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NEW THREE PROOFS OF CIRTOAJE INEQUALITY

ERISA HARA, DAIKI HARANAKA, YUSUKE NISHIZAWA* AND TOMOYA YOKOTA

(Communicated by L. Mihokovi”)

Abstract. In this paper, we present three new proofs of the following Cirtoaje inequality: If a
and b are nonnegative real numbers such that a+b = 1, then a® +p2 L.

1. Introduction

The study of inequalities involving power-exponential functions is one of the most
interesting areas of analytical research. Many mathematicians [ 1]-[17] studied inequal-
ities with power-exponential functions and conjectured many open inequalities. Among
them, especially, the following symmetric inequality is the one of the simplest shaped
form:

THEOREM 1. If a and b are nonnegative real numbers such that a+b =1, then
2b | p2a
a”’+b < 1.

The inequality is posed by Cirtoaje [3] as Conjecture 4.8 and proved by himself in
[4] and Matejicka [7]. Although the above symmetric inequality is very simple forms,
its proof is not simple and is quite technical. In this paper, we will show three new
proofs of Theorem 1. The first proof is a proof by contradiction. The second proof
divides the interval of a and b into two and uses upper bounds of @*” and 5% in
each interval. This is the method of proof attempted by Hisasue [5]. Hisasue’s proof
is incorrect because the inequality used in the proof is incorrect. The third proof uses
upper bounds of a?* and »**, but without dividing the range of @ and b. A proof using
such an approximation formula is already known by Cirtoaje [4], but this is a new proof
in that our approximation formula differs from Cirtoaje’s approximation formula.
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2. Some Lemmas
We present some lemmas necessary for the proof of Theorem 1.

Pl < l+a—d?—24%.

LEMMA 1. Forany 0 <a< %, wehave (1—a

Proof. We set
fila) =In(1+a—a*—2a%) — (2a—1)In(1 — a)
and the derivatives of fi(a) are

—a(2+a—6a>+4a>)

(1—a)(14+a—a*—2a3) ~2In(1-a)

fila) =

and

a2 a
@) == —|—f521(—)az—2a3)2 ’

where f3(a) =8 —30a + 5a®+ 34a’ — 8a* — 8a> . Since the derivative of f>(a) is
fla) = —2(15—5a—51a*+ 164’ +20a*) < 0

for 0 <a <3, f>(a) is strictly decreasing for 0 < a < 3. From f,(0) =8 and f> (%) =
— 2, there exists a unique real number ay with 0 < ag < 5 such that f>(a) > 0 for
0<a<apand fr(a) <0 for ap < a < . Therefore, f](a) is strictly increasing
for 0 < a < ap and strictly decreasing for ag < a < 4. By f{(0) =0 and f] (3) =
—% +2In2 = —0.113706, there exists a unique real number a; with 0 < a; < % such
that f{(a) >0 for 0 <a < aj and f{(a) <0 for a; < a < 5. Hence, fi(a) is strictly
increasing for 0 < a < a; and strictly decreasing for a; < a < 1. From £;(0) =0 and
fi(3) =0, wehave fi(a) >0 for0<a<3. O

LEMMA 2. Forany 0 <a < %, we have
(1—a)* (a2—|— (1—a)?—a(1—a)ln(a(l —a))) <(1—a)*—a(l-a)lna.
Proof. By Lemma 1, we have
(1-a)™ (a2—|— (1—a)®—a(l—a)ln(a(l —a)))
<(l—a)(1 —|—a—a2—2a3) <a2 +(1—a)*—a(1—a)ln(a(l —a)))
and we may show g;(a) = (1 —a) —alna— (1+a—a*—2a°) <a2+ (1-a)®>—a(l—
a)ln(a(l —a))) >0 for 0 < a < . The derivatives of g;(a) are

g\(a) =a—9a> — 8a® +24a* — Ina+ (1 — 64° — 4a® 4+ 10a*)In(a(1 — a))
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and
—a(25—2a—1384%+1164°
g/l/(a) _ a( a . a+ a) +(—12a— 12a2+40a3)ln(a(1 —a))
—da
= (12a+ 12d%> — 40a°) g5 (a),
where

—a(25 —2a — 1384+ 1164%)
(1—a)(12a+ 12a%—40a3)

g (a) = —1In(a(l—a)).

The derivative of g,(a) is

g3(a)
2a(1—a)*(3+3a—10a%)?’

gr(a) =

where g3(a) = —18 +21a +263a®> — 392a’ — 376a* 4+ 904a> — 400a°. The derivative
of gs3(a) is

g5 (a) =21 +526a — 1176a*> — 1504a> + 4520a* — 24004°
1
> 21+ 526a — 1176a*> — 1504a° + 4520a* — 2400a* <5>
=21+ 526a — 1176a* — 15044 4 3320a* = g4(a).

The derivatives of gs(a) are g}(a) = 526 —2352a — 4512a° + 13280a> and gJ(a) =
—2352 —9024a + 39840a°. Since gj(a) is convex upwards with g7 (0) = —2352 and
g4 (5) =3096, there exists a unique real number ag with 0 < ag < % such that g/ (a) <
0 for 0 < a < ag and gj(a) >0 for ag < a < 4. Hence, gj(a) is strictly decreasing
for 0 < a < ag and strictly increasing for ag < a < §. From g (0) =526 and g} (%) =
—118, there exists a unique real number a; with 0 < a; < % such that gﬁ‘(a) > 0 for
0<a<a and gy(a) <O for a; <a < 1. Hence, g4(a) is strictly increasing for
0 < a < aj and strictly decreasing for a; < a < . From g4(0) =21 and g4 (3) = %,
we have g4(a) >0 for 0 <a < % Since g3(a) is strictly increasing for 0 < a < % and
¢3(0) =—18 and g3 (1) = %1, there exists a unique real number @ with 0 < a < 1
such that g3(a) < 0 for 0 < a < ay and gz(a) >0 for ay < a < % Hence, g(a) is
strictly decreasing for 0 < a < ay and strictly increasing for ay < a < % . By £2(0) =
+ooand g3 (1) =—1+2In2220.386294 and g, () = — 322 +1n' = —0.21269, there
exists only two real numbers a3 and a4 with 0 < a3 < % <ag < % such that g,(a) >0
for 0 < a < as,as <a< % and g(a) <0 for a3 < a < as. Hence, g/(a) is strictly
increasing for 0 < a < az,ay <a < % and strictly decreasing for a3 < a < as4. From
€1(0)=0 and g (3) = —2 + 22 ~ —0.0369924, there exists a unique real number
as with 0 < as < % such that g} (a) >0 for 0 <a <as and g/ (a) <0 for as <a < .
Hence, g1(a) is strictly increasing for 0 < a < as and strictly decreasing for as < a <
1. By g1(0) =g (3) =0, we obtain gj(a) >0 for 0<a< 1. O
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LEMMA 3. Forany —1 < x < 1, we have
(140 < %(1 122 - )2 — 26+ 2).
Lemma 3 is proved by Miyagi and Nishizawa [11].

LEMMA 4. Forany 0 < x < % we have 2** < 1+ xIn2 + %xz.

Proof. First, we show that 2* < 1 +xIn2 + %xz. We set

271
hi(x) =In (1 +xIn2 + mﬁ) —xIn2

and the derivative of /(x) is

xhy(x)
W (x) =
109 = 1500 T 1000xm2 27122’

where 715 (x) = 542 — 1000(In2)? —271xIn2. Since h(x) is strictly decreasing for 0 <
x < 1 and »(0) = 542 — 1000(In2)* = 61.547 and &, (1) = 4(1084 —2000(In2)? —
2711n2) = —32.3745, there exists a unique real number x; with 0 < x; < % such
that 75(x) >0 for 0 < x <x; and hy(x) < 0 for x; <x < 1. Thus, hy(x) is strictly
increasing for 0 < x < x; and strictly decreasing for x; < x < % . From £;(0) =0 and

2000-6931
1\ _ 4271 | In2 1 14 427142000102 271+ S o500~ 1., 70715
hl (E) —ln(m—f—T)—ian—ln >1H 7000141420 —ln >O,We

400072 4000141422 70711
obtain Ay (x) > 0 for 0 < x < 5. Next, we show that 27¥ < 1 —xIn2 + %xz. We set

271
h3(x) =1In (l —xIn2+ mxz) +xIn2

and the derivative of h3(x) is

542 — 1000(In2)? +271x1n2)
1000 — 1000xIn2 427 1x2

() =2

From 542 — 1000(In2)?+271xIn2 > 542 — 1000(In2)? 22 61.547 and 1000 — 1000x1n2
+271x% > 1000 — 1000%ln2 & 653.426, h3(x) is strictly increasing for 0 < x < % . By
h3(0) =0, we obtain h3(x) >0 for 0<x< 3. O

LEMMA 5. Forany 0 <a < % we have Z(a—%) —Z(a—l)2—ln2 > Ina and

2
2(a—-1)=2(a=1)’~In2 <In(1—a).

Proof. We set
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2
and the derivative of jj(a) is jj(a) = 7(1;2‘” <0 for 0 <a< 3. Since ji(a) is
strictly decreasing for 0 < a < 1 and ji () =0, we obtain ji(a) >0 for 0 <a < 3.

Z(a) - 2 a 2 a 1n2 ln(l a)

(1 2a)

and the derivative of j,(a) is j}(a) = >0 for 0 <a < 3. Since j>(a ) is strictly

increasing for 0 < a < % and ]2(%) 0, we obtain jp(a) <0 for 0 <a < 2. O

LEMMA 6. Forany 0 < a < % we have
4—4a—4(1—-a)(1—2a)In2+ (1—2a)*(In2)* > a 2.

Proof. We set
ki(a) =1n (4 —4a—4(1—a)(1 —2a)In2 + (1 —2a)*(In2)?) +2alna
and the derivative of k;(a) is

4+ 4(3 —4a)In2 — 4(1 —2a)(In2)?
o 21na.
M) =2 A= — 20 2+ (1= 2a2(m2? T

By Lemma 5, we have

—44+4(3 —4a)In2 — 4(1 —2a)(In2)?
4—4a—4(1—a)(1 —2a)In2+ (1 —2a)?(In2)?

2(e2) @—%f—w)

—(1—2a)ks(a)
()

where ka(a) = 8 —4a —4(2 —a)(1 —2a)In2 — (3 + 8a — 4a*)(In2)? +2(In2)3 and
k3(a) = 4 —4a —4(1 —a)(1 —2a)In2 + (1 —2a)*(In2)?. Since the derivatives of
ka(a) are ky(a) = —4+4(1 —2a)In2 +8(2 —a)In2 — 8(1 — a)(In2)? and K;(a) =
—161n2 +8(In2)? = —7.24673, k(a) is strictly decreasing for 0 < a < 3. From
Ky(%) = —4+121n2 — 4(In2)? =2 2.39595, k»(a) is strictly increasing for 0 < a < .
By k>(0) =8—8In2—3(In2)*+2(In2)* = 1.67951, we have k»(a) > 0 for 0 < a < .
Since we have k3(a) >4 —4a—4(1 —a)(1 —2a)In2 =4(1 —a)(1 —In2+2aln2) >
4(1—a)(1 —1n2) =2 4(1 —a) x 0.306853 > 0, we obtain | (a) <0 for 0 < a < § and
ki(a) is strictly decreasing for 0 < a < %. From k;(3) =0, we have k;(a) > 0 for
0<a<i. O

Ki(a) <2+

LEMMA 7. Forany 0 < a < % we have

1—a*(4—4a—4(1-a)(1—2a)In2+ (1 -2a)*(In2)?) > (1 —a)™.
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Proof. We set
li(a)=1-a*(4—4a—4(1—a)(1—2a)In2+ (1 —2a)*(In2)*) — (1 —a)*.

By Lemma 1 and 1609030 <In2< 1000 , we have

693 694 \*
l 1—d*|4—4a—4(1—a)(1-2 1-2a)*( —
1(@)>1-a ( a—4(1-a)(l-2a)y50m+ (1= 2a) (1()00) )

—(1—a)(l +a—a2—2a3)
 3a*(1—2a)(24197 — 67394q)
h 250000

3a*(1 —2a) (24197 — 67394 ()
~ 250000
 182734%(1 —2a)
B 250000

>0

for 0 <a< 100 We set
h(a)=In(1—-a*(4—4a—4(1 —a)(1-2a)In2+ (1 —2a)*(In2)*)) — 2aln(1 - a)
and by Lemma 5, the derivative of l;(a) is

B(a) = 2a  —8a+12a>+4a(2 —9a+8a%)In2 —2a(1 —2a)(1 — 4a)(In2)?
l—a 1 —4a*+4a3+4(1 —a)(1 —2a)a*In2 — (1 —2a)%a?(In2)?
—2In(l—a)
_ 2a  —8a+ 124> +4a(2 — 9a + 8a*)In2 — 2a(1 — 2a)(1 — 4a)(In2)?
l—a 1 —4a’>+4a>+4(1 —a)(1 —2a)a*In2 — (1 — 2a)*a*(In2)?

S

_ (1-2a)l5(a)
 (1—a)(1—4a2+4a®+4(1 —a)(1 —2a)a?In2 — (1 —2a)2a?(In2)2)’

where

l3(a) = — 1 —Ta+ 14a* — 4a°> — 12a* + 84>
+2(1 —a)(1 +6a—12a>+ 64> + 8a* — 8a°) In2
—a(2 —19a+29a* — 10a® — 12a* + 84°)(In2)?
—2(1 —a)a*(1—2a)(In2)*.
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From 1+ 6a—12a*+6a>+8a* — 84> > 0 and 2 — 19a+ 294> — 104> — 12a* + 84> < 0
for 130—50 <a< %,wehave

li(a) < —1—Ta+ 14a* — 4a® — 124" 4 8a°

694
2(1—a)(1 — 1242 3 48 [ ——
+2(1—a)(l+6a a”+6a’ +8a” — 8a’) 1000

694 \°
—a(2—19a+29a*— 10a> — 12a* + 84°) ( )

1000
3
—2(1—a)a*(1—2a) (%)
~ U(a)

~ 500000000’

where

l4(a) = 194000000 — 511636000a — 12492705574 + 45067156714 — 28694451 144"
— 42141840004 + 3625456000a°.

I4(a) < 1000000 (194 —511a— 12496%+4510a° — 2869a* — 42144 + 3626a6)
1
< 1000000 (194 —511a— 12494 + 4510a° — 2869a* — 42144° + 36264° <§>)

= 1000000 (194 —511a— 12494> + 4510a° — 2869a* — 2401a5>
= 1000000/5(a) .

The derivative of Is(a) is
I5(a) = —511 — 24984 + 135304 — 114764 — 120054a*

35
< —511—2498a + 13530a> — 114764> (@) — 120054*

47567 ,

= —511—2498a+ a® —12005a* = Is(a)

The derivative of lg(a) is

134
9513 a—48020a°

Ih(a) = —2498 +

134 1
> —2498 + 9553 a— 48020 (5) a>

_ oggy 23134

a—24010a*> =I7(a).
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Since I7(a) is upward convex and I;7(a) > mln{l7(100) 242%0031,1 ( )= %}, we

have I7(a) > 0 for - 2<a<i and lg(a) 1s strictly increasing for - m <a<%.From

lﬁ(%) = 1085057, lg(a) <0 for 35 < a< } and Is(a) is strictly decreasing for 75 <
a< . By l5(100) 3427080908070<0, we have [;(a) < 0(i = 3,4,5) for %<a<%.

From 1 —4a® +4a® +4(1 —a)(1 —2a)a*In2 — (1 —2a)*a*(In2)? > 0 for 0 < a <1,
ly(a) <0 for 35 < a< 4. Since I(a) is strictly decreasing for 5 < a < } and
L (%) =0, we obtain I(a) > 0 for % <a<i%. O

3. Proofs of Theorem 1

We may assume 0 < a < % <b< 1. If (a,b) = (0,1), (2,2) then we have
a® + p2¢ = 1. Therefore, we consider the case of 0 < a <3< b < 1 and we set
F(a) = a?1-a) (1—-a)**—1.

First proof of Theorem 1. The derivative of F(a) is
2(1— 2
F'(a) = a*1-% (M — 21na) + (1 —a)™ <2ln(1 —a) - a ) :
a

—a

Since we have F(0) = F (1) =0, if F(a) > 0 for some a with 0 < a < }, then there
exists at least one real number ¢ with 0 < ¢ < 1 such that F'(c) =0 and F(c) > 0.
Hence, we have

219 (% —lnc) =(1-c)% (1 ic —In(1 —c)>

and
A9 (1—e)*—1>0.
We multiply the above inequality by 1=¢ —Inc > 0 to get
3 (1= 11— 1—
A9 (—C—lnc)+(1—c)2‘< C—lnc) - ( C—lnc) >0.
¢ ¢ ¢
From
l—c c
2(1—c) —1 —(1— 2c¢ —In(1 =
¢ ( - nc) (I—-¢) <l—c n(l—c)),
we have

c 1—c 1—c
1— 2 —In(1— +(1— 2¢ —1 — 1
( c) (1 - n( c)) ( c) ( - nc) > B nc,

C _C2 —C
(1—0)26<%—ln(c(l—c))> > lc ~Inc.
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Thus, we obtain
(1—c)* (c2 +(1—¢)?=c(1—e)n(e(1 — c))) > (1—¢)?—¢(1—c)lnc

for some ¢ with 0 < ¢ < % Also, by Lemma 2, the above inequality is not holds for
any 0 <c¢ < % From the contradiction, we can get F(a) <0 for 0 < a < % and this
completes the proof of Theorem 1. [

Second proof of Theorem 1. We consider the two case (i) 0 < a < % and % <b<l,
(i) % <a< % <b< % . First, we consider the case (i). By Bernoulli inequality, we have
(1—a)’ <1-24? for 0 <a< L. Hence, we can get F(a) <a® !~ —2a?> =a*(a=2* —

. L . . —2(1/4
2). Since a2 is strictly increasing for 0 < a < % and a=% < (}l) /4 _ 2, we have

a2_2<0for0<a< % and therefore, we obtain F(a) < 0 for 0 < a < %. Next,

we consider the case (ii). We set a = l%x and b= % , then we can get 0 < x < % and

the following inequality by Lemmas 3 and 4.

Fla) = (1;x>1+"+ (14;)”_1

1
=5 ((1 ) +x)1*"2X> ~1
1(1 271
< 3 (Z(l —x)22 =212 +2x+x%) (1 —xIn2+ mxz)
1 271
—(14x)22 =) 2 —2x+x) (1 +xIn2+—x*) | -1
+4( +x)7(2—x7)( x+x)< +aln2+ o0x
~ (2—7) (2000 — 458x7 + 729x* 4 271x° 4 2000x? In 2) — 4000
- 4000
=G(x).

The derivative of G(x) is G'(x) = 535 H (x), where H (x) = —2916+3832x* — 56 1x* —

1084x° 4+-40001n2 — 4000x>In 2. The derivative of H(x) is

H'(x) = 4x(1916 — 561x* — 1626x* —20001n2)

1\? I
>4x<1916—561 (5) — 1626 <§> —20001n2>
— 4x <—13293 —20001n2>

= 4x x 287.831 > 0.

Since H(x) is strictly increasing for 0 < x < 1 and H(0) = —2916 + 4000In2 =
—143.411 and H (}) = —2010+30001n2 = 69.4415, there exists a unique real num-
ber x; with 0 <x; < § such that H(x) <0 for 0 <x <x; and H(x) >0 for x; <x< .
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Therefore, G(x) is strictly decreasing for 0 < x < x; and strictly increasing for x; <

694
1 _ 1) _ —156987+224000In2 _ —156987+224000755 _ 1531
x < 5. From G(0) =0 and G(3) = 1024000 < 1024000 = 1024000

we obtain G(x) <0 for 0 <x < 1 and F(a) <0 for § < a < 3. Thus, this completes
the proof of Theorem 1. [J

Third proof of Theorem 1. From Lemmas 6 and 7, we have F(a) <0 for 0 <a <
%, immediately. [
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