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NEW THREE PROOFS OF CÎRTOAJE INEQUALITY

ERISA HARA, DAIKI HARANAKA, YUSUKE NISHIZAWA ∗ AND TOMOYA YOKOTA

(Communicated by L. Mihokovi´)

Abstract. In this paper, we present three new proofs of the following Cı̂rtoaje inequality: If a
and b are nonnegative real numbers such that a+b = 1 , then a2b +b2a � 1 .

1. Introduction

The study of inequalities involving power-exponential functions is one of the most
interesting areas of analytical research. Many mathematicians [1]–[17] studied inequal-
ities with power-exponential functions and conjectured many open inequalities. Among
them, especially, the following symmetric inequality is the one of the simplest shaped
form:

THEOREM 1. If a and b are nonnegative real numbers such that a+b = 1 , then
a2b +b2a � 1 .

The inequality is posed by Cı̂rtoaje [3] as Conjecture 4.8 and proved by himself in
[4] and Matejı́čka [7]. Although the above symmetric inequality is very simple forms,
its proof is not simple and is quite technical. In this paper, we will show three new
proofs of Theorem 1. The first proof is a proof by contradiction. The second proof
divides the interval of a and b into two and uses upper bounds of a2b and b2a in
each interval. This is the method of proof attempted by Hisasue [5]. Hisasue’s proof
is incorrect because the inequality used in the proof is incorrect. The third proof uses
upper bounds of a2b and b2a , but without dividing the range of a and b . A proof using
such an approximation formula is already known by Cı̂rtoaje [4], but this is a new proof
in that our approximation formula differs from Cı̂rtoaje’s approximation formula.
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2. Some Lemmas

We present some lemmas necessary for the proof of Theorem 1.

LEMMA 1. For any 0 < a < 1
2 , we have (1−a)2a−1 < 1+a−a2−2a3 .

Proof. We set

f1(a) = ln(1+a−a2−2a3)− (2a−1)ln(1−a)

and the derivatives of f1(a) are

f ′1(a) =
−a(2+a−6a2+4a3)

(1−a)(1+a−a2−2a3)
−2ln(1−a)

and

f ′′1 (a) =
a2 f2(a)

(1−a)2(1+a−a2−2a3)2 ,

where f2(a) = 8−30a+5a2+34a3−8a4−8a5 . Since the derivative of f2(a) is

f ′2(a) = −2(15−5a−51a2+16a3 +20a4) < 0

for 0 < a < 1
2 , f2(a) is strictly decreasing for 0 < a < 1

2 . From f2(0) = 8 and f2
(

1
2

)
=

− 9
4 , there exists a unique real number a0 with 0 < a0 < 1

2 such that f2(a) > 0 for
0 < a < a0 and f2(a) < 0 for a0 < a < 1

2 . Therefore, f ′1(a) is strictly increasing
for 0 < a < a0 and strictly decreasing for a0 < a < 1

2 . By f ′1(0) = 0 and f ′1
( 1

2

)
=

− 3
2 +2ln2 ∼= −0.113706, there exists a unique real number a1 with 0 < a1 < 1

2 such
that f ′1(a) > 0 for 0 < a < a1 and f ′1(a) < 0 for a1 < a < 1

2 . Hence, f1(a) is strictly
increasing for 0 < a < a1 and strictly decreasing for a1 < a < 1

2 . From f1(0) = 0 and
f1
(

1
2

)
= 0, we have f1(a) > 0 for 0 < a < 1

2 . �

LEMMA 2. For any 0 < a < 1
2 , we have

(1−a)2a
(
a2 +(1−a)2−a(1−a)ln(a(1−a))

)
< (1−a)2−a(1−a)lna .

Proof. By Lemma 1, we have

(1−a)2a
(
a2 +(1−a)2−a(1−a)ln(a(1−a))

)
< (1−a)

(
1+a−a2−2a3)(a2 +(1−a)2−a(1−a)ln(a(1−a))

)
and we may show g1(a) = (1−a)−alna− (1+a−a2−2a3

)(
a2 +(1−a)2 −a(1−

a)ln(a(1−a))
)

> 0 for 0 < a < 1
2 . The derivatives of g1(a) are

g′1(a) = a−9a2−8a3 +24a4− lna+(1−6a2−4a3 +10a4)ln(a(1−a))
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and

g′′1(a) =
−a(25−2a−138a2+116a3)

1−a
+(−12a−12a2+40a3)ln(a(1−a))

= (12a+12a2−40a3)g2(a) ,

where

g2(a) =
−a(25−2a−138a2+116a3)
(1−a)(12a+12a2−40a3)

− ln(a(1−a)).

The derivative of g2(a) is

g′2(a) =
g3(a)

2a(1−a)2(3+3a−10a2)2 ,

where g3(a) = −18+ 21a+ 263a2− 392a3− 376a4 + 904a5− 400a6 . The derivative
of g3(a) is

g′3(a) = 21+526a−1176a2−1504a3 +4520a4−2400a5

> 21+526a−1176a2−1504a3 +4520a4−2400a4
(

1
2

)
= 21+526a−1176a2−1504a3 +3320a4 = g4(a) .

The derivatives of g4(a) are g′4(a) = 526− 2352a− 4512a2 + 13280a3 and g′′4(a) =
−2352−9024a+39840a2. Since g′′4(a) is convex upwards with g′′4(0) = −2352 and
g′′4
(

1
2

)
= 3096, there exists a unique real number a0 with 0 < a0 < 1

2 such that g′′4(a) <

0 for 0 < a < a0 and g′′4(a) > 0 for a0 < a < 1
2 . Hence, g′4(a) is strictly decreasing

for 0 < a < a0 and strictly increasing for a0 < a < 1
2 . From g′4(0) = 526 and g′4

(
1
2

)
=

−118, there exists a unique real number a1 with 0 < a1 < 1
2 such that g′4(a) > 0 for

0 < a < a1 and g′4(a) < 0 for a1 < a < 1
2 . Hence, g4(a) is strictly increasing for

0 < a < a1 and strictly decreasing for a1 < a < 1
2 . From g4(0) = 21 and g4

(1
2

)
= 19

2 ,
we have g4(a) > 0 for 0 < a < 1

2 . Since g3(a) is strictly increasing for 0 < a < 1
2 and

g3(0) = −18 and g3
( 1

2

)
= 31

4 , there exists a unique real number a2 with 0 < a2 < 1
2

such that g3(a) < 0 for 0 < a < a2 and g3(a) > 0 for a2 < a < 1
2 . Hence, g2(a) is

strictly decreasing for 0 < a < a2 and strictly increasing for a2 < a < 1
2 . By g2(0) =

+ and g2
(

1
2

)
=−1+2ln2∼= 0.386294 and g2

(
1
4

)
=− 283

150 + ln 16
3
∼=−0.21269, there

exists only two real numbers a3 and a4 with 0 < a3 < 1
4 < a4 < 1

2 such that g2(a) > 0
for 0 < a < a3,a4 < a < 1

2 and g2(a) < 0 for a3 < a < a4 . Hence, g′1(a) is strictly
increasing for 0 < a < a3,a4 < a < 1

2 and strictly decreasing for a3 < a < a4 . From
g′1(0) = 0 and g′1

(
1
2

)
= − 5

4 + 7ln2
4

∼= −0.0369924, there exists a unique real number
a5 with 0 < a5 < 1

2 such that g′1(a) > 0 for 0 < a < a5 and g′1(a) < 0 for a5 < a < 1
2 .

Hence, g1(a) is strictly increasing for 0 < a < a5 and strictly decreasing for a5 < a <
1
2 . By g1(0) = g1

(
1
2

)
= 0, we obtain g1(a) > 0 for 0 < a < 1

2 . �
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LEMMA 3. For any −1 � x � 1 , we have

(1+ x)1−x � 1
4
(1+ x)2(2− x2)(2−2x+ x2) .

Lemma 3 is proved by Miyagi and Nishizawa [11].

LEMMA 4. For any 0 < x < 1
2 , we have 2±x < 1± x ln2+ 271

1000x2 .

Proof. First, we show that 2x < 1+ x ln2+ 271
1000x2 . We set

h1(x) = ln

(
1+ x ln2+

271
1000

x2
)
− x ln2

and the derivative of h1(x) is

h′1(x) =
xh2(x)

1000+1000x ln2+271x2 ,

where h2(x) = 542−1000(ln2)2−271x ln2. Since h2(x) is strictly decreasing for 0 <
x < 1

2 and h2(0) = 542−1000(ln2)2 ∼= 61.547 and h2
(

1
2

)
= 1

2 (1084−2000(ln2)2 −
271ln2) ∼= −32.3745, there exists a unique real number x1 with 0 < x1 < 1

2 such
that h2(x) > 0 for 0 < x < x1 and h2(x) < 0 for x1 < x < 1

2 . Thus, h1(x) is strictly
increasing for 0 < x < x1 and strictly decreasing for x1 < x < 1

2 . From h1(0) = 0 and

h1
( 1

2

)
= ln

( 4271
4000 + ln2

2

)− 1
2 ln2 = ln 4271+2000 ln2

4000
√

2
> ln

4271+ 2000·6931
10000

4000·141422
100000

= ln 70715
70711 > 0, we

obtain h1(x) > 0 for 0 < x < 1
2 . Next, we show that 2−x < 1− x ln2+ 271

1000x2 . We set

h3(x) = ln

(
1− x ln2+

271
1000

x2
)

+ x ln2

and the derivative of h3(x) is

h′3(x) =
x(542−1000(ln2)2 +271x ln2)

1000−1000x ln2+271x2 .

From 542−1000(ln2)2+271x ln2 > 542−1000(ln2)2 ∼= 61.547 and 1000−1000x ln2
+271x2 > 1000−10001

2 ln2∼= 653.426, h3(x) is strictly increasing for 0 < x < 1
2 . By

h3(0) = 0, we obtain h3(x) > 0 for 0 < x < 1
2 . �

LEMMA 5. For any 0 < a < 1
2 , we have 2

(
a− 1

2

)−2
(
a− 1

2

)2 − ln2 > lna and

−2
(
a− 1

2

)−2
(
a− 1

2

)2− ln2 < ln(1−a).

Proof. We set

j1(a) = 2

(
a− 1

2

)
−2

(
a− 1

2

)2

− ln2− lna
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and the derivative of j1(a) is j′1(a) = −(1−2a)2
a < 0 for 0 < a < 1

2 . Since j1(a) is
strictly decreasing for 0 < a < 1

2 and j1( 1
2 ) = 0, we obtain j1(a) > 0 for 0 < a < 1

2 .
We set

j2(a) = −2

(
a− 1

2

)
−2

(
a− 1

2

)2

− ln2− ln(1−a)

and the derivative of j2(a) is j′2(a) = (1−2a)2
1−a > 0 for 0 < a < 1

2 . Since j2(a) is strictly

increasing for 0 < a < 1
2 and j2( 1

2 ) = 0, we obtain j2(a) < 0 for 0 < a < 1
2 . �

LEMMA 6. For any 0 < a < 1
2 , we have

4−4a−4(1−a)(1−2a) ln2+(1−2a)2(ln2)2 > a−2a .

Proof. We set

k1(a) = ln
(
4−4a−4(1−a)(1−2a) ln2+(1−2a)2(ln2)2)+2a lna

and the derivative of k1(a) is

k′1(a) = 2+
−4+4(3−4a) ln2−4(1−2a)(ln2)2

4−4a−4(1−a)(1−2a) ln2+(1−2a)2(ln2)2 +2lna .

By Lemma 5, we have

k′1(a) < 2+
−4+4(3−4a) ln2−4(1−2a)(ln2)2

4−4a−4(1−a)(1−2a) ln2+(1−2a)2(ln2)2

+2

(
2

(
a− 1

2

)
−2

(
a− 1

2

)2

− ln2

)

=
−(1−2a)k2(a)

k3(a)
,

where k2(a) = 8− 4a− 4(2− a)(1− 2a) ln2− (3 + 8a− 4a2)(ln2)2 + 2(ln2)3 and
k3(a) = 4 − 4a− 4(1− a)(1 − 2a) ln2 + (1 − 2a)2(ln2)2 . Since the derivatives of
k2(a) are k′2(a) = −4 + 4(1− 2a) ln2 + 8(2− a) ln2− 8(1− a)(ln2)2 and k′′2(a) =
−16ln2 + 8(ln2)2 ∼= −7.24673, k′2(a) is strictly decreasing for 0 < a < 1

2 . From
k′2(

1
2) = −4+12ln2−4(ln2)2 ∼= 2.39595, k2(a) is strictly increasing for 0 < a < 1

2 .
By k2(0) = 8−8ln2−3(ln2)2 +2(ln2)3 ∼= 1.67951, we have k2(a) > 0 for 0 < a < 1

2 .
Since we have k3(a) > 4− 4a− 4(1− a)(1− 2a) ln2 = 4(1− a)(1− ln2+ 2a ln2) >
4(1−a)(1− ln2) ∼= 4(1−a)×0.306853> 0, we obtain k′1(a) < 0 for 0 < a < 1

2 and
k1(a) is strictly decreasing for 0 < a < 1

2 . From k1( 1
2 ) = 0, we have k1(a) > 0 for

0 < a < 1
2 . �

LEMMA 7. For any 0 < a < 1
2 , we have

1−a2(4−4a−4(1−a)(1−2a) ln2+(1−2a)2(ln2)2)> (1−a)2a .
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Proof. We set

l1(a) = 1−a2(4−4a−4(1−a)(1−2a) ln2+(1−2a)2(ln2)2)− (1−a)2a .

By Lemma 1 and 693
1000 < ln2 < 694

1000 , we have

l1(a) > 1−a2

(
4−4a−4(1−a)(1−2a)

693
1000

+(1−2a)2
(

694
1000

)2
)

− (1−a)(1+a−a2−2a3)

=
3a2(1−2a)(24197−67394a)

250000

>
3a2(1−2a)

(
24197−67394

(
35
100

))
250000

=
18273a2(1−2a)

250000
> 0

for 0 < a < 35
100 . We set

l2(a) = ln
(
1−a2(4−4a−4(1−a)(1−2a) ln2+(1−2a)2(ln2)2))−2a ln(1−a)

and by Lemma 5, the derivative of l2(a) is

l′2(a) =
2a

1−a
+

−8a+12a2+4a(2−9a+8a2) ln2−2a(1−2a)(1−4a)(ln2)2

1−4a2 +4a3 +4(1−a)(1−2a)a2ln2− (1−2a)2a2(ln2)2

−2ln(1−a)

<
2a

1−a
+

−8a+12a2+4a(2−9a+8a2) ln2−2a(1−2a)(1−4a)(ln2)2

1−4a2 +4a3 +4(1−a)(1−2a)a2ln2− (1−2a)2a2(ln2)2

−2

(
−2

(
a− 1

2

)
−2

(
a− 1

2

)2

− ln2

)

=
(1−2a)l3(a)

(1−a)(1−4a2 +4a3 +4(1−a)(1−2a)a2ln2− (1−2a)2a2(ln2)2)
,

where

l3(a) =−1−7a+14a2−4a3−12a4 +8a5

+2(1−a)(1+6a−12a2+6a3 +8a4−8a5) ln2

−a(2−19a+29a2−10a3−12a4 +8a5)(ln2)2

−2(1−a)a2(1−2a)(ln2)3 .
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From 1+6a−12a2+6a3+8a4−8a5 > 0 and 2−19a+29a2−10a3−12a4+8a5 < 0
for 35

100 < a < 1
2 , we have

l3(a) < −1−7a+14a2−4a3−12a4 +8a5

+2(1−a)(1+6a−12a2+6a3 +8a4−8a5)
(

694
1000

)

−a(2−19a+29a2−10a3−12a4 +8a5)
(

694
1000

)2

−2(1−a)a2(1−2a)
(

693
1000

)3

=
l4(a)

500000000
,

where

l4(a) = 194000000−511636000a−1249270557a2+4506715671a3−2869445114a4

−4214184000a5+3625456000a6.

l4(a) < 1000000
(
194−511a−1249a2+4510a3−2869a4−4214a5 +3626a6

)
< 1000000

(
194−511a−1249a2+4510a3−2869a4−4214a5 +3626a5

(
1
2

))

= 1000000
(
194−511a−1249a2+4510a3−2869a4−2401a5

)
= 1000000l5(a) .

The derivative of l5(a) is

l′5(a) = −511−2498a+13530a2−11476a3−12005a4

< −511−2498a+13530a2−11476a2
(

35
100

)
−12005a4

= −511−2498a+
47567

5
a2−12005a4 = l6(a)

The derivative of l6(a) is

l′6(a) = −2498+
95134

5
a−48020a3

> −2498+
95134

5
a−48020

(
1
2

)
a2

= −2498+
95134

5
a−24010a2 = l7(a) .
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Since l7(a) is upward convex and l7(a) > min
{

l7( 35
100) = 244031

200 , l7( 1
2 ) = 10129

10

}
, we

have l7(a) > 0 for 35
100 < a < 1

2 and l6(a) is strictly increasing for 35
100 < a < 1

2 . From
l6( 1

2 ) = − 10557
80 , l6(a) < 0 for 35

100 < a < 1
2 and l5(a) is strictly decreasing for 35

100 <

a < 1
2 . By l5( 35

100 ) = − 478987
3200000 < 0, we have li(a) < 0(i = 3,4,5) for 35

100 < a < 1
2 .

From 1−4a2 +4a3 +4(1−a)(1−2a)a2 ln2− (1−2a)2a2(ln2)2 > 0 for 0 < a < 1
2 ,

l′2(a) < 0 for 35
100 < a < 1

2 . Since l2(a) is strictly decreasing for 35
100 < a < 1

2 and
l2( 1

2 ) = 0, we obtain l2(a) > 0 for 35
100 < a < 1

2 . �

3. Proofs of Theorem 1

We may assume 0 � a � 1
2 � b � 1. If (a,b) = (0,1),

( 1
2 , 1

2

)
, then we have

a2b + b2a = 1. Therefore, we consider the case of 0 < a < 1
2 < b < 1 and we set

F(a) = a2(1−a) + (1−a)2a−1.

First proof of Theorem 1. The derivative of F(a) is

F ′(a) = a2(1−a)
(

2(1−a)
a

−2lna

)
+(1−a)2a

(
2ln(1−a)− 2a

1−a

)
.

Since we have F(0) = F
( 1

2

)
= 0, if F(a) > 0 for some a with 0 < a < 1

2 , then there
exists at least one real number c with 0 < c < 1

2 such that F ′(c) = 0 and F(c) > 0.
Hence, we have

c2(1−c)
(

1− c
c

− lnc

)
= (1− c)2c

(
c

1− c
− ln(1− c)

)

and

c2(1−c) + (1− c)2c−1 > 0 .

We multiply the above inequality by 1−c
c − lnc > 0 to get

c2(1−c)
(

1− c
c

− lnc

)
+(1− c)2c

(
1− c

c
− lnc

)
−
(

1− c
c

− lnc

)
> 0 .

From

c2(1−c)
(

1− c
c

− lnc

)
= (1− c)2c

(
c

1− c
− ln(1− c)

)
,

we have

(1− c)2c
(

c
1− c

− ln(1− c)
)

+(1− c)2c
(

1− c
c

− lnc

)
>

1− c
c

− lnc ,

(1− c)2c
(

c2 +(1− c)2

c(1− c)
− ln(c(1− c))

)
>

1− c
c

− lnc .
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Thus, we obtain

(1− c)2c
(
c2 +(1− c)2− c(1− c)ln(c(1− c))

)
> (1− c)2− c(1− c)lnc

for some c with 0 < c < 1
2 . Also, by Lemma 2, the above inequality is not holds for

any 0 < c < 1
2 . From the contradiction, we can get F(a) < 0 for 0 < a < 1

2 and this
completes the proof of Theorem 1. �

Second proof of Theorem 1. We consider the two case (i) 0< a < 1
4 and 3

4 < b< 1,
(ii) 1

4 � a < 1
2 < b � 3

4 . First, we consider the case (i). By Bernoulli inequality, we have
(1−a)2a < 1−2a2 for 0 < a < 1

4 . Hence, we can get F(a) < a2(1−a)−2a2 = a2(a−2a−
2) . Since a−2a is strictly increasing for 0 < a < 1

4 and a−2a <
(

1
4

)−2(1/4) = 2, we have
a−2a− 2 � 0 for 0 < a � 1

4 and therefore, we obtain F(a) < 0 for 0 < a < 1
4 . Next,

we consider the case (ii). We set a = 1−x
2 and b = 1+x

2 , then we can get 0 < x � 1
2 and

the following inequality by Lemmas 3 and 4.

F(a) =
(

1− x
2

)1+x

+
(

1+ x
2

)1−x

−1

=
1
2

(
(1− x)1+x 2−x +(1+ x)1−x 2x

)
−1

� 1
2

(
1
4
(1− x)2(2− x2)(2+2x+ x2)

(
1− x ln2+

271
1000

x2
)

+
1
4
(1+ x)2(2− x2)(2−2x+ x2)

(
1+ x ln2+

271
1000

x2
))

−1

=

(
2− x2

)(
2000−458x2+729x4 +271x6 +2000x2 ln2

)−4000

4000
= G(x) .

The derivative of G(x) is G′(x) = x
2000H(x) , where H(x) =−2916+3832x2−561x4−

1084x6 +4000ln2−4000x2 ln2. The derivative of H(x) is

H ′(x) = 4x(1916−561x2−1626x4−2000ln2)

� 4x

(
1916−561

(
1
2

)2

−1626

(
1
2

)4

−2000ln2

)

= 4x

(
13393

8
−2000ln2

)
∼= 4x×287.831 > 0 .

Since H(x) is strictly increasing for 0 < x < 1
2 and H(0) = −2916 + 4000ln2 ∼=

−143.411 and H
(

1
2

)
= −2010+3000ln2 ∼= 69.4415, there exists a unique real num-

ber x1 with 0 < x1 < 1
2 such that H(x) < 0 for 0 < x < x1 and H(x) > 0 for x1 < x < 1

2 .
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Therefore, G(x) is strictly decreasing for 0 < x < x1 and strictly increasing for x1 <

x < 1
2 . From G(0) = 0 and G

( 1
2

)
= −156987+224000 ln2

1024000 <
−156987+224000 694

1000
1024000 = −1531

1024000 ,
we obtain G(x) < 0 for 0 < x � 1

2 and F(a) < 0 for 1
4 � a < 1

2 . Thus, this completes
the proof of Theorem 1. �

Third proof of Theorem 1. From Lemmas 6 and 7, we have F(a) < 0 for 0 < a <
1
2 , immediately. �
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