —uwa]", (35)

where a = /(|.7|*%x,x) (|7 *[21-9)x,x) . Now, by employing the convexity property
of the function #*,s > 1, we get

h(u)(’/( w(<9x,x>|>a)“'+h<1—u>"a-vr.

(Txn <

Appling Lemma 2.2 and Young’s inequality, we get
& = <\/<9|29x,x> <|9*|2(19)x,x>) < \/<|=7\2"'x,x>9 <|9*|2Sx,x>(1_9)
V(0172 +(1-0)|7* P, (3.6)

Combining inequalities (3.5) and (3.6) and taking the supremum over all vectors x €

A, with ||x|| = 1, we achieve the desired result. [
In the following theorem, we introduce a further improvement of inequality (1.8).




A NEW IMPROVEMENT OF KATO’S INEQUALITY 887

THEOREM 3.3. Let F € B(4) and t € [0,1]. Then, a partial isometry V exists
such that

1—1

V(7)< 5w @7V (77 D)+ v (& 17°D) +w (PA7D)].
3.7
In particular, forany 0 < 0 <l and s > 1,
' 1— ! _ 1— S(1— s

Proof. By Theorem 2.8, we have for x € .77, and some partial isometry V', that

w720 < W A7)V (.77 Do)

+ %W‘V(é’z (7)) x,x) (w (f2(1.7])) x,x)
<« Ty (17 e (17 )
2

1+7

+ W AT+ w (g2 (7)),

Taking the supremum over all vectors x € 5, with ||x|| = 1, and noting that y is
increasing function, we achieve the desired result. [

In the following theorem, we propose an additional refinement of inequality (1.9).

THEOREM 3.4. Let 7 € B(), 0<0 <1, 1€[0,1] and s > 1. Then

(7)< 55 (07 (1710017°10) )+ 25 (|- 0177 + 017
Sor some partial isometry V € B(5€). o
Proof. Let x € 7. Then
(T x,x)°
(ot )]
+ % <|§*|2S(1_6)x7x> (|7 |#9x,x) (by inequality (2.22))
ey
+ % <|:7*|2Sx,x>l_6 (|7 2x,x)?  (by Lemma 2.2)
< ([(zevize o))+ 5 (- 0)1 7P v 07 ) ),
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where the last inequality follows by Young’s inequality. This implies that

w*(J) < (%Tw (\9|9V\9*\1‘6> 1”‘

‘ 1—6 ‘9*‘25+9‘9|2s

)

(3.10)
Square both sides of the inequality above, and utilize the convexity of the function
E(A) = A2, to deduce that

0™ (7)< (ﬂw-"(vﬂv9*1—9)+¥H(1_9)|g*|zs+99% é)z
g%wzx(‘gwmy*‘l—e) 1+T<H 1—o ‘g*|2s+9‘9‘2r )

This completes the proof. [

The triangle inequality will be refined in the following theorems.

THEOREM 3.5. Let 2, % € B(J). Then for all n € N* and u € (0,1), we
have

|2+

) Y12 11202 DIl 2D

+h(1—p) Y ||f2(«%'|)||||g2(«%'*)]

) 2(/IIWII\/J‘z(lgl)llllgz(@*l)ll

+h(1—p) Y ||f2(@|)||||g2(|9*)]

and

12+

2n
< [h(w) H%II\/H|«/”b”|2"||||\=%”*|21 el

+h(1—p) 3/ 1|27 PO [[| 27+ 20-0) II]

h(u) Zdn%w ¥ o2+ pa-o)|

+h(1—u) 2{/”\@\29\\ IW*IM")II] :
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Proof. By using the triangle inequality and Theorem 2.2, we have

(2 + D) < U2 x)] + (@)
<\ U1, AL 1), 20X+ iy (0, 2121, 2(2°))

<

X

h(w) 2{'/<«%”x,y> \/<f2(|3’b”\)x7X> (&2 Dyy)

+h(1— ) 3202 D) <g2<|%*|>y7y>]

+ [h(k) 2(/@x,y) \/(fz(\gl))m (12 )y.y)

+h(1—u) 2{’/(fz(\gl)x,x) <g2(@*l)y,y>1 :

Taking the supremum over all unit vectors x,y € .7, we get the desired result. [

We adapt the approach in [15] to establish the following refinement of the triangle
inequality.

THEOREM 3.6. Let ', % € B(4) and T € [0,1]. Then, there exist partial isome-
tries U,V € IB%(,%”) such that

|2 + 21 < ——=(IF(2 DU (2 DI+ 172 Ve (T*DI)

+T(||g 2N+ (2 D+ 12020+ 212 D)) -
Specifically, for any 0 < 0 < 1

12+ 21 < = (|leeve =0+ |imrevie=))
+E(HI3@”\ 01 PO [l i)

Proof. By employing the triangle inequality and Theorem 2.7, we obtain for all
unit vectors x,y € 7,
(2" + 2 )x,y)|
=[(Zx,y) +{Zxy)
< KZx )+ (D x,y)

A2 DU (12 )+ (2 (12 D) (202 D)
1—

5 (1102 D)+ 5 7 Dx (22 )

<

(by Theorem 2.7)
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< SN2 D)+ 2DV (2 D))

F 127D+ 8 (27D) o) + (P12 +£121) 1)),

Hence,

(2 +Z)x)]

< S22 D n)] + 12DV (2 D))

D (@127 D+ 12°0) )+ (P12 )+ 212D) ).

The desired result is achieved by taking the supremum over all vectors x,y € .7, with
I =yl =1. 0O
The triangle inequality for the operator norm is improved by Theorem 3.6, as

shown in the following remark.

REMARK 3.1. Theorem 3.6, is a significant improvement of the triangle inequal-
ity for the operator norm. In fact,
-7 1 oL
12 + ) < —= (|| Ix1Pui 27 )

+ = 27+ 127+ 27+ 121D

+H\@\%V|@*\%

1—-7 1+7
< 5= U221 + ——=Cl 2] +2171)

=2+

Conclusion

In this paper, we have presented new refinements of Kato’s inequality, offering
significant contributions to the study of numerical radius and norm inequalities for
bounded linear operators on Hilbert spaces. By introducing improved versions of
Young’s inequality and employing a generalized form of Buzano’s inequality, we de-
rived a series of sharper bounds that enhance classical results in operator theory.

Theoretical developments were complemented by various applications, includ-
ing refined forms of the triangle inequality and extensions of Furuta-type inequalities.
These results not only generalize several known inequalities but also introduce new
perspectives on the relationships between the numerical radius, operator norms, and
functional calculus.

The integration of convexity particularly through the notion of doubly convex
functions played a central role in expanding the analytical framework, allowing for a
broader class of operator inequalities. Our methods are robust and adaptable, suggest-
ing further avenues for investigation in related fields such as matrix analysis, spectral
theory, and quantum computing.
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Overall, the results obtained underline the effectiveness of combining refined func-

tional inequalities with operator theoretic techniques. Future research may focus on
extending these results to unbounded operators, non Hilbertian settings, or applications
in concrete problems where norm estimates are essential.
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