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NEW PROOFS ON TWO RECENT INEQUALITIES

RELATED TO THE SPECTRAL NORM

JIQIN CHEN, XIAOHUI FU ∗ AND QI SONG

(Communicated by M. Krnić)

Abstract. Afraz et al. [1] recently obtained some norm inequalities involving a special class of
functions for sector matrices. In this short note, we give alternative proofs of Afraz et al.’s two
results [1] under the spectral norm.

1. Introduction

Let Mn be the set of all n× n complex matrices. The identity matrix of Mn is
denoted by I . For any X ∈ Mn , X∗ stands for the conjugate transpose of X . For
two Hermitian matrices X ,Y of the same size, X � Y (X > Y ) means that X −Y �
0 (X −Y > 0) . For X ∈ Mn , if the eigenvalues of X are real, then they are arranged
nonincreasingly 1(X) � · · ·� n(X); the singular values of X are denoted by s j(X) =
 j(|X |) =  j((X∗X)

1
2 ) , which are similarly arranged. Recall that a norm ‖·‖ on Mn is

unitarily invariant if ‖UXV‖ = ‖X‖ for any X ∈ Mn and unitary matrices U,V ∈ Mn .
The spectral norm, written as ‖ ·‖ , is defined by ‖X‖ = max

‖x‖=1
‖Xx‖ for X ∈ Mn and

x ∈ Cn . Note that ‖X‖ = s1(X) . The spectral norm is a special class of unitarily
invariant norms. Some papers [2, 3, 4, 17] are devoted to the study of unitarily invariant
norm inequalities.

A matrix T ∈ M2n can be partitioned as a 2×2 block matrix

T =
(

T11 T12

T21 T22

)
, (1)

where Ti j ∈ Mn , i, j = 1,2. For any T ∈ M2n , recall that the Cartesian decomposition
of T (see [5, p. 6] and [11, p. 7]) is

T = A+ iB,

where A = T = T+T ∗
2 and B = T = T−T∗

2i .
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In this paper, the decomposition is represented as(
T11 T12

T21 T22

)
=
(

A11 A12

A∗
12 A22

)
+ i

(
B11 B12

B∗
12 B22

)
.

The matrix is called accretive-dissipative if in its Cartesian decomposition, T = A +
iB, the matrices A and B are positive semidefinite. Such matrices have found many
applications [8, 10, 12, 16]. Recent works devoted to studying this kind of matrix are
[7, 9, 13, 14, 15].

The numerical range of A ∈ Mn is defined by

W (A) = {x∗Ax|x ∈ Cn,x
∗x = 1}.

For  ∈ [0,/2) , let

S = {z ∈ C|z � 0, |z| � (z) tan()}
be a sector region on the complex plane. A matrix whose numerical range is contained
in a sector region S is called a sector matrix.

Afraz et al. [1] presented several unitarily norm inequalities related to sector ma-
trices involving convex and concave functions. They proved that if a sector matrix T is
partitioned as in (1) and f is a submultiplicative convex function, then

‖ f (|T12|2)+ f (|T ∗
21|2)‖ � ‖ f r(

√
2sec()(T11))‖ 1

r ‖ f s(
√

2sec()(T22))‖ 1
s

� ‖ f r(
√

2sec()|T11|)‖ 1
r ‖ f s(

√
2sec()|T22|)‖ 1

s ,
(2)

where r and s are positive real numbers with 1
r + 1

s = and  ∈ [0, 2 ) .
However, if f is a submultiplicative concave function, then inequality (2) becomes

‖ f (|T12|2)+ f (|T ∗
21|2)‖ � 2sec2()‖ f r((T11))‖ 1

r ‖ f s((T22))‖ 1
s

� 2sec2()‖ f r(|T11|)‖ 1
r ‖ f s(|T22|)‖ 1

s .
(3)

In this paper, we will give alternative proofs of inequalities (2) and (3) in the case
of the spectral norm by using sectoral decomposition.

2. Main results

For presenting the new proofs, we give the following several lemmas.

LEMMA 2.1. ([5, p. 5]) Let X ∈ Mn and let f be a nonnegative increasing func-
tion on [0,) . Then

f (s j(X)) = s j( f (|X |)).

LEMMA 2.2. ([5, p. 75] Let A,B ∈ Mn , 1 � i, j � n, i+ j−1 � n. Then

si+ j−1(A+B) � si(A)+ s j(B),

si+ j−1(AB) � si(A)s j(B).
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Part (a) of the following lemma has been given in [6], while a stronger version of
part (b) can be obtained by invoking an argument similar to that used in the proof of
Proposition 4.1 in [18].

LEMMA 2.3. Let A,B ∈ Mn be positive semidefinite. Then for every unitarily
invariant norm,

(a) ‖ f (A)+ f (B)‖� ‖ f (A+B)‖ for every nonnegative convex function on [0,) .
(b) ‖ f (A)+ f (B)

2 ‖ � ‖ f
(

A+B
2

)‖ for every nonnegative concave function on [0,) .

LEMMA 2.4. ([19, Theorem 2.1 ]) Let A be an n× n complex matrix such that
W (A) ⊆ S for some  ∈ [0, 2 ) . Then there exist an invertible matrix X and a unitary
and diagonal matrix Z = diag(ei1 , . . . ,ein) with all | j| �  such that A = XZX∗ .
Moreover, such a matrix Z is unique up to permutation.

LEMMA 2.5. ([19, Corollary 2.3 ]) Let A be an n×n complex matrix such that
W (A) ⊆ S for some  ∈ [0, 2 ) and let A = XZX∗ be a sectoral decomposition of A,
where X is invertible and Z is unitary and diagonal. Then for any matrix R and all
j = 1, . . . ,n, the following inequalities hold.

RR∗ � sec()(R(Z)R∗) = sec()((RZR∗)), (4)

and

s j(RR∗) � sec() j(R(Z)R∗) � sec()s j(RZR∗). (5)

Next, we will present another proofs of inequalities (2) and (3) under the spectral
norm.

THEOREM 2.6. Let T ∈ M2n partitioned as in (1) be a sector matrix and let f be
increasing submultiplicative convex on [0,) and  ∈ [0, 2 ). If r and s are positive
numbers with 1

r + 1
s = 1 , then

∥∥ f
(|T12|2)+ f (|T ∗

21|2
)∥∥

 � ‖ f r(
√

2sec()(T11))‖
1
r‖ f s(

√
2sec()(T22))‖

1
s

� ‖ f r(
√

2sec()|T11|)‖
1
r‖ f s(

√
2sec()|T22|)‖

1
s.

(6)

Proof. We write T = CZC∗ with C =
(

C1

C2

)
, C1 ∈ Mn×2n. Then T12 = C1ZC∗

2

and T21 = C2ZC∗
1 .

Compute

‖ f (|T12|2)+ f (|T ∗
21|2)‖

�
∥∥ f
(|T12|2 + |T∗

21|2
)∥∥

 (by Lemma 2.3 (a))
= s1 ( f (C2Z

∗C∗
1C1ZC∗

2 +C2ZC∗
1C1Z

∗C∗
2))

= f (s1 (C2Z
∗C∗

1C1ZC∗
2 +C2ZC∗

1C1Z
∗C∗

2))
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� f (s1 (C2Z
∗C∗

1C1ZC∗
2)+ s1 (C2ZC∗

1C1Z
∗C∗

2))
� f (s1(C2)s1(Z∗)s1(C1C

∗
1)s1(Z)s1(C∗

2)+ s1(C2)s1(Z)s1(C1C
∗
1)s1(Z∗)s1(C∗

2))
= f (2s1(C1C

∗
1)s1(C2C

∗
2))

� f
(
2sec2()s1(C1(Z)C∗

1)s1(C2(Z)C∗
2)
)

(by (4))

= f
(
2sec2()s1((C1ZC∗

1))s1((C2ZC∗
2)
)

= f
(
s1

(√
2sec()(C1ZC∗

1)
)

s1

(√
2sec()(C2ZC∗

2)
))

� f
(
s1

(√
2sec()(C1ZC∗

1)
))

f
(
s1

(√
2sec()(C2ZC∗

2)
))

= s1

(
f
(√

2sec()(T11)
))

s1

(
f
(√

2sec()(T22)
))

= s
1
r
1

(
f r(√2sec()(T11)

))
s

1
s
1

(
f s(√2sec()(T22)

))
=
∥∥∥ f r

(√
2sec()(T11)

)∥∥∥ 1
r



∥∥∥ f s
(√

2sec()(T22)
)∥∥∥ 1

s



�
∥∥∥ f r

(√
2sec()|T11|

)∥∥∥ 1
r



∥∥∥ f s
(√

2sec()|T22|
)∥∥∥ 1

s


. (by (5))

This completes the proof. �
In fact, by the same technique used in the above theorem, we provide a new proof

of inequality (3) under the spectral norm.

THEOREM 2.7. Let T ∈ M2n partitioned as in (1) be a sector matrix and let f be
increasing submultiplicative concave on [0,) with f (0) = 0 and  ∈ [0, 2 ). If r and
s are positive numbers with 1

r + 1
s = 1 , then

‖ f (|T12|2)+ f (|T ∗
21|2)‖ � 2sec2()‖ f r((T11))‖

1
r‖ f s((T22))‖

1
s

� 2sec2()‖ f r(|T11|)‖
1
r‖ f s(|T22|)‖

1
s.

(7)

Proof. Compute

‖ f (|T12|2)+ f (|T ∗
21|2)‖

� 2

∥∥∥∥ f

( |T12|2 + |T ∗
21|2

2

)∥∥∥∥


(by Lemma 2.3 (b))

= 2s1

(
f

(
C2Z∗C∗

1C1ZC∗
2

2
+

C2ZC∗
1C1Z∗C∗

2

2

))

= 2 f

(
s1

(
1
2
C2Z

∗C∗
1C1ZC∗

2 +
1
2
C2ZC∗

1C1Z
∗C∗

2

))

� 2 f

(
1
2
s1(C2Z

∗C∗
1C1ZC∗

2)+
1
2
s1(C2ZC∗

1C1Z
∗C∗

2)
)

� 2 f
(
s1(C1C

∗
1)s1(C2C

∗
2)
)
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� 2 f
(
sec2()s1(C1(Z)C∗

1)s1(C2(Z)C∗
2)
)

= 2 f
(
sec2()s1((C1ZC∗

1))s1((C2ZC∗
2)
)

= 2 f
(
s1
(
sec()(C1ZC∗

1)
)
s1
(
sec()(C2ZC∗

2)
))

� 2 f
(
s1
(
sec()(C1ZC∗

1)
))

f
(
s1
(
sec()(C2ZC∗

2)
))

= 2s1

(
f
(
sec()(T11)

))
s1

(
f
(
sec()(T22)

))
= 2s

1
r
1

(
f r(sec()(T11)

))
s

1
s
1

(
f s(sec()(T22)

))
= 2‖ f r(sec()(T11))‖

1
r
 ‖ f s(sec()(T22))‖

1
s
 .

Since f is concave, it follows that f (aT ) � a f (T ) for T ∈ Mn and a > 1. Therefore,

‖ f (|T12|2)+ f (|T ∗
21|2)‖ � 2sec2()‖ f r((T11))‖

1
r‖ f s((T22))‖

1
s

� 2sec2()‖ f r(|T11|)‖
1
r‖ f s(|T22|)‖

1
s. �

By direct computations, we can get the following lemma.

LEMMA 2.8. Let A,B ∈ Mn and , ∈ [0,1] such that  + = 1 . Then

|A+(2−1)B|2 +4 |B|2 = |A|2 + |B|2 +(2−1)(A∗B+B∗A).

Next, we try to insert parameters , into inequality (6) and (7), but we just
obtain two weaker results as follows.

THEOREM 2.9. Let T ∈ M2n partitioned as in (1) be a sector matrix and let f be
increasing submultiplicative convex on [0,) and  ∈ [0, 2 ). If r and s are positive
numbers with 1

r + 1
s = 1 , then

‖ f (|T12 +(2−1)T∗
21|2)+ f (4 |T ∗

21|2)‖
� ‖ f r(2sec( )(T11))‖

1
r
 ‖ f s(2sec( )(T22))‖

1
s

� ‖ f r(2sec( )|T11|)‖
1
r‖ f s(2sec( )|T22|)‖

1
s,

where , ∈ [0,1] with + = 1 .

Proof.

‖ f (|T12 +(2−1)T∗
21|2)+ f (4 |T ∗

21|2)‖
� ‖ f (|T12 +(2−1)T∗

21|2 +4 |T ∗
21|2)‖

= s1
(
f (|C1ZC∗

2 |2 + |C1Z
∗C∗

2 |2 +(2−1)(C2Z
∗C∗

1C1Z
∗C∗

2 +C2ZC∗
1C1ZC∗

2)
)

= f
(
s1(C2Z

∗C∗
1C1(Z +(2−1)Z∗)C∗

2 +C2ZC∗
1C1(Z∗ +(2−1)Z)C∗

2)
)
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� f
(
s1(C2)s1(Z∗)s1(C∗

1C1)s1(Z +(2−1)Z∗)s1(C∗
2)

+s1(C2)s1(Z)s1(C∗
1C1)s1(Z∗ +(2−1)Z)s1(C∗

2)
)

= f
(
s1(C2C

∗
2)s1(C1C

∗
1)s1(Z +(2−1)Z∗)

+s1(C2C
∗
2)s1(C1C

∗
1)s1(Z∗ +(2−1)Z)

)
� f

(
4s1(C2C

∗
2)s1(C1C

∗
1)
)

� f
(
4sec2( )s1(C1(Z)C∗

1)s1(C2(Z)C∗
2)
)

= f
(
4sec2( )s1((C1ZC∗

1))s1((C2ZC∗
2))
)

= f
(
s1
(
2sec( )(C1ZC∗

1)
)
s1
(
2sec( )(C2ZC∗

2)
))

� f
(
s1
(
2sec( )(C1ZC∗

1)
))

f
(
s1
(
2sec( )(C2ZC∗

2)
))

= s1

(
f
(
2sec( )(T11)

))
s1

(
f
(
2sec( )(T22)

))
= s

1
r
1

(
f r(2sec( )(T11)

))
s

1
s
1

(
f s(2sec( )(T22)

))
= ‖ f r(2sec( )(T11))‖

1
r
 ‖ f s(2sec( )(T22))‖

1
s


� ‖ f r(2sec( )|T11|)‖
1
r
 ‖ f s(2sec( )|T22|)‖

1
s
 . �

THEOREM 2.10. Let T ∈ M2n partitioned as in (1) be a sector matrix and let
f be increasing submultiplicative concave on [0,) and  ∈ [0, 2 ). If r and s are
positive numbers with 1

r + 1
s = 1 , then

‖ f (|T12 +(2−1)T∗
21|2)+ f (4 |T ∗

21|2)‖

�2
∥∥∥ f r

(√
2sec( )(T11)

)∥∥∥ 1
r



∥∥∥ f s
(√

2sec( )(T22)
)∥∥∥ 1

s



�2
∥∥∥ f r

(√
2sec( )|T11|

)∥∥∥ 1
r



∥∥∥ f s
(√

2sec( )|T22|
)∥∥∥ 1

s


,

where , ∈ [0,1] with + = 1 .

Proof.

‖ f (|T12 +(2−1)T ∗
21|2)+ f (4 |T ∗

21|2)‖
� 2

∥∥∥∥ f

( |T12 +(2−1)T∗
21|2 +4 |T ∗

21|2
2

)∥∥∥∥


= 2s1

(
f

(
1
2
C2Z

∗C∗
1C1(Z +(2−1)Z∗)C∗

2 +
1
2
C2ZC∗

1C1(Z∗ +(2−1)Z)C∗
2

))

= 2 f

(
s1

(
1
2
C2Z

∗C∗
1C1(Z +(2−1)Z∗)C∗

2 +
1
2
C2ZC∗

1C1(Z∗ +(2−1)Z)C∗
2

))
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� 2 f

(
1
2
s1(C2C

∗
2)s1(C∗

1C1)s1(Z +(2−1)Z∗)

+
1
2
s1(C2C

∗
2)s1(C1C

∗
1)s1(Z∗ +(2−1)Z)

)

� 2 f
(
2s1(C2C

∗
2)s1(C1C

∗
1)
)

� 2
∥∥∥ f r

(√
2sec( )(T11)

)∥∥∥ 1
r



∥∥∥ f s
(√

2sec( )(T22)
)∥∥∥ 1

s



� 2
∥∥∥ f r

(√
2sec( )|T11|

)∥∥∥ 1
r



∥∥∥ f s
(√

2sec( )|T22|
)∥∥∥ 1

s


. �
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