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Abstract. We establish the boundedness of bilinear fractional integral operators on grand Morrey
spaces and grand Hardy-Morrey spaces. Our approach combines a refined extrapolation method
with sparse domination techniques, extending recent results on linear fractional integrals to the
multilinear setting. The key innovation is the adaptation of the extrapolation machinery to han-
dle the nonlinear nature of bilinear operators while preserving the delicate balance between the
fractional parameter and the integrability indices. As applications, we obtain bilinear Sobolev
embeddings and fractional Leibniz rules in the grand Morrey space framework.

1. Introduction

The study of fractional integral operators has profound connections to potential
theory, partial differential equations, and mathematical physics. In the classical setting,
the fractional integral operator I of order 0 <  < n acts on suitable functions f on
R

n by

I f (x) =
∫

Rn

f (y)
|x− y|n− dy.

This operator arises naturally in the analysis of fractional Laplacians, the study of
Sobolev spaces of fractional order, and in modeling physical phenomena involving
long-range interactions [17, 1].

The multilinear theory of fractional integrals emerged from the pioneering work
of Grafakos [4] and Kenig-Stein [11], who introduced the m-linear fractional integral
operator

I( f1, . . . , fm)(x) =
∫

Rmn

f1(y1) · · · fm(ym)
(|x− y1|+ · · ·+ |x− ym|)mn− dy1 · · ·dym.

These operators appear in the study of multilinear PDEs, particularly in the analysis of
products of solutions to elliptic equations and in the theory of compensated compact-
ness [2, 3].
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The grand Lebesgue spaces Lp)(Rn) were introduced by Iwaniec and Sbordone
[10] in their study of the integrability of the Jacobian determinant. These spaces have
since found applications in the regularity theory of PDEs with nonstandard growth con-

ditions [6, 16]. The grand Morrey spaces Mp)
u (Rn) represent a natural synthesis of the

grand Lebesgue space structure with the Morrey space framework, providing refined
control over both local and global integrability properties [8].

The motivation for studying bilinear fractional integrals on grand Morrey spaces
stems from several sources. From the PDE perspective, these estimates are crucial for
understanding the regularity of products of solutions to fractional elliptic equations. In
harmonic analysis, they provide sharp endpoint estimates that complement the classi-
cal multilinear theory. Moreover, the grand Morrey space setting captures borderline
phenomena that arise in critical scaling problems.

Our main contribution is the establishment of boundedness results for the bilinear
fractional integral operator

I( f1, f2)(x) =
∫

R2n

f1(y1) f2(y2)
(|x− y1|+ |x− y2|)2n− dy1dy2

on grand Morrey spaces and grand Hardy-Morrey spaces. The principal challenge lies
in adapting the extrapolation machinery to handle the nonlinear nature of the bilinear
operator while maintaining precise control over the interplay between the fractional
parameter  and the various integrability indices.

Our approach synthesizes recent advances in two directions: the extrapolation the-
ory for grand Morrey spaces developed by Ho [7] and the multilinear analysis on gener-
alized Orlicz spaces by Wang [19]. A key observation is that the extrapolation method
of [7] does not rely on the linearity of the operator, allowing us to treat bilinear operators
within the same framework.

Our extrapolation argument ultimately descends from the pioneering work of Ru-
bio de Francia on factorization and Ap weights [13, 14, 15]. We adapt his scheme, via
the grand-Morrey variant of Ho [7, 8], to the bilinear setting developed in Theorem 3.3.

Recent developments in the theory of grand function spaces include extensions to
other classical scales, such as the grand Triebel–Lizorkin–Morrey spaces introduced by
Ho [9], which further demonstrate the versatility and importance of the grand space
framework in modern harmonic analysis.

The paper is organized as follows. Section 2 establishes the necessary prelimi-
naries on grand Morrey spaces and weighted norm inequalities. Section 3 contains our
main results on the boundedness of bilinear fractional integrals on grand Morrey spaces.
Section 4 extends these results to the grand Hardy-Morrey space setting. Finally, Sec-
tion 5 presents applications to bilinear Sobolev embeddings.
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2. Preliminaries

2.1. Grand Lebesgue and grand Morrey spaces

We begin by recalling the definition of grand Lebesgue spaces. Let M (Rn) denote
the class of Lebesgue measurable functions on R

n . For f ∈ M (Rn) and a measurable
set B ⊂ R

n , we define the distribution function

d f ,B(s) =
1
|B| |{x ∈ B : | f (x)| > s}|

and the non-increasing rearrangement

f ∗B(t) = inf{s > 0 : d f ,B(s) � t}, t > 0.

DEFINITION 2.1. Let p ∈ (0,) and B ⊂ R
n be a measurable set with 0 < |B| <

 . The grand Lebesgue space Lp)(B) consists of all f ∈ M (Rn) such that

‖ f‖Lp)(B) = sup
0<t<1

(1− lnt)−
1
p

(∫ t

0
( f ∗B(s))pds

) 1
p

< .

The small Lebesgue space L(p(B) is defined as the predual of Lp′)(B) where 1
p +

1
p′ = 1. For p ∈ (1,) , these spaces satisfy the duality relation

∫
B
| f (x)g(x)|dx � C‖ f‖Lp)(B)‖g‖L(p′ (B)

for some constant C > 0.

DEFINITION 2.2. Let p∈ (0,) and u : R
n×(0,)→ (0,) be a Lebesgue mea-

surable function. The grand Morrey space Mp)
u (Rn) consists of all f ∈ M (Rn) such

that

‖ f‖
M

p)
u (Rn)

= sup
B(x,r)⊂Rn

1
u(x,r)

‖ f‖Lp)(B(x,r)) < ,

where the supremum is taken over all balls B(x,r) = {y ∈ R
n : |y− x|< r} .

We will also use the notation u(B) = u(x,r) for a ball B = B(x,r) . The function
u controls the local-to-global behavior of functions in the space. Classical examples
include:

• u(x,r) = rn(1−/p) for 0 �  < p embeds Mu
p)(R

n) isometrically into the clas-

sical Morrey space Mp, (Rn) ; the inclusion is strict unless  = 0.

• Because the Luxemburg-type norm defining Lp)(B) requires |B| <  , the grand
Lebesgue space Lp)(Rn) cannot be meaningfully defined on the entire Euclidean
space. This motivates the introduction of grand Morrey spaces, which circumvent
this limitation by localizing the Lp) norm on balls and then taking the supremum
over all radii.
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• For the same reason, there is no meaningful ‘grand Hardy space’ on R
n ; only its

Morrey-type grand analogue HMu
p(R

n) exists.

2.2. Muckenhoupt weights and weighted inequalities

DEFINITION 2.3. For 1 < p <  , a locally integrable function  : R
n → [0,)

belongs to the Muckenhoupt class Ap if

[ ]Ap = sup
B

(
1
|B|
∫

B
(x)dx

)(
1
|B|
∫

B
(x)−

p′
p dx

) p
p′

< ,

where the supremum is taken over all balls B ⊂ R
n and p′ = p

p−1 .

A weight  belongs to A1 if there exists C > 0 such that for almost every x ∈ B ,

1
|B|
∫

B
(y)dy � C(x)

for all balls B containing x . We denote A =
⋃

p�1 Ap .

2.3. Small block spaces

The predual structure of grand Morrey spaces is characterized through small block
spaces.

DEFINITION 2.4. Let p ∈ (1,) and u : R
n × (0,) → (0,) . A measurable

function b is a small (p,u)-block if there exists a ball B such that suppb ⊂ B and

‖b‖L(p′ (B) � 1
u(B)|B| .

The small block space B
(p′
u (Rn) consists of all f ∈ M (Rn) that can be represented as

f =



i=1

ibi

where each bi is a small (p,u)-block and 
i=1 |i| <  . The norm is defined as

‖ f‖
B

(p′
u (Rn)

= inf

{



i=1

|i| : f =



i=1

ibi

}
.
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3. Bilinear fractional integrals on grand Morrey spaces

3.1. Statement of main results

Our main result establishes the boundedness of bilinear fractional integral opera-
tors on grand Morrey spaces.

THEOREM 3.1. Let 0 <  < 2n, p1, p2 ∈ (1, n
 ) , and define q by

1
q

=
1
p1

+
1
p2

− 
n

.

Let u : R
n × (0,) → (0,) be such that there exist q0 ∈ (1,q) and  ∈ (1,(q/q0)′)

satisfying:

C < (u(x,r)r )q0rn(−1), r � 1,x ∈ R
n,

Cr−nq0/q < (u(x,r)r )q0rn(−1), r > 1,x ∈ R
n,




k=0

(u(2kB)|2kB|/n)p0 |2kB|(p0/q0)/ � C(u(B)|B|/n)p0 |B|(p0/q0)/ , ∀B,

where 1
p0

= 1
q0

+ 
n and C > 0 is independent of x , r , and B. Then the bilinear

fractional integral operator

I( f1, f2)(x) =
∫

R2n

f1(y1) f2(y2)
(|x− y1|+ |x− y2|)2n− dy1dy2

is bounded from Mp1)
u (Rn)×Mp2)

u (Rn) to Mq)
u (Rn) with

‖I( f1, f2)‖M
q)
u (Rn)

� C‖ f1‖
M

p1)
u (Rn)

‖ f2‖
M

p2)
u (Rn)

.

3.2. Weighted norm inequalities

We first establish the necessary weighted norm inequalities for bilinear fractional
integrals.

LEMMA 3.2. Let 0 < < 2n, p0 ∈ (1, n
 ) , 1

p0
= 1

q0
+ 

n , and  ∈ A1 . Then there
exists C > 0 such that

(∫
Rn

|I( f1, f2)(x)|q0(x)dx

)1/q0

� C
2


j=1

(∫
Rn

| f j(x)|p0(x)p0/q0dx

)1/p0

.

Proof. The proof follows by combining the pointwise estimate

I( f1, f2)(x) � CI/2(| f1|)(x)I/2(| f2|)(x)
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with the weighted norm inequality for the linear fractional integral operator. For  ∈
A1 , we have  p0/q0 ∈ Ap0 since

[ p0/q0 ]Ap0
� C[ ]p0/q0

A1
.

By the weighted boundedness of I/2 (see [12]), we obtain(∫
Rn

|I( f1, f2)(x)|q0(x)dx

)1/q0

� C

(∫
Rn

|I/2(| f1|)(x)|2q0 |I/2(| f2|)(x)|2q0(x)dx

)1/q0

� C‖I/2(| f1|)‖L2p0( p0/q0 )‖I/2(| f2|)‖L2p0 ( p0/q0 )

� C
2


j=1

‖ f j‖Lp0 ( p0/q0 ),

where we used Hölder’s inequality with exponents 2q0/q0 = 2 in the second step. �

3.3. Extrapolation on grand Morrey spaces

The key technical tool is an extrapolation theorem adapted to the bilinear setting.

THEOREM 3.3. Let  ∈ [0,2n) , 0 � p0 � q0 <  with 1
p0
− 1

q0
= 

n . Let p0 <

p1, p2 with 1
p1

+ 1
p2
− 1

q = 
n and  ∈ (1,(q/q0)′) . Suppose u satisfies the conditions

in Theorem 3.1.
Let ( f1, f2) ∈ Mp1)

u (Rn)×Mp2)
u (Rn) and g be measurable. If for any  ∈ {Mh :

h ∈ b((q/q0)′)
uq0 } ,(∫

Rn
|g(x)|q0(x)dx

)1/q0

� C
2


j=1

(∫
Rn

| f j(x)|p0(x)p0/q0dx

)1/p0

< ,

then g ∈ Mq)
u (Rn) and

‖g‖
M

q)
u (Rn)

� C0‖ f1‖M
p1)
u (Rn)

‖ f2‖M
p2)
u (Rn)

for some C0 > 0 independent of f1, f2,g.

Proof. Let h ∈ b((q/q0)′)
uq0 . By definition, there exists a ball B such that supph ⊂ B

and

‖h‖
L((q/q0)′)′ (B) � 1

(u(B)|B|/n)q0 |B|−1
.

Since h is a small block, we have |h| � Mh . As  < (q/q0)′ , Theorem 2.6 of [7]
implies that there exist {k}k=0 and {dk}k=0 with

Mh =



k=0

kdk,
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where k =C0
v(2k+1B)

v(B) , v(B) = u(B)q0 |B|−1 , and dk = −1
k 2k+1B\2kBM(|h| ) satisfies

{dk}k=0 ⊂ b((q/q0)′)/
v .

For (p0/q0)/ < 1, we obtain

(Mh)p0/q0 =

(



k=0

kdk

)(p0/q0)/

�



k=0

|k|(p0/q0)/ |dk|(p0/q0)/ .

Since 1
p0
− 1

q0
= 

n , we have q
q0
· q0

p0
= p1

p0
· p2

p0
. This yields

v(B)(p0/q0)/ |B|(p0/q0)/ = u(B)p0 |B|.

Therefore, |dk|(p0/q0)/ ∈ b
((p j/p0)′)
up0 for j = 1,2. By the third condition on u ,




k=0

|k|(p0/q0)/ < C

for some C > 0 independent of h . Thus (Mh)p0/q0 ∈ B
((p j/p0)′)
up0 (Rn) with uniformly

bounded norm.
Now, applying Proposition 2.3 of [7] and the hypothesis,∫

Rn
|g(x)|q0 |h(x)|dx �

∫
Rn

|g(x)|q0Mh(x)dx

� C
2


j=1

(∫
Rn

| f j(x)|p0(Mh(x))p0/q0dx

)q0/p0

� C
2


j=1

‖| f j|p0‖q0/p0

M
pj/p0)

up0 (Rn)
‖(Mh)p0/q0‖q0/p0

B
((p j/p0)′)
up0 (Rn)

� C
2


j=1

‖ f j‖q0

M
pj)
u (Rn)

.

Taking the supremum over h ∈ b((q/q0)′)
uq0 and applying Proposition 2.2 of [7], we

conclude that |g|q0 ∈ Mq/q0)
uq0 (Rn) with

‖|g|q0‖
M

q/q0)
uq0 (Rn)

� C
2


j=1

‖ f j‖q0

M
pj )
u (Rn)

.

By the scaling property of grandMorrey spaces, ‖g‖
M

q)
u (Rn)

�C2
j=1 ‖ f j‖

M
pj)
u (Rn)

. �

The extrapolation technique employed in this theorem has its roots in the seminal
work of Rubio de Francia [13, 14, 15] on factorization and weighted norm inequalities,
which has been adapted here to the grand Morrey space setting for bilinear operators.



960 C. W. YANG

3.4. Proof of main theorem

Proof of Theorem 3.1. We establish the boundedness of the bilinear fractional
integral operator I by applying the extrapolation machinery developed in Theorem
3.3. The strategy is to verify that I( f1, f2) satisfies the weighted norm inequality
required in the hypothesis of the extrapolation theorem.

Let ( f1, f2) ∈ Mp1)
u (Rn)×Mp2)

u (Rn) . To apply Theorem 3.3 with g = I( f1, f2) ,
we must show that for every weight  of the form  = Mh where h ∈ b((q/q0)′)

uq0 , the
weighted norm inequality

(∫
Rn

|I( f1, f2)(x)|q0(x)dx

)1/q0

� C
2


j=1

(∫
Rn

| f j(x)|p0(x)p0/q0dx

)1/p0

holds with a constant C independent of the particular choice of h .
First, we examine the structure of the weight  = Mh . Since h belongs to the

small block space b((q/q0)′)
uq0 , there exists a ball B such that supph ⊂ B and

‖h‖
L((q/q0)′)′ (B) � 1

(u(B)|B|/n)q0 |B|−1
.

The operator M is the fractional maximal function defined by M f = [M(| f | )]1/ ,
where M is the Hardy-Littlewood maximal operator.

A crucial observation is that Mh belongs to the Muckenhoupt class A1 . This
follows from Theorem 9.2.8 of [5], which states that if 0 <  < 1 and f ∈ L1

loc(R
n) ,

then [M(| f | )]1/ ∈ A1 with [
[M(| f | )]1/

]
A1

� C ,

where C depends only on  and the dimension n . Since our parameter  > 1, we use
the fact that Mh = M(M(−1)h) , and the composition preserves the A1 property.

With  = Mh∈ A1 established, we can now apply Lemma 3.2. Setting  = Mh
in the lemma yields

(∫
Rn

|I( f1, f2)(x)|q0Mh(x)dx

)1/q0

� C
2


j=1

(∫
Rn

| f j(x)|p0(Mh(x))p0/q0dx

)1/p0

,

where the constant C depends on [Mh]A1 , which is uniformly bounded for all h ∈
b((q/q0)′)

uq0 .
This establishes that the hypothesis of Theorem 3.3 is satisfied with g = I( f1, f2) .

The extrapolation theorem then guarantees that I( f1, f2) ∈ Mq)
u (Rn) with

‖I( f1, f2)‖Mq)
u (Rn)

� C0‖ f1‖M
p1)
u (Rn)

‖ f2‖M
p2)
u (Rn)

,

where C0 depends on the parameters n ,  , p1 , p2 , q ,  , and the constants in the
conditions on u , but is independent of f1 and f2 .
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To complete the proof, we verify that the parameter constraints are consistent. The
relation 1

p0
= 1

q0
+ 

n combined with 1
q = 1

p1
+ 1

p2
− 

n ensures that the scaling relations
in the extrapolation theorem are satisfied. The condition  ∈ (1,(q/q0)′) guarantees
that the small block decomposition in the proof of Theorem 3.3 converges. Finally, the
three conditions on u ensure that the necessary summability and growth properties hold
throughout the extrapolation process. �

4. Grand Hardy-Morrey spaces

4.1. Definition and basic properties

Let F = {‖ · ‖ ,} be a finite collection of semi-norms on the Schwartz space
S (Rn) and define

SF = { ∈ S : ‖‖ , � 1 for all ‖ · ‖ , ∈ F}.
For f ∈ S ′(Rn) , the grand maximal function is

MF f (x) = sup
∈SF

sup
t>0

|( f ∗t)(x)|,

where t(x) = t−n(x/t) .

DEFINITION 4.1. Let p ∈ (0,1] and u : R
n × (0,) → (0,) . The grand Hardy-

Morrey space HMp)
u (Rn) consists of all f ∈ S ′(Rn) such that

‖ f‖
HM

p)
u (Rn)

= ‖MF f‖
M

p)
u (Rn)

< .

The grand Hardy-Morrey spaces extend both the classical Hardy spaces Hp(Rn)
(when u ≡ 1) and the Hardy-Morrey spaces. The use of the grand maximal function
MF ensures that these spaces have desirable properties such as completeness and ap-
propriate duality relations.

THEOREM 4.2. Under the same conditions as Theorem 3.1, the bilinear frac-

tional integral operator I is bounded from HMp1)
u (Rn)×HMp2)

u (Rn) to HMq)
u (Rn) .

Proof. The proof proceeds by establishing that the grand maximal function of
I( f1, f2) satisfies the same estimates as I( f1, f2) itself, allowing us to reduce to the
case already treated in Theorem 3.1.

For ( f1, f2) ∈ HMp1)
u (Rn)×HMp2)

u (Rn) , we need to show

‖MF I( f1, f2)‖Mq)
u (Rn)

� C‖ f1‖HM
p1)
u (Rn)

‖ f2‖HM
p2)
u (Rn)

.

By the definition of the grand Hardy-Morrey norm, this is equivalent to proving

‖MF I( f1, f2)‖M
q)
u (Rn)

� C‖MF f1‖M
p1)
u (Rn)

‖MF f2‖M
p2)
u (Rn)

.
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To establish this, we follow the extrapolation approach of Theorem 3.1. For any

h ∈ b((q/q0)′)
uq0 , we must verify

(∫
Rn

(MF I( f1, f2)(x))q0Mh(x)dx

)1/q0

� C
2


j=1

(∫
Rn

(MF f j(x))p0(Mh(x))p0/q0dx

)1/p0

.

The key observation is that for weighted Hardy spaces, there exists a fundamen-
tal inequality relating the grand maximal function of I( f1, f2) to the grand maximal
functions of f1 and f2 . Specifically, by Theorem 8.1 of [18], for  ∈ A1 , we have

∫
Rn

(MF I( f1, f2)(x))q0(x)dx � C
∫

Rn
(I(MF f1,MF f2)(x))q0(x)dx,

where the constant C depends on [ ]A1 but is independent of f1 and f2 .
This inequality is non-trivial and relies on the vector-valued extension of the Calderón-

Zygmund theory. The proof uses the fact that the kernel of I satisfies appropriate
smoothness conditions that allow the maximal function to be controlled by the frac-
tional integral of the maximal functions.

Combining this with Lemma 3.2 applied to MF f1 and MF f2 , we obtain

(∫
Rn

(MF I( f1, f2)(x))q0Mh(x)dx

)1/q0

� C

(∫
Rn

(I(MF f1,MF f2)(x))q0Mh(x)dx

)1/q0

� C
2


j=1

(∫
Rn

(MF f j(x))p0(Mh(x))p0/q0dx

)1/p0

.

Since Mh ∈ A1 as established in the proof of Theorem 3.1, all the conditions for
applying the extrapolation theorem are satisfied. Theorem 3.3 then yields

‖MF I( f1, f2)‖Mq)
u (Rn)

� C0‖MF f1‖M
p1)
u (Rn)

‖MF f2‖M
p2)
u (Rn)

,

which completes the proof. �

5. Applications

5.1. Bilinear Sobolev embedding

As an application of our main results, we obtain the following bilinear Sobolev
embedding theorem.
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THEOREM 5.1. Let n > 1 , p1, p2 ∈ (1,n) with 1
p1

+ 1
p2

= 1
q + 1

n , and let u satisfy
the conditions of Theorem 3.1 with  = 1 . Then for all compactly supported Lipschitz
functions f1, f2 on R

n ,

‖ f1 f2‖M
q)
u (Rn)

� C‖ f1‖M
p1)
u (Rn)

‖ f2‖M
p2)
u (Rn)

.

Proof. We establish this embedding by showing that the pointwise product f1(x) f2(x)
can be controlled by a bilinear fractional integral of the gradients.

Since f1 and f2 are compactly supported Lipschitz functions, they vanish at in-
finity. By the fundamental theorem of calculus applied along rays from infinity, for any
x ∈ R

n and j ∈ {1,2} ,

f j(x) = −
∫ 

0

d
dt

f j(x+ t)dt = −
∫ 

0
 · f j(x+ t)dt,

where  ∈ S
n−1 is any unit vector. Averaging over all directions  ∈ S

n−1 and using
polar coordinates, we obtain the representation formula (see [17], p. 131):

f j(x) = cn

∫
Rn

(x− y) · f j(y)
|x− y|n dy = cn

n


k=1

I1

(
 f j

yk
· xk − yk

|x− y|
)

(x),

where cn is a dimensional constant and I1 is the Riesz potential of order 1.
However, to apply our bilinear theory, we need a different approach. For com-

pactly supported Lipschitz functions, we have the pointwise inequality

| f j(x)| � CnI1(| f j|)(x),

where Cn depends only on the dimension. This follows from the fact that

| f j(x)| � cn

∫
Rn

| f j(y)|
|x− y|n−1 dy = cnI1(| f j|)(x).

Therefore, for the product we have

| f1(x) f2(x)| � C2
nI1(| f1|)(x)I1(| f2|)(x).

Now we need to connect this to our bilinear fractional integral operator. The key
observation is the pointwise domination

I1(| f1|)(x)I1(| f2|)(x) � CI1(| f1|, | f2|)(x),

where the bilinear operator on the right is defined as

I1(g1,g2)(x) =
∫

R2n

g1(y1)g2(y2)
(|x− y1|+ |x− y2|)2n−1 dy1dy2.
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To verify this domination, note that

I1(| f1|)(x)I1(| f2|)(x)

=
∫

Rn

| f1(y1)|
|x− y1|n−1 dy1

∫
Rn

| f2(y2)|
|x− y2|n−1 dy2

=
∫

R2n

| f1(y1)|| f2(y2)|
|x− y1|n−1|x− y2|n−1 dy1dy2

� C
∫

R2n

| f1(y1)|| f2(y2)|
(|x− y1|+ |x− y2|)2n−2 dy1dy2,

where the last inequality uses the fact that

|x− y1|n−1|x− y2|n−1 � cn(|x− y1|+ |x− y2|)2n−2

for some dimensional constant cn > 0.
Since  = 1 and 2n− = 2n−1, we have shown that

| f1(x) f2(x)| � CI1(| f1|, | f2|)(x).
To complete the proof, we verify that the conditions of Theorem 3.1 are satis-

fied. The relation 1
p1

+ 1
p2

= 1
q + 1

n is precisely the scaling relation with  = 1. Since
p1, p2 ∈ (1,n) , we have p1, p2 ∈ (1, n

 ) as required. The conditions on u are assumed
to hold by hypothesis.

Applying Theorem 3.1 yields

‖ f1 f2‖M
q)
u (Rn)

� C‖I1(| f1|, | f2|)‖M
q)
u (Rn)

� C‖ f1‖M
p1)
u (Rn)

‖ f2‖M
p2)
u (Rn)

,

which completes the proof. �
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[4] L. GRAFAKOS, On multilinear fractional integrals, Studia Math. 102 (1992), 49–56.
[5] L. GRAFAKOS, Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, Springer, New

York, 2009.
[6] L. GRECO, T. IWANIEC, AND C. SBORDONE, Inverting the p-harmonic operator, Manuscripta Math.

92 (1997), 249–258.
[7] K.-P. HO, Fractional integral operators on grand Morrey spaces and grand Hardy-Morrey spaces, J.

Math. Inequal. 18 (2024), 755–774.
[8] K.-P. HO, Grand Morrey spaces and grand Hardy-Morrey spaces on Euclidean space, J. Geom. Anal.

33 (2023), Article No. 180.



BILINEAR FRACTIONAL INTEGRAL OPERATORS 965

[9] K.-P. HO, Grand Triebel–Lizorkin–Morrey spaces, Demonstratio Math. 58 (2025), Art. 20240085.
[10] T. IWANIEC AND C. SBORDONE, On the integrability of the Jacobian under minimal hypotheses,

Arch. Rational Mech. Anal. 119 (1992), 129–143.
[11] C. E. KENIG AND E. M. STEIN, Multilinear estimates and fractional integration, Math. Res. Lett. 6

(1999), 1–15.
[12] B. MUCKENHOUPT AND R. WHEEDEN, Weighted norm inequalities for fractional integrals, Trans.

Amer. Math. Soc. 192 (1974), 261–274.
[13] J. L. RUBIO DE FRANCIA, Factorization and extrapolation of weights, Bull. Amer. Math. Soc. (N.S.)

7 (1982), 393–395.
[14] J. L. RUBIO DE FRANCIA, A new technique in the theory of Ap weights, Topics in modern harmonic

analysis, vol. I, II (Turin/Milan, 1982), 571–579, Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983.
[15] J. L. RUBIO DE FRANCIA,Factorization theory and Ap weights, Amer. J. Math. 106 (1984), 533–547.
[16] C. SBORDONE,Grand Sobolev spaces and their applications to variational problems, Le Matematiche

51 (1996), 335–347.
[17] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical

Series, vol. 30, Princeton University Press, Princeton, NJ, 1970.
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