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COMPLETE CONVERGENCE FOR THE MAXIMUM

OF WEIGHTED SUMS OF m–WIDELY ORTHANT

DEPENDENT RANDOM VARIABLES SEQUENCES

MINGZHU SONG ∗ AND YONGFENG WU

(Communicated by Z. S. Szewczak)

Abstract. In this paper, we investigate complete convergence for the maximum of weighted sums
of m -widely orthant dependent (m -WOD) random variables sequences under general condi-
tions. The m -WOD random variable sequences represent a broad class of dependency structures,
so our results extend and improve the corresponding ones in the literature.

1. Introduction

Independent random variables are often impractical in many probabilistic and sta-
tistical models. To address this, scholars have introduced various types of dependent
random variables. For example, negatively associated (NA, for short) random variables,
negatively orthant dependent (NOD, for short) random variables, and extend negatively
dependent (END, for short) random variables and so on. Among these, widely orthant
dependent (WOD, for short) random variables represent one of the most general forms
of dependence. They were first introduced by Wang et al. [12], defined as follows:

DEFINITION 1.1. The random variables {Xn,n � 1} are called to be widely upper
orthant dependent (WUOD, for short) random variables, if there exists a finite sequence
of real numbers {gU(n),n � 1} satisfying for each n � 1, x1,x2, . . . ,xn ∈ R ,

P(X1 > x1,X2 > x2, . . . ,Xn > xn) � gU(n)
n


i=1

P(Xi > xi). (1.1)

The random variables {Xn,n � 1} are called to be widely lower orthant dependent
(WLOD, for short) random variables, if there exists a finite sequence of real numbers
{gL(n),n � 1} satisfying for each n � 1, x1,x2, . . . ,xn ∈ R ,

P(X1 � x1,X2 � x2, . . . ,Xn � xn) � gL(n)
n


i=1

P(Xi � xi). (1.2)
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The {Xn,n � 1} are called to be WOD random variables, if {Xn,n � 1} are both
WUOD and WLOD random variables. Let g(n) = max{gU(n),gL(n)} , n � 1 be called
dominated coefficients.

When gU(n) = gL(n) = 1, {Xn,n � 1} are NOD random variables, which were
introduced by Ebrahimi and Ghosh [3]; when gU(n) = gL(n) = M � 1, {Xn,n � 1} are
END random variables which were introduced by Liu [7]. END random variables in-
clude NA and positive random variables. Therefore, WOD random variables represent
a broad structure of dependent random variables.

Since the concept of WOD random variables was introduced, many scholars have
devoted efforts to studying their limit properties and applications, achieving significant
results. For example, Wang et al. [13] obtained the precise large deviations; Qiu et
al. [11] established the complete convergence and moment complete convergence of
the weighted sums; Liu et al. [8] derived the moment complete convergence; Wang
et al. [15] and Chen et al. [1] studied the asymptotics of ruin probabilities in renewal
risk models based on WOD sequences; Shen [9] proved the Bernstein-type probability
inequality; Wang et al. [14] investigated complete convergence and its applications
in nonparametric regression models; Ding et al. [2] provided results on the complete
convergence of weighted sums, Song et al. [10] analyzed the convergence of moving
average processes generated by WOD random variables, and so on.

Inspired by m-END and WOD dependence structures, Fang et al. [4] introduced
the concept of m-WOD random variables, defined as follows:

DEFINITION 1.2. For fix integer m � 1, the random variables {Xn,n � 1} is
called to be m-WOD if for any n � 2, i1, i2, . . . , in ∈ N

+, such that |ik− i j|� m, for all
1 � k �= j � n ,we get the Xi1 ,Xi2 , . . . ,Xin are WOD random variables.

From the definition, we see that m-WOD random variables represent a broader
class of dependence than WOD random variables. Therefore, investigating the com-
plete convergence of m-WOD random variables is very interesting.

Complete convergence plays a fundamental role in probability theory and mathe-
matical statistics. This concept was first introduced by Hsu and Robbins [5].

A sequence {Xn,n � 1} of random variables is said to converge completely to a
constant  , if




n=1

P(|Xn− | > ) < , ∀ > 0.

In view of the Borel-Cantelli lemma, the complete convergence implies that Xn →
 almost surely. Therefore, complete convergence is a very important tool in establish-
ing almost sure convergence for sequences of random variables, as well as for weighted
sums of random variables.

Recently, Wu [17] obtained the complete convergence for the maximumof weighted
sums of END random variables.

THEOREM A. Let {Xn,n � 1} be a sequence of END and identically distributed
random variables with EX1 = 0 , and let {an j,1 � j � n,n � 1} be an array of real

numbers satisfying
n

j=1

a2
n j = O(n−) and max

1� j�n
|an j| = O(n−) . For some p � 2 ,
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1/p �  < 1 , if E|X1|p <  , then




n=1

n p−2P( max
1�k�n

|
k


j=1

an jXj| > ) < , ∀ > 0.

In this paper, we aims to investigate the complete convergence for the maximum
of weighted sums of m-WOD random variables, which extend and improve Theorem
A.

DEFINITION 1.3. The real valued function l , positive and measurable on (0,)
is said to be slowly varying at infinity if for each  > 0,

lim
x→

l(x)
l(x)

= 1.

DEFINITION 1.4. The random variables {Xn,n � 1} are called be stochastically
dominated by a random variable X, if for any x > 0,

P(|Xn| > x) � CP(|X | > x), n � 1,

where the constant C > 0.
In this paper, I(A) denotes the indicator function of an event A, the symbol C rep-

resents a positive constant, which can take different values in different places, even in
the same formula. Let logn = lnmax{x,e} , X+ = XI (X > 0) , g(n)= max{gU(n),gL(n)}.

2. Some Lemmas and main results

LEMMA 2.1. (Fang [4]) The sequence {Xn,n � 1} are m-WOD random vari-
ables, if the function sequences { fn,n � 1} are non-decreasing (non-increasing), then
random variables { fn(Xn),n � 1} are also m-WOD random variables with the same
dominating coefficients.

LEMMA 2.2. (Fang [4]) The sequence {Xn,n � 1} are m-WOD random vari-
ables with dominating coefficients g(n) . For every j � 1 , the EXj = 0 and E|Xj|p < .
Then, there exist positive constants C1 = C(p,m) , C2 = C(p,m) depending only on p
and m, such that

E(|
n


j=1

Xj|p) � [C1(p,m)+C2(p,m)g(n)]
n


j=1

E|Xj|p, 1 < p � 2,

E(|
n


j=1

Xj|p) � C1(p,m)
n


j=1

E|Xj|p +C2(p,m)g(n)(
n


j=1

E|Xj|2)p/2, p > 2.

LEMMA 2.3. (Fang [4]) The sequence {Xn,n � 1} are m-WOD random vari-
ables with dominating coefficients g(n) . For every j � 1 , the EXj = 0 and E|Xj|p < .
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Then, there exist positive constants C1 = C(p,m) , C2 = C(p,m) depending only on p
and m, such that

E( max
1�k�n

|
k


j=1

Xj|p) � [C1(p,m)+C2(p,m)g(n)] logp n
n


j=1

E|Xj|p, 1 < p � 2,

E( max
1�k�n

|
k


j=1

Xi|p) � C1(p,m) logp n
n


j=1

E|Xj|p +C2(p,m)g(n) logp n(
n


j=1

E|Xj|2)p/2,

p > 2.

LEMMA 2.4. (Wu [16]) Let {Xn,n � 1} be stochastically dominated by X, a >
0 , b > 0 are constant, then there exist positive constant C1 , C2 such that following
inequalities are established:

E|Xn|aI(|Xn| � b) � C1[E|X |aI(|X | � b)+baP(|X | > b)],
E|Xn|aI(|Xn| > b) � C2E|X |aI(|X | > b).

LEMMA 2.5. (Zhou [18]) If l is slowly varying at infinity, then for positive integer
n, we have

(1)
n


k=1
ksl(k) � Cns+1l(n) , for s > −1;

(2)



k=n
ksl(k) � Cns+1l(n) , for s < −1.

Now, we present the main results, the proofs for them will be postponed in the
next section.

THEOREM 2.1. Let {Xn,n � 1} be a sequence of m-WOD random variables
stochastically dominated by a random variable X with dominating coefficients g(n) =
O(n ) ,  � 0 , n � 1 . l(n) is a slowly varying function. Let{an j,1 � j � n,n � 1} be

an array of real numbers satisfying
n

j=1

a2
n j = O(n−) and max

1� j�n
|an j| = O(n−) . For

some p > 1 , 1/p �  < 1 , if E|X |pl(X 1
 ) <  , then




n=1

n p−2l(n)P( max
1�k�n

|
k


j=1

an j(Xj −EXj)| > ) < , ∀ > 0. (2.1)

THEOREM 2.2. Let {Xn,n � 1} be a sequence of m-WOD random variables
stochastically dominated by a random variable X with dominating coefficients g(n) =
O(n ) ,  � 0 , n � 1 . l(n) is a slowly varying function. Let{an j,1 � j � n,n � 1} be

an array of real numbers satisfying
n

j=1

a2
n j = O(n−) and E|X |pl(X 1

 ) < . Assume

that one of the following conditions holds:
(A1) let p > 2 and 1

p �  < 2
p ,

(A2) let 1 � p � 2 and 0 <  < 1 , 0 <  < 1− .
Then (2.1) holds.
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THEOREM 2.3. Let {Xn,n � 1} be a sequence of m-WOD random variables
stochastically dominated by a random variable X with dominating coefficients g(n) =
O(n ) ,  � 0 , n � 1 . l(n) is a slowly varying function. Let {an j,1 � j � n,n � 1} be
an array of real numbers satisfying max

1� j�n
|an j| = O(n−) . For some p > 1 ,  � 1 , if

E|X |pl(X 1
 ) <  , then (2.1) holds.

Taking  p = 1, l(n) = 1 in Theorem 2.1, we have

COROLLARY 2.1. Let {Xn,n � 1} be a sequence of m-WOD random variables
stochastically dominated by a random variable X with dominating coefficients g(n) =
O(n ) ,  � 0 , n � 1 . Let{an j,1 � j � n,n � 1} be an array of real numbers satisfying
n

j=1

a2
n j = O(n−) and max

1� j�n
|an j| = O(n−) , 0 <  < 1 . If E|X | 1

 <  , then

n


j=1

an j(Xj −EXj) → 0, a.s., as n → .

Taking  p = 2, l(n) = 1 in Theorem 2.1 and combining with the Borel-Cantelli
lemma, we have.

COROLLARY 2.2. Let {Xn,n � 1} be a sequence of m-WOD random variables
stochastically dominated by a random variable X with dominating coefficients g(n) =
O(n ) ,  � 0 , n � 1 . l(n) is a slowly varying function. Let {an j,1 � j � n,n � 1}
be an array of real numbers satisfying

n

j=1

a2
n j = O(n−) and max

1� j�n
|an j| = O(n−) ,

0 <  < 1 . If E|X | 2
 <  , then




n=1

P( max
1�k�n

|
k


j=1

an j(Xj −EXj)| > ) < , ∀ > 0.

and
n


j=1

an j(Xj −EXj) → 0, a.s., as n → .

REMARK 2.1. The class of m-WOD random variables encompass WOD, m-NA,
m-NOD, m-END, among others. Thus, the results presented in this paper extend and
improve upon existing results.

REMARK 2.2. Since stochastic domination is a weaker condition than identical
distribution, the results in this paper also hold under the condition of identical distribu-
tion.

REMARK 2.3. Taking g(n) = M , l(n) = 1, p > 2 in Theorems 2.1, we obtain
the result of Theorem A in Wu [17]. Compared with Theorem 2.1 of the paper, we re-
move the condition max

1� j�n
|an j|= O(n−) in Theorems 2.2, and eliminate the condition

n

j=1

a2
n j = O(n−) in Theorems 2.3. Therefore, our results improve Theorem A.
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REMARK 2.4. By replacing the real numbers {an j,1 � j � n,n � 1} with a ran-
dom sequence, this paper’s conclusions remain hold.

3. Proof of Theorems

Proof of Theorem 2.1 . For a fixed n � 1, for 1 � j � n , denote

Yn j = −nI(Xj < −n)+XjI(|Xj| � n)+nI(Xj > n),
Zn j = Xj −Yn j = (Xj +n)I(Xj < −n)+ (Xj −n)I(Xj > n).

Then




n=1

n p−2l(n)P( max
1�k�n

|
k


j=1

an j(Xj −EXj)| > )

�



n=1

n p−2l(n)P( max
1�k�n

|
k


j=1

an j(Yn j −EYn j)| > )+



n=1

n p−2l(n)P(
n⋃

j=1

{|Xj| > n})

�



n=1

n p−2l(n)P( max
1�k�n

|
k


j=1

an j(Yn j −EYn j)| > )+



n=1

n p−2l(n)
n


j=1

P(|Xj| > n)

=: I1 + I2.

Thus, to prove (2.1), we only need to show that I1 <  and I2 <  .
By Lemmas 2.4–2.5 and the condition  p−1 > −1, we have

I2 � C



n=1

n p−1l(n)P(|X | > n)

= C



n=1

n p−1l(n)



k=n

P(k < |X | � (k+1))

= C



k=1

P(k < |X | � (k+1))
k


n=1

n p−1l(n)

= C



k=1

k pl(k)P(k < |X | � (k+1)) � CE|X |pl(|X | 1
 ) < . (3.1)

By Lemma 2.1, for each n � 1,{an j(Yn j −EYn j)} are also m-WOD random vari-
ables with the same dominating coefficients.

For I1 , by Lemma 2.3 and Markov’s inequality, we have that for any v > max{2, p} ,

I1 � C



n=1

n p−2l(n)E{ max
1�k�n

|
k


j=1

an j(Yn j −EYn j)|v}

� C



n=1

n p−2l(n)(logn)v{
n


j=1

E|an jYn j|v +g(n)(
n


j=1

E|an jYn j|2) v
2 }

=: I11 + I12. (3.2)
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For I11 , combining Lemma 2.4 with the conditions
n

j=1

a2
n j = O(n−) and max

1� j�n
|an j|=

O(n−) , where  < 1, we obtain

I11 � C



n=1

n p−2l(n)(logn)v
n


j=1

|an j|v[E|Xj|vI(|Xj| � n)+nvP(|Xj| > n)]

� C



n=1

n p−2l(n)(logn)v[E|X |vI(|X | � n)+nvP(|X | > n)]
n


j=1

|an j|v

� C



n=1

n p−2l(n)(logn)v[E|X |vI(|X | � n)+nvP(|X | > n)]

× ( max
1� j�n

|an j|)v−2
n


j=1

|an j|2

� C



n=1

n p−2−av+al(n)(logn)v[E|X |pn(v−p)I(X � n)

+E|X |pn(v−p)I(|X | > n)]

� C



n=1

n−1−(1−a)l(n)(logn)v < . (3.3)

For I12 , we have

I12 �



n=1

n p−2l(n)(logn)vg(n){
n


j=1

|an j|2[E|Xj|2I(|Xj| � n)+n2P(|Xj| > n)]} v
2

� C



n=1

n p−2− av
2 + l(n)(logn)v[EX2I(|X | � n)+n2P(|X | > n)]

v
2 . (3.4)

To prove I12 <  , we consider the following two cases:

Case 1: When p � 2. From the condition E|X |pl(X 1
 )< , we obtain E|X |2 < ,

taking v > max{p, 2( p−1+ )
 } , then

I12 � C



n=1

n p−2− av
2 + l(n)(logn)v(E|X |2) v

2 < . (3.5)

Case 2: When 1 < p < 2. From the condition E|X |pl(X 1
 ) <  , taking v >

max{2, 2( p−1+ )
(p−1) } , we have

I12 � C



n=1

n p−2− av
2 + l(n)(logn)vn

va(2−p)
2 (E|X |p) v

2

� C



n=1

n p−2++ av
2 − apv

2 l(n)(logn)v(E|X |p) v
2 < . (3.6)
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From (3.1)–(3.6), the proof Theorem 2.1 is completed. �

Proof of Theorem 2.2 . Case 1: When condition (A1) holds, following the proof
of Theorem 2.1, it suffices to prove I11 < .

Since p > 2 and 1
p �  < 2

p , we take p < v < 2
a . By the Jensen’s inequality for

any v > 2, we get
n

j=1

|an j|v � (
n

j=1

a2
n j)

v
2 � n

−v
2 .

I11 � C



n=1

n p−2l(n)(logn)v[E|X |vI(|X | � n)+nvP(|X | > n)]
n


j=1

|an j|v

� C



n=1

n p−2l(n)(logn)v[E|X |vI(|X | � n)+nvP(|X | > n)](
n


j=1

|an j|2) v
2

� C



n=1

n−1− 2−av
2 l(n)(logn)v < . (3.7)

Case 2: When condition (A2) holds, following the proof of Theorem 2.1, it suf-
fices to prove I1 < . By Lemma 2.3 and Markov’s inequalities, taking max{ 2

1− , p}
< v < 2, when 1 � p < 2 and v = 2, when p = 2.

I1 � C



n=1

n p−2l(n)E{ max
1�k�n

|
k


j=1

an j(Yn j −EYn j)|v}

� C



n=1

n p−2l(n)(logn)v(1+g(n))
n


j=1

E|an jYn j|v

� C



n=1

n p−2+ l(n)(logn)v[E|X |vI(|X | � n)+nvP(|X |> n)]
n


j=1

|an j|v. (3.8)

By Hölder’s inequality, we have

n


j=1

|an j|v � (
n


j=1

(|an j|v) 2
v )

v
2 (

n


j=1

1)1− v
2 � n

−av−v
2 +1.

For parameters satisfying 1 � p � 2 and 0 <  < 1−  , we have

I1 � C



n=1

n p−1++−av−v
2 l(n)(logn)v[E|X |vI(|X | � n)+nvP(|X | > n)]

� C



n=1

n p−1++−av−v
2 +av−apl(n)(logn)v

� C



n=1

n−1++ av−v
2 l(n)(logn)v < . (3.9)

From (3.7)–(3.9), the proof Theorem 2.2 is completed. �
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Proof of Theorem 2.3 . Since E|X |pl(X 1
 ) < , p > 1, it follows that E|X | <  .

Consequently, there exists a positive integer N such that E|X |I(|X | > N) < 
20 . For

n > N, j � 1, let

X (n,1)
j = −NI(Xj < −N)+XjI(|Xj| � N)+NI(Xj > N),

X (n,2)
j = (Xj −N)I(N < Xj � n)+ (n −N)I(Xj > n),

X (n,3)
j = (Xj +N)I(−n < Xj � −N)+ (−n +N)I(Xj < −n),

X (n,4)
j = (Xj −n)I(Xj > n),

X (n,5)
j = (Xj +n)I(Xj < −n).

then Xj =
5

l=1

X (n,l)
j . By Lemma 2.4 and max

1� j�n
|an j| = O(n−) ,  � 1, we have

max
1�k�n

|
k


j=1

Ean jX
(n,2)
j | �

n


j=1

|an j|E|X (n,2)
j |

�
n


j=1

|an j|E|Xj|I(|Xj| > N)

� max
1� j�n

|an j|
n


j=1

E|X |I(|X |> N)

� n−+1E|X |I(|X |> N) <

20

. (3.10)

Similar to (3.10), we also obtain

max
1�k�n

|
k


j=1

Ean jX
(n,l)
j | �

n


j=1

|an j|E|X (n,l)
j | < 

20
, l = 3,4,5.

For (2.1), we have




n=1

n p−2l(n)P( max
1�k�n

|
k


j=1

an j(Xj −EXj)| > )

�



n=1

n p−2l(n)
5


l=1

P( max
1�k�n

|
k


j=1

an j(X
(n,l)
j −EX (n,l)

j )| > 
5
)

�



n=1

n p−2l(n)P( max
1�k�n

|
k


j=1

an j(X
(n,1)
j −EX (n,1)

j )| > 
5
)

+



n=1

n p−2l(n)
5


l=2

P(
n


j=1

|an jX
(n,l)
j | > 3

20
)
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�



n=1

n p−2l(n)P( max
1�k�n

|
k


j=1

an j(X
(n,1)
j −EX (n,1)

j )| > 
5
)

+
3


l=2




n=1

n p−2l(n)P(
n


j=1

|an j(X
(n,l)
j −EX (n,l)

j )| > 
10

)

+
5


l=4




n=1

n p−2l(n)P(
n


j=1

|an jX
(n,l)
j | > 3

20
)

=: J1 + J2 + J3 + J4 + J5.

Thus, to prove (2.1), it suffices to show that Ji <  , i = 1,2,3,4,5.

For J1 , noting that{an jX
(n,l)
j , j � 1} is a sequence of m-WOD with dominating

coefficients g(n) for n � 1. Applying Markov’s inequality and Lemmas 2.3–2.4 with
v > max{p,2,  p−1+

−1/2 }, we have

J1 � C



n=1

n p−2l(n)E{ max
1�k�n

|
k


j=1

an j(X
(n,1)
j −EX (n,1)

j )|v}

� C



n=1

n p−2l(n)(logn)v{
n


j=1

E|an jX
(n,1)
j |v +g(n)(

n


j=1

E|an jX
(n,1)
j |2) v

2 }

=: J11 + J12. (3.11)

For J11 , by Lemma 2.4 and max
1� j�n

|an j| = O(n−) , we have

J11 � C



n=1

n p−2l(n)(logn)v
n


j=1

|an j|v[E|Xj|vI(|Xj| � N)+NvP(|Xj| > N)]

� C



n=1

n p−2l(n)(logn)v
n


j=1

|an j|v

� C



n=1

n p−2l(n)(logn)v( max
1� j�n

|an j|)v
n


j=1

1

� C



n=1

n−(v−p)−1l(n)(logn)v < . (3.12)

For J12 , by Lemma 2.4, and max
1� j�n

|an j| = O(n−) , we get

J12 � C



n=1

n p−2l(n)(logn)vg(n){
n


j=1

|an j|2[E|Xj|2I(|Xj| � N)+N2P(|Xj| > N)]} v
2

� C



n=1

n p−2+ l(n)(logn)v(
n


j=1

|an j|2) v
2



COMPLETE CONVERGENCE FOR THE MAXIMUM OF WEIGHTED SUMS 931

� C



n=1

n p−2+ l(n)(logn)v[( max
1� j�n

|an j|)2
n


j=1

1]
v
2

� C



n=1

n p−2−av++ v
2 l(n)(logn)v < . (3.13)

For J2 , by Markov’s inequality and Lemma 2.3–2.4, for v > max{p,2}, we have

J2 � C



n=1

n p−2l(n)E|
n


j=1

an j(X
(n,2)
j −EX (n,2)

j )|v

� C



n=1

n p−2l(n){
n


j=1

E|an jX
(n,2)
j |v +g(n)(

n


j=1

E|an jX
(n,2)
j |2) v

2 }

=: J21 + J22. (3.14)

For J21 , by Lemma 2.4, we have

J21 � C



n=1

n p−2l(n)
n


j=1

|an j|v[E|Xj|vI(|Xj| � n)+nvP(|Xj| > n)]

� C



n=1

n p−2l(n)[E|X |vI(|X | � n)+nvP(|X |> n)]
n


j=1

|an j|v

� C



n=1

n p−av−1l(n)E|X |vI(|X | � n)+C



n=1

n p−1l(n)P(|X | > n)

=: J211 + J212. (3.15)

For J211 , by Lemma 2.5, we have

J211 � C



n=1

n p−av−1l(n)
n


k=1

E|X |vI((k−1) < |X | � k)

� C



k=1

E|X |vI((k−1) < |X | � k)



n=k

n p−av−1l(n)

� C



k=1

k p−avl(k)E|X |vI((k−1) < |X | � k )

� CE|X |pl(X 1
 ) < . (3.16)

For J212 , by Lemma 2.5, we have

J212 � C



n=1

n p−1l(n)



k=n

P(k < |X | � (k+1))

� C



k=1

P(k < |X | � (k+1))
k


n=1

n p−1l(n)

� C



k=1

k pl(k)P(k < |X | � (k+1))

� CE|X |pl(X 1
 ) < . (3.17)
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The proof of J22 <  will be divided into two cases:

Case 1: p � 2. Since E|X |pl(X 1
 ) <  , it follows that E|X |2 <  . Taking

v > max{p, 2( p−1+ )
2−1 } , we obtain

J22 � C



n=1

n p−2+−av+ v
2 l(n)(E|X |2) v

2 < . (3.18)

Case 2: 1 < p < 2. By E|X |pl(X 1
 ) < , taking v > max{2, 2( p−1+ )

 p−1 } , we have

J22 � C



n=1

n p−2+−av+ v
2 +(2−p) av

2 l(n)(E|X |p) v
2 < . (3.19)

Analogous to the proof for J2 , we also obtain J3 <  .
For J4 , by (3.17), we get

J4 =



n=1

n p−2l(n)P(
n


j=1

|an jX
(n,4)
j | > 

10
)

�



n=1

n p−2l(n)P(∃ j : 1 � j � n, |Xj| > n)

�



n=1

n p−2l(n)
n


j=1

P(|Xj| > n)

�



n=1

n p−1l(n)P(|X | > n)

� CE|X |pl(|X | 1
 ) < . (3.20)

Similar to J4 , we also can get J5 <  .
From (3.10)–(3.20), the proof of Theorem 2.3 is completed. �

Proof of Corollary 3.1 . The proof is similar to that of Corollary 3.1 in Lang [6]
and is therefore omitted. �

Proof of Corollary 3.2 . The proof is similar to that of Corollary 3.2 in Lang [6]
and is therefore omitted. �
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