
Journal of
Mathematical

Inequalities

Volume 19, Number 3 (2025), 967–980 doi:10.7153/jmi-2025-19-63

THE WEIGHTED POWER DIFFERENCE

MEAN AND ITS GENERALIZATION

MASATOSHI ITO

(Communicated by J. I. Fujii)

Abstract. Pal, Singh, Moslehian and Aujla obtained the inequalities for a convex function and
introduced the weighted logarithmic mean for two positive numbers or bounded linear operators
on a complex Hilbert space. Furuichi and Minculete refined the inequalities by Pal et al.

In this paper, based on their results, we newly introduce the weighted power difference
mean as a generaliation of the weighted logarithmic mean. We show relations among the
weighted power, power difference and arithmetic means. Moreover, we obtain its generaliza-
tion by considering the notion of a transpose symmetric path of t -weighted operator means.

1. Introduction

The celebrated arithmetic-logarithmic-geometric-harmonic mean inequality

2ab
a+b

�
√

ab � a−b
loga− logb

� a+b
2

for a,b > 0

are generalized to many directions. As one of them, we consider the weighted means.
For a,b > 0 and t ∈ [0,1] ,

At(a,b) = (1− t)a+ tb (arithmetic mean),

Gt(a,b) = a1−tbt (geometric mean),

Ht(a,b) = {(1− t)a−1 + tb−1}−1 (harmonic mean).

There exists some definitions of the weighted logarithmic mean. Here, we consider the
weighted logarithmic mean LMt(a,b) for t ∈ [0,1] as

LMt(a,b) =
1

loga− logb

{
1− t

t
a1−t(at −bt)+

t
1− t

bt(a1−t −b1−t)
}

introduced by Pal, Singh, Moslehian and Aujla [7], which is based on the Hermite-
Hadamard inequality for convex functions. In [7], they showed that the inequalities

Ht(a,b) � Gt(a,b) � LMt (a,b) � At(a,b) (1.1)
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always hold for t ∈ [0,1] . If the weight parameter t is equal to 1
2 , then the weighted

means coincide with the original (non-weighted) ones, and then we abbreviate the
weight t as A(a,b) = A 1

2
(a,b) .

The following one-parameter weighted means are known, which extend the weig-
hted arithmetic, geometric and harmonic means. For a,b > 0, t ∈ [0,1] and q ∈ R ,

Pt,[q](a,b) =

{
{(1− t)aq + tbq} 1

q if q �= 0,

a1−tbt if q = 0,
(power mean),

Kt,[q](a,b) = (1−q)a1−tbt +q{(1− t)a+ tb} (Heron mean),

HZt,[q](a,b) = (1− t)a(1−t)+qtb(1−q)t + ta(1−q)(1−t)bt+q(1−t)

(Heinz mean).

It is well known that Pt,[q](a,b) is monotone increasing on q ∈ R . We remark that the

non-weightedHeinz mean HZ[q](a,b) = 1
2(a

1+q
2 b

1−q
2 +a

1−q
2 b

1+q
2 ) is often expressed by

HZ[r](a,b) = 1
2(arb1−r + a1−rbr) , that is, HZ[r](a,b) = HZ[|2r−1|](a,b) for r ∈ [0,1] .

We can consider these means for two positive bounded linear operators on a complex
Hilbert space by Kubo-Ando theory on operator means [6]. Details are in section 3.

Moreover, for q ∈ R ,

J[q](a,b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q
q+1

aq+1−bq+1

aq−bq if q �= 0,−1,

a−b
loga− logb

if q = 0,

ab(loga− logb)
a−b

if q = −1,

(power difference mean)

is known. We note that J[q](a,b) is monotone increasing on q ∈ R . The power differ-
ence mean J[q](a,b) includes non-weighted arithmetic, logarithmic, geometric and har-
monic means by putting q = 1,0, −1

2 ,−2, respectively. But it seems that the weighted
power difference mean has not introduced yet.

In this paper, firstly we introduce the weighted power difference mean for two
positive numbers, and also we show the relations among the weighted power, power
difference and arithmetic means in section 2. Secondly, we consider weighted operator
means on a complex Hilbert space. Recently, in [4], we introduced the notion of a trans-
pose symmetric path of t -weighted operator means, and also we got relations among
some weighted operator means. By using this concept, we discuss a generalization of
the weighted power difference mean in sections 3 and 4.
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2. The weighted power difference mean

Furuichi and Minculete [2] obtained a refinement of the result in [7] for a convex
function.

THEOREM 2.A. ([2, Theorem 2.1]) Let 0 <  �  . For every convex Riemann
integrable function f : [, ] → R and t ∈ [0,1] , we have

f (t ) � R(1)
f ,t (, ) � Cf ,t(, ) � R(2)

f ,t (, ) � f ()t f ( ),

where t = At(, ) = (1− t)+ t ,

Cf ,t(, ) =
(∫ 1

0
f (tx )dx

)
t

(∫ 1

0
f ((1− t)( −)x+t )dx

)
,

R(1)
f ,t (, ) = f ( t

2
 )t f ( 1+t

2
 ),

R(2)
f ,t (, ) =

(
f ()t f ( )

)
 f (t ).

We remark that we can slightly extend the assumption of Theorem 2.A by consid-
ering parallel translation of f and the property t = 1−t for t ∈ [0,1] .

THEOREM 2.1. Let , ∈ R , and let I =
[
min{,}, max{,}] . For every

convex Riemann integrable function f : I → R and t ∈ [0,1] , we have

f (t ) � R(1)
f ,t (, ) � Cf ,t(, ) � R(2)

f ,t (, ) � f ()t f ( ), (2.1)

where Cf ,t(, ) , R(1)
f ,t (, ) and R(2)

f ,t (, ) are as stated in Theorem 2.A.

In [7], the weighted logarithmic mean was defined as LMt(a,b)=Cf ,t(loga, logb) ,
where f (x) = ex . It was shown in [2] that Theorem 2.A implies the following inequal-
ities on the weighted logarithmic mean.

PROPOSITION 2.B. ([2, Corollary 2.2]) Let a,b > 0 . Then the inequalities

Gt(a,b) � At(G t
2
(a,b),G 1+t

2
(a,b)) � LMt(a,b) � A(At(a,b),Gt(a,b)) � At(a,b)

hold for t ∈ [0,1] .

Here, we try to introduce a generalization of LMt(a,b) . Let fq(x) = (1 + qx)
1
q ,

 = aq−1
q ,  = bq−1

q for a,b > 0 and q ∈ R \ {0} . Then fq can be defined on

I =
[
min{,}, max{,}] . We remark that lim

q→0
fq(x) = lim

q→0
(1 + qx)

1
q = ex and

lim
q→0

xq−1
q = logx .
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If q �= −1, we have∫ 1

0
fq(tx )dx

=
∫ 1

0
{1+q+qt( −)x} 1

q dx

=
1

qt( −)
q

q+1

(
{1+q+qt( −)} q+1

q − (1+q)
q+1
q

)
=

q
q+1

{(1− t)aq + tbq} q+1
q −aq+1

t(bq−aq)
,

(2.2)

and also by putting u = 1− x , (2.2) ensures∫ 1

0
fq((1− t)( −)x+t )dx =

∫ 1

0
fq((1−t)u)du

=
q

q+1
{tbq +(1− t)aq} q+1

q −bq+1

(1− t)(aq−bq)
=

q
q+1

bq+1−{(1− t)aq+ tbq} q+1
q

(1− t)(bq−aq)
.

Therefore we get

Cfq,t(, ) =
q

q+1

⎛⎝1− t
t

{(1− t)aq + tbq} q+1
q −aq+1

bq−aq

+
t

1− t
bq+1−{(1− t)aq + tbq} q+1

q

bq−aq

⎞⎠ .

If q = −1, we have

Cf−1,t(, ) =
1− t

t
log{(1− t)a−1 + tb−1}− loga−1

b−1−a−1

+
t

1− t
logb−1− log{(1− t)a−1 + tb−1}

b−1−a−1

by the similar calculation.
Therefore we can define the weighted power difference mean Jt,[q](a,b) as fol-

lows: For t ∈ [0,1] and q ∈ R ,

Jt,[q](a,b) =

⎧⎪⎨⎪⎩Cfq,t

(
aq−1

q
,
bq−1

q

)
, where fq(x) = (1+qx)

1
q if q �= 0,

Cf0,t(loga, logb), where f0(x) = ex if q = 0.

Of course, we can verify that J 1
2 ,[q](a,b) = J[q](a,b) for q ∈ R . By Theorem 2.1, we

obtain a generalization of Proposition 2.B.



THE WEIGHTED POWER DIFFERENCE MEAN AND ITS GENERALIZATION 971

PROPOSITION 2.2. Let a,b > 0 . Then the inequalities

Pt,[q](a,b) � At(Pt
2 ,[q](a,b),P1+t

2 ,[q](a,b))

� Jt,[q](a,b) � A(At(a,b),Pt,[q](a,b)) � At(a,b)

hold for t ∈ [0,1] and q � 1 .

Proof. Let fq(x) = (1+qx)
1
q ,  = aq−1

q ,  = bq−1
q for a,b > 0 and q �= 0. Then

fq(x) is convex for x > −1
q if 0 < q � 1, and fq(x) is convex for x < −1

q if q < 0. Here
we consider applying Theorem 2.1. We have

fq()t fq( ) = (1− t)(1+q)
1
q + t(1+q )

1
q

= (1− t)a+ tb = At(a,b)
(2.3)

and
fq(t ) = {1+(1− t)q+ tq} 1

q

= {(1− t)aq + tbq} 1
q = Pt,[q](a,b).

(2.4)

By using (2.3) and (2.4), we get

R(1)
fq,t

(, ) = (1− t) fq( t
2
 )+ t fq( 1+t

2
 )

= (1− t)
{(

1− t
2

)
aq +

t
2
bq
} 1

q
+ t

{(
1− 1+ t

2

)
aq +

1+ t
2

bq
} 1

q

= At(Pt
2 ,[q](a,b),P1+t

2 ,[q](a,b))

and

R(2)
fq,t

(, ) =
1
2
{ fq()t fq( )}+

1
2

fq(t )

=
1
2
{(1− t)a+ tb}+

1
2
{(1− t)aq + tbq} 1

q = A(At(a,b),Pt,[q](a,b)).

Therefore Theorem 2.1 ensures the desired inequalities. The case q = 0 is obtained by
considering the limit as q → 0. �

We remark that we easily obtain the inequalities for q � 1.

PROPOSITION 2.3. Let a,b > 0 . Then the inequalities

At(a,b) � A(At(a,b),Pt,[q](a,b)) � Jt,[q](a,b)

� At(Pt
2 ,[q](a,b),P1+t

2 ,[q](a,b)) � Pt,[q](a,b)

hold for t ∈ [0,1] and q � 1 .

Proof. The reverse inequalities of (2.1) hold for a concave function f by replacing
f by − f in Theorem 2.1. Therefore we have the desired inequalities since fq(x) =

(1+qx)
1
q is concave for x > −1

q if q � 1. �
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3. A transpose symmetric path of t -weighted operator means including
the weighted power difference mean

In what follows, we discuss operator means and a generalization of the weighted
power difference mean by using our concept in [4]. Of course, the results for operator
means are valid for numerical means.

Here, an operator means a bounded linear operator on a complexHilbert space H .
An operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all x ∈ H ,
and T is said to be strictly positive (denoted by T > 0) if T is positive and invertible.
A real-valued function f defined on J ⊂ R is said to be operator monotone if A �
B implies f (A) � f (B) for selfadjoint operators A and B whose spectra (A),(B)⊂
J , where A � B means B−A � 0.

On operator means for two positive operators, Kubo and Ando [6] obtained that
there exists a one-to-one correspondence between an operator mean M and an operator
monotone function f � 0 on [0,) with f (1) = 1 via f (x)I = M(I,xI) as follows:

M(A,B) = A
1
2 f (A

−1
2 BA

−1
2 )A

1
2 (3.1)

if A > 0 and B � 0. An operator mean is also expressed as M(A,B) = A f B by using
infix notation. We remark that f is called the representing function of M , and also
it is permitted to consider binary operations given by (3.1) even if f is a general real-
valued function. By (3.1), we can consider weighted operator means for two strictly
positive operators. For example, for A,B > 0 and t ∈ [0,1] , At(A,B) = (1− t)A+ tB

(arithmetic mean) and Gt(A,B) = A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 (geometric mean). We remark

that their representing functions are At(1,x) , Gt(1,x) (denoted by At(x) , Gt(x)), re-
spectively. Similarly, we can introduce the operator mean M corresponding to the
representing function M(1,x) (denoted by M(x)) by the numerical mean M if M(1,x)
is operator monotone.

For all numerical means stated in section 1, we can consider their operator versions
under suitable conditions of q . Concretely, we can consider the weighted power mean
Pt,[q] and the power difference mean J[q] for two positive operators. In fact, Pt,[q](x) is
an operator monotone function on [0,) for t ∈ [0,1] and q ∈ [−1,1] , and also J[q](x)
is operator monotone on [0,) for q ∈ [−2,1] (see [3], for instance). We remark
that the weighted Heinz mean HZt,[q] and its operator version HZt,[q] for q ∈ [0,1] are
introduced in [4] by using (3.2) stated below, and also the operator weighted logarithmic
mean LMt is considered in [7] (see also [4]).

An operator mean M is said to be symmetric if M(A,B) = M(B,A) (symmetry)
holds. A weighted operator mean Mt is said to be transpose symmetric if Mt(A,B) =
M1−t(B,A) (transpose symmetry) holds for all t ∈ [0,1] . The weighted means in sec-
tion 1 are not symmetric except the case t = 1

2 , but transpose symmetric. For two

operator means M and M̃ , M � M̃ (resp. M = M̃ ) means that M(A,B) � M̃(A,B)
(resp. M(A,B) = M̃(A,B)) for all A,B > 0.

For an operator mean M and its representing function f , the operator means
whose representing functions are x f (x−1) , f (x−1)−1 and x

f (x) are called transpose,

adjoint and dual of M , and they are denoted by M◦ , M∗ and M⊥ , respectively.
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We easily obtain that M◦(A,B) = M(B,A) for A,B > 0. An operator mean M is
symmetric if and only if M = M◦ if and only if f (x) = x f (x−1) for all x > 0. An
operator mean M is said to be selfadjoint if M = M∗ holds, and M is selfadjoint if
and only if f (x) = f (x−1)−1 for all x > 0, that is, f is selfadjoint. We also note that a
weighted operator mean Mt with the representing function ft is transpose symmetric
if and only if Mt = M◦

1−t for all t ∈ [0,1] if and only if ft(x) = x f1−t(x−1) for all
x > 0 and t ∈ [0,1] , that is, ft is transpose symmetric.

Recently, in [4], we discussed the definition of weighted means and introduced the
notion of a transpose symmetric path of t -weighted M-means.

DEFINITION 3.1. ([4]) Let M be a symmetric operator mean and A,B > 0. If
the following conditions hold, then Mt is said to be a weighted M-mean, and a one-
parameter family {Mt}t∈[0,1] is said to be a transpose symmetric path of t -weighted
M-means.

(i) Mt is an operator mean for all fixed t ∈ [0,1] .

(ii) M0(A,B) = A , M 1
2
(A,B) = M(A,B) and M1(A,B) = B .

(iii) Mt(A,B) = M1−t(B,A) for all t ∈ [0,1] (transpose symmetry).

(iv) Mt is t -weighted for all fixed t ∈ [0,1] , that is, f ′t (1) = t for the representing
function ft of Mt .

In [4], we considered the function nt [s] : [0,) → [0,) defined by

nt [s](x) = (1− t)1−s(xt)+ txts(x1−t) for {s} ∈ R and t,s ∈ [0,1] , (3.2)

where R =
{{ ft}t∈[0,1] : ft is the representing function of Mt ∈ {Mt}t∈[0,1]

}
for a

transpose symmetric path {Mt}t∈[0,1] of t -weighted M-means, and { ft}t∈[0,1] is de-
noted by { ft} briefly. We showed that nt [s] makes a transpose symmetric path of
t -weighted N[s]-means.

THEOREM 3.A. ([4]) Let {s} ∈ R and nt [s] be as in (3.2). Let Nt [s] be the
binary operationwhose representing function is nt [s] , and also N[s] = N 1

2
[s] . Then

the family {Nt [s]}t∈[0,1] is a transpose symmetric path of t -weighted N[s]-means.

Here, as a generalization of nt [s] , we introduce the function nt [s,p] : [0,) →
[0,) defined by

nt [s,p](x) = (1− t)1−s(p(x))+ tp(x)s(1−p(x−1)−1) (3.3)

for {s},{p}∈R and t,s, p∈ [0,1] . Particularly, when  is the representing function
of a symmetric operator mean, we can define

nt [ ,p](x) = (1− t)(p(x))+ tp(x)(1−p(x−1)−1) (3.4)

for t, p ∈ [0,1] as the case s = 1
2 in (3.3), where we do not have to consider a one

paremeter family {s} . We get the condition that nt [s,p] makes a transpose sym-
metric path of t -weighted operator means as follows:
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THEOREM 3.1. Let {s},{p} ∈ R and nt [s,p] be as in (3.3). Let Nt [s,p]
be the binary operation whose representing function is nt [s,p] . The the following
assertions hold for t,s, p ∈ [0,1] .

(i) Nt [s,p] is an operator mean.

(ii) Nt [s,p] is {(1− s)p + st} -weighted. Moreover, for s ∈ [0,1) , Nt [s,p] is
t -weighted if and only if p = t .

(iii) Let p = t or p = 1
2 . Then Nt [s,p] is transpose symmetric.

(iv) Let N[s,] = N 1
2
[s, 1

2
] . Then the family {Nt [s,t ]}t∈[0,1] is a transpose sym-

metric path of t -weighted N[s,]-means.

Proof. We can easily verify the case s = 1 since Nt [1,p] = At , so we assume
s �= 1.

(i) We get operator monotonicity of nt [s,p] since

p(x)s x = p(x)s
(
p(x)−1x

)
= p(x)s

({x1−p(x−1)}−1x
)

= p(x)s
(
1−p(x−1)−1) (3.5)

ensures operatormonotonicity of p(x)s
(
1−p(x−1)−1

)
, where s means an operator

mean with the representing function s . We also have nt [s,p](1) = 1 obviously.
(ii) We have

n′t [s,p](x) = (1− t) ′
1−s

(
p(x)

)
 ′p(x)+ t

{
 ′p(x)s

(
1−p(x−1)−1)

+ p(x) ′
s

(
1−p(x−1)−1)1−p(x−1)−2 ′1−p(x

−1)x−2
}
,

so that we obtain

n′t [s,p](1) = (1− t)(1− s)p+ t{p+ s(1− p)}= (1− s)p+ st.

Therefore Nt [s,p] is t -weighted if and only if (1− s)p+ st = t , that is, p = t .
(iii) We have

xn1−t [s,1−p](x−1)

= x
{
t1−s

(
1−p(x−1)

)
+(1− t)1−p(x−1)s

(
p(x)−1)}

= (1− t)x1−p(x−1)s
(
p(x)−1)+ tx1−s

(
1−p(x−1)

)
= (1− t)p(x)s

(
p(x)−1)+ tx1−p(x−1)s

(
1−p(x−1)−1)

= (1− t)1−s
(
p(x)

)
+ tp(x)s

(
1−p(x−1)−1)

= nt [s,p](x)

since s and p are transpose symmetric. Therefore, if p = t or p = 1
2 holds, then

Nt [s,p] is transpose symmetric.
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(iv) We easily get that n0[s,0](x)= 1 and n1[s,1](x)= x , and also n 1
2
[s, 1

2
](x)

is the representing function of N[s,] obviously. Thereforewe can verify that Nt [s,t ]
has four properties in Definition 3.1 by (i), (ii) and (iii). �

We have the following property for the weighted operator means in Theorem 3.1.
It is immediately obtained by (3.3) and (3.5).

THEOREM 3.2. Let {s},{̃s},{p},{̃p} ∈ R . If s � ̃s and p � ̃p for all
s, p ∈ [0,1] , then

Nt [s,p] � Nt [̃s, ̃p]

holds for t,s, p ∈ [0,1] .

4. Relations among the weighted means

In [4], we obtained the following result by considering (3.2). Recall that LMt is
t -weighted as in [4, pp. 180–181].

THEOREM 4.A. ([4]) For t,s ∈ [0,1] , the inequalities

Ht � Gt � HZt,[s] � Nt [LMs] � Kt,[s] � At (4.1)

hold. In particular, for s = 1
2 , we have

Ht � Gt � HZt,[ 1
2 ] � LMt � Kt,[ 1

2 ] � At . (4.2)

We recognize that (4.2) is the operator version of Proposition 2.B, so that (4.1) and
Proposition 2.2 are different generalizations of (4.2). Here, we try to get a generaliza-
tion including both (4.1) and Proposition 2.2.

Put (x) = J[q](x) and t(x) = Pt,[q](x) for t ∈ [0,1] and q∈ [−1,1] in (3.4). Then
the representing function of Nt [J[q],Pt,[q]] (q �= 0,−1) is

nt [J[q],Pt,[q]](x)

= (1− t)
q

q+1
{(1− t)+ txq} q+1

q −1
{(1− t)+ txq}−1

+ t{(1− t)+ txq} 1
q

q
q+1

{t +(1− t)x−q}−(q+1)
q −1

{t +(1− t)x−q}−1−1

=
q

q+1

⎛⎝(1− t)
{(1− t)+ txq} q+1

q −1
t(xq−1)

+ t{(1− t)+ txq} 1
q
xq+1{(1− t)+ txq}−(q+1)

q −1
xq{(1− t)+ txq}−1−1

⎞⎠
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=
q

q+1

(
(1− t)

{(1− t)+ txq} q+1
q −1

t(xq−1)

+ t{(1− t)+ txq} 1
q
xq+1{(1− t)+ txq}−1

q −{(1− t)+ txq}
xq−{(1− t)+ txq}

)

=
q

q+1

⎛⎝1− t
t

{(1− t)+ txq} q+1
q −1

xq −1
+

t
1− t

xq+1−{(1− t)+ txq} q+1
q

xq−1

⎞⎠
= Jt,[q](x).

Similarly, for q = 0,−1, we can get that

nt [J[0],Pt,[0]](x) = nt [LM,Gt ](x) = LMt (x) = Jt,[0](x)

and
nt [J[−1],Pt,[−1]](x)

=
1− t

t
log{(1− t)+ tx−1}

x−1−1
+

t
1− t

logx−1− log{(1− t)+ tx−1}
x−1−1

= Jt,[−1](x).

Therefore, for operators on a complex Hilbert space, we can define the weighted power
difference mean Jt,[q] by Nt [J[q],Pt,[q]] for t ∈ [0,1] and q ∈ [−1,1] . We note that the
following Proposition 4.1 holds.

PROPOSITION 4.1. For t ∈ [0,1] and q ∈ [−1,1] , Pt,[q] � Jt,[q] � At holds.

Moreover, by using the representing function of the weighted power difference
mean Jt,[q] , we introduce

Jt,[s,q] = Nt [Js,[q],Pt,[q]] for t,s ∈ [0,1] and q ∈ [−1,1]

as a generalization of Jt,[q] . Then we obtain a generalization of (4.1) in Theorem 4.A
and Proposition 2.2 as follows:

THEOREM 4.2. Let A,B > 0 and t,s ∈ [0,1] . If q ∈ [−1,1] , then

Ht(A,B) � Pt,[q](A,B) � At
(
P(1−s)t,[q](A,B),Ps+(1−s)t,[q](A,B)

)
� Jt,[s,q](A,B) � As

(
Pt,[q](A,B),At(A,B)

)
� At(A,B)

(4.3)

holds, and also if q ∈ [0,1] , then

Gt(A,B) � HZt,[s](A,B) � Gs
(
Pt,[q](A,B),Pt,[s](A,B)

)
� At

(
P(1−s)t,[q](A,B),Ps+(1−s)t,[q](A,B)

)
� Jt,[s,q](A,B)

(4.4)

holds.
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We remark that (4.3) leads (4.1) in Theorem 4.A by putting q = 0, and also (4.3)
leads the operator version of Proposition 2.2 by putting s = 1

2 .
In order to prove Proposition 4.1 and Theorem 4.2, we show the following lemma.

LEMMA 4.3. Let t,s ∈ [0,1] and q ∈ [−1,1] . Then the following equations hold
for x > 0 .

(i) Pt,[q]
(
P(1−s)t,[q](x),Ps+(1−s)t,[q](x)

)
= Pt,[q](x) .

(ii) nt [Ps,[q],Pt,[q]](x) = At
(
P(1−s)t,[q](x),Ps+(1−s)t,[q](x)

)
.

(iii) nt [As,At ](x) = At(x) .

Proof. We can assume q �= 0 since the case q = 0 holds by considering the limit
as q → 0 or similar argument to the case q �= 0. We get (i) since

Pt,[q]
(
P(1−s)t,[q](x),Ps+(1−s)t,[q](x)

)
=
[
(1− t){1− (1− s)t+(1− s)txq}+ t{1− (s+(1− s)t)+(s+(1− s)t)xq}] 1

q

= {(1− t)+ txq} 1
q = Pt,[q](x).

We obtain (ii) since {t +(1− t)x−q}−1 = xq{(1− t)+ txq}−1 leads that

nt [Ps,[q],Pt,[q]](x)

= (1− t)
[
s+(1− s){(1− t)+ txq}] 1

q

+ t{(1− t)+ txq} 1
q
[
(1− s)+ s{t +(1− t)x−q}−1] 1

q

= (1− t){1− (1− s)t+(1− s)txq} 1
q + t

[
(1− s){(1− t)+ txq}+ sxq] 1

q

= (1− t){1− (1− s)t+(1− s)txq} 1
q + t

[
1−{s+(1− s)t}+{s+(1− s)t}xq] 1

q

= At
(
P(1−s)t,[q](x),Ps+(1−s)t,[q](x)

)
.

By putting q = 1 in (ii), we have (iii) since

nt [As,At ](x) = At
(
A(1−s)t(x),As+(1−s)t(x)

)
= (1− t){1− (1− s)t+(1− s)tx}+ t

[
(1− s)(1− t)+{s+(1− s)t}x]

= (1− t)− (1− s)(1− t)t+(1− s)(1− t)tx+(1− s)(1− t)t+{s+(1− s)t}tx
= (1− t)+ tx = At(x).

Therefore the proof is complete. �

Proof of Proposition 4.1. We can obtain the result by Proposition 2.2, but we give
a direct proof here. It is known that P[q] � J[q] holds for q ∈ [−1,1] (see [1, 8], for
instance).
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By putting s = 1
2 in Lemma 4.3, we have

Pt,[q]
(
Pt

2 ,[q](x),P1+t
2 ,[q](x)

)
= Pt,[q](x),

nt [P[q],Pt,[q]](x) = At
(
Pt

2 ,[q](x),P1+t
2 ,[q](x)

)
and

nt [A,At ](x) = At(x).

Therefore for A,B > 0,

Pt,[q](A,B) = Pt,[q]
(
P t

2 ,[q](A,B),P 1+t
2 ,[q](A,B)

)
� At

(
P t

2 ,[q](A,B),P 1+t
2 ,[q](A,B)

)
= Nt [P[q],Pt,[q]](A,B)

� Nt [J[q],Pt,[q]](A,B) = Jt,[q](A,B)

and
Jt,[q] = Nt [J[q],Pt,[q]] � Nt [A,At ] = At

hold by Theorem 3.2. �

Proof of Theorem 4.2. The first inequality in (4.3) is well known and the first
inequality in (4.4) is easily obtained. We can assume q �= 0 since the case q = 0 holds
by considering the limit as q → 0 or similar argument to the case q �= 0. By Lemma
4.3,

Pt,[q]
(
P(1−s)t,[q](x),Ps+(1−s)t,[q](x)

)
= Pt,[q](x),

nt [Ps,[q],Pt,[q]](x) = At
(
P(1−s)t,[q](x),Ps+(1−s)t,[q](x)

)
and

nt [As,At ](x) = At(x)

hold, and also we obtain

nt [As,Pt,[q]](x)

= (1− t)
[
s+(1− s){(1− t)+ txq} 1

q
]

+ t{(1− t)+ txq} 1
q
[
(1− s)+ s{t +(1− t)x−q}−1

q
]

= s(1− t)+ (1− s)(1− t){(1− t)+ txq} 1
q +(1− s)t{(1− t)+ txq} 1

q + stx

= (1− s){(1− t)+ txq} 1
q + s{(1− t)+ tx}

= As
(
Pt,[q](x),At (x)

)
.

Then for A,B > 0 and q ∈ [−1,1]\ {0} ,

Pt,[q](A,B) = Pt,[q]
(
P(1−s)t,[q](A,B),Ps+(1−s)t,[q](A,B)

)
� At

(
P(1−s)t,[q](A,B),Ps+(1−s)t,[q](A,B)

) (4.5)
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holds, and also

Nt [Ps,[q],Pt,[q]] � Nt [Js,[q],Pt,[q]] � Nt [As,Pt,[q]] � Nt [As,At ],

that is,
At
(
P(1−s)t,[q](A,B),Ps+(1−s)t,[q](A,B)

)
� Jt,[s,q](A,B)

� As
(
Pt,[q](A,B),At(A,B)

)
� At(A,B)

(4.6)

holds by Proposition 4.1 and Theorem 3.2. Therefore we obtain (4.3) by (4.5) and (4.6).
Moreover, by putting q = 0 in (ii) in Lemma 4.3, we have

nt [Gs,Gt ](x) = At
(
G(1−s)t(x),Gs+(1−s)t(x)

)
= (1− t)x(1−s)t + txs+(1−s)t = x(1−s)t{(1− t)+ txs} = HZt,[s](x),

and also we obtain

nt [Gs,Pt,[q]](x)

= (1− t){(1− t)+ txq} 1−s
q + t{(1− t)+ txq} 1

q {t +(1− t)x−q}−s
q

= (1− t){(1− t)+ txq} 1−s
q + txs{(1− t)+ txq} 1−s

q

= {(1− t)+ txq} 1−s
q {(1− t)+ txs} s

s

= Gs
(
Pt,[q](x),Pt,[s](x)

)
.

Then for A,B > 0 and q ∈ (0,1] , we get

Nt [Gs,Gt ] � Nt [Gs,Pt,[q]] � Nt [Ps,[q],Pt,[q]] � Nt [Js,[q],Pt,[q]],

that is,

HZt,[s](A,B) � Gs
(
Pt,[q](A,B),Pt,[s](A,B)

)
� At

(
P(1−s)t,[q](A,B),Ps+(1−s)t,[q](A,B)

)
� Jt,[s,q](A,B)

by Proposition 4.1 and Theorem 3.2, so that we obtain (4.4). �
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