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THE WEIGHTED POWER DIFFERENCE
MEAN AND ITS GENERALIZATION
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(Communicated by J. 1. Fujii)

Abstract. Pal, Singh, Moslehian and Aujla obtained the inequalities for a convex function and
introduced the weighted logarithmic mean for two positive numbers or bounded linear operators
on a complex Hilbert space. Furuichi and Minculete refined the inequalities by Pal et al.

In this paper, based on their results, we newly introduce the weighted power difference
mean as a generaliation of the weighted logarithmic mean. We show relations among the
weighted power, power difference and arithmetic means. Moreover, we obtain its generaliza-
tion by considering the notion of a transpose symmetric path of 7 -weighted operator means.

1. Introduction

The celebrated arithmetic-logarithmic-geometric-harmonic mean inequality

2ab a—>b a+b
< Vab < <
a+b loga —logh 2

for a,b >0

are generalized to many directions. As one of them, we consider the weighted means.
For a,b >0 and 7 € [0,1],

Ai(a,b) = (1 —1)a+1tb (arithmetic mean),

G:(a,b) =a' D' (geometric mean),

Hy(a,b)={(1—t)a " +1b~'}"" (harmonic mean).

There exists some definitions of the weighted logarithmic mean. Here, we consider the
weighted logarithmic mean LM, (a,b) for 1 € [0,1] as

1 1—1¢ t
LM, b) = 1—=t¢ t bt bt 1-t bl—t
a,b) loga —logh { ;¢ (a )+ 1—1t (a )

introduced by Pal, Singh, Moslehian and Aujla [7], which is based on the Hermite-
Hadamard inequality for convex functions. In [7], they showed that the inequalities

Ht(a7b)th(aab)gLMl(aJ))gAt(aJ)) (11)
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always hold for ¢ € [0, 1]. If the weight parameter ¢ is equal to %, then the weighted

means coincide with the original (non-weighted) ones, and then we abbreviate the
weight 1 as A(a,b) :A% (a,b).

The following one-parameter weighted means are known, which extend the weig-
hted arithmetic, geometric and harmonic means. For a,b >0, ¢t € [0,1] and ¢ € R,

1
1 —1)a?+1tb?}d  if g #0,
P, (a,b) = { ower mean),
rla) (@) {al—fbf if =0, ® )
K, y(a.b) = (1—q)a" 0" +q{(1—t)a+tb} (Heron mean),
HZ,,(a,b) = (1 —1)aIrap=a) 4 (=) (1=1)pia(l=r)

(Heinz mean).

It is well known that B, 4 (a,b) is monotone increasing on g € R. We remark that the
non-weighted Heinz mean HZ, (a,b) = %(aHTq bt r a2t ) is often expressed by
HZ[r] (a7b) = %(arbl—r _'_al—rbr)’ that is, HZ[,] (a,b) = ﬁﬂzr,l”(mb) for r € [07 l} .
We can consider these means for two positive bounded linear operators on a complex
Hilbert space by Kubo-Ando theory on operator means [6]. Details are in section 3.

Moreover, for g € R,

q qdt1 — patl

—— if 0,—1,
g1 w1470
_b _
Jig (a,b) = l()gzw if g=0, (power difference mean)
ab(loga —logb) it g= 1.
a—>b

is known. We note that Ji;(a,b) is monotone increasing on g € R. The power differ-
ence mean Ji; (a,b) includes non-weighted arithmetic, logarithmic, geometric and har-
monic means by putting ¢ = 1,0, _71, —2, respectively. But it seems that the weighted

power difference mean has not introduced yet.

In this paper, firstly we introduce the weighted power difference mean for two
positive numbers, and also we show the relations among the weighted power, power
difference and arithmetic means in section 2. Secondly, we consider weighted operator
means on a complex Hilbert space. Recently, in [4], we introduced the notion of a trans-
pose symmetric path of #-weighted operator means, and also we got relations among
some weighted operator means. By using this concept, we discuss a generalization of
the weighted power difference mean in sections 3 and 4.
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2. The weighted power difference mean

Furuichi and Minculete [2] obtained a refinement of the result in [7] for a convex
function.

THEOREM 2.A. ([2, Theorem 2.1]) Let 0 < o < . For every convex Riemann
integrable function f : [o,f] — R and t € [0,1], we have

F(av,B) < RY)(a,B) < Cra(e.B) <RY) (e, B) < f(c) Vi f(B),

where oV, =A;(a,B) = (1 —1)o+18,

Cf7t a,B) = </ f(aViupB) dx) Vi </ F((1=0)(p- OC))C—FO(V,B)dx)
RY)(0,B) = £ B)Vif(oV 1y B).
R (0, B) = (F()V. £ (B)) V(¥ B).

We remark that we can slightly extend the assumption of Theorem 2.A by consid-
ering parallel translation of f and the property oV, = fV,_;c for ¢ € [0,1].

THEOREM 2.1. Let o, € R, and let I = [min{a,ﬁ}, max{a,B}]. For every
convex Riemann integrable function f:1 — R and t € [0,1], we have

F(aV,B) <R (a,B) < Cro(.B) <RV (0. B) < F()Vif(B),  (2.1)

where Cy (0, B), ft(oc B) and R( ,(a,B) are as stated in Theorem 2.A.
In [7], the weighted logarithmic mean was defined as LM; (a,b) = Cy,(loga,logb),

where f(x) = ¢*. It was shown in [2] that Theorem 2.A implies the following inequal-
ities on the weighted logarithmic mean.

PROPOSITION 2.B. ([2, Corollary 2.2]) Let a,b > 0. Then the inequalities
Gi(a,b) <A(G

hold for t € [0,1].

(a,b), %(a b)) < LM;(a,b) < A(A;(a,b),G;(a,b)) < As(a,b)

L
2

m—

Here, we try to introduce a generalization of LM;(a,b). Let fy(x) = (1+qx)4,
o= “qq—_l, B = bqq—_l for a,b >0 and g € R\ {0}. Then f; can be defined on

1
I = [min{c, B}, max{ct,f}]. We remark that 1in(1)fq(x) = liII(l)(l +gx)4 = ¢" and
9— q—

lim )% =logx.

q—0
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If ¢ # —1, we have

1
/0 fulaViB) dx

= /01{1—|—qa+qt(ﬁ_a)x}é dx
o (g B - (i)

+1
_q {(l—t)a‘f—i-tb‘f}qT—a‘f+1
g+l 1(b9—ad) ’

(2.2)

and also by putting u = 1 —x, (2.2) ensures

1 1
| 1= =+ aviBydx= [ 1,8V pue)du

g+l g+l
g {1+ (1—n)a?} T —pt g b —{(1—1)al+1b}
g+l (1 —1)(a?—b7) g+l (1—1)(b?—ad) '

Therefore we get

ax
q 1—t{(1—t)a+1tb1} ¢« —a™!
q+1 t b1 — a4

quJ(avﬁ) =

1
tobT (1= 1)ad i) T

+1—t b9 — a4

If g=—1, we have

_ 1—tlog{(1—t)a'+1b~"} —loga™!

Cf,l,t(avﬁ)_ P b1 g1
t logh™!'—log{(1—t)a ' +tb~'}
11—t b1 —a!

by the similar calculation.
Therefore we can define the weighted power difference mean J; (a,b) as fol-
lows: For 7 € [0,1] and g € R,

al—1 bi—1
qu7t < )
Jt,[q] (a,b) = q
Cy,+(loga,logh), where fy(x)=¢" if ¢=0.

), where fq(x):(1+qx)$ if ¢#0,

Of course, we can verify that J%.[q] (a,b) = Ji4(a,b) for g € R. By Theorem 2.1, we
obtain a generalization of Proposition 2.B.
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PROPOSITION 2.2. Let a,b > 0. Then the inequalities
Pt,[q] (aab) < AZ(P%[q] (a,b),P%’[q] (a7b))
< Jt,[q] (aab) < A(At(aab)apt,[q] (aab)) < At(avb)
hold for t € [0,1] and q < 1.

1
Proof. Let fy(x) = (1+qx)7, o0 = =4, B = %=L for a,b>0 and ¢ # 0. Then
f4(x) is convex for x > =L if 0 < ¢ < 1,and f,(x) is convex for x < _71 if g <0. Here

we consider applying Theorem 2.1. We have

F(@)Vifo(B) = (1 —1)(1 4 ga)i +1(1+qB)
(1—t)a+1tb=A(a,b)

=

(2.3)

and 1
Ja(aViB) ={1+(1—t)qo+1gB}a
= {(1=0)a?+1b}7 =P, (a,b).
By using (2.3) and (2.4), we get

Rg?t(a,ﬁ) = (1=0)fy(aV 1 B)+1fy(V 1.: B)

(2.4)

-0 (1-3)er+

= At (P%[q] (a’b)’P%,[q] (a,b))
and
R, (@ B) = U)o B)} + 3 ola%,)

- %{(1 —t)a+tb}—|—%{(1 — 1)+ 159} = A(A;(a,b), P, (a, D).

Therefore Theorem 2.1 ensures the desired inequalities. The case ¢ = 0 is obtained by
considering the limitas ¢ — 0. [

We remark that we easily obtain the inequalities for g > 1.
PROPOSITION 2.3. Let a,b > 0. Then the inequalities
Ai(a,b) <A(Ai(a,b),F, g(a,b)) < Ty q)(a,b)
S APy g(a,b), Pt 1,(a,b)) < B gg)(a,b)

hold for t € [0,1] and q > 1.

Proof. The reverse inequalities of (2.1) hold for a concave function f by replacing
f by —f in Theorem 2.1. Therefore we have the desired inequalities since f,(x) =

1
(1+¢x)7 is concave for x > _71 ifg>1. O
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3. A transpose symmetric path of 7 -weighted operator means including
the weighted power difference mean

In what follows, we discuss operator means and a generalization of the weighted
power difference mean by using our concept in [4]. Of course, the results for operator
means are valid for numerical means.

Here, an operator means a bounded linear operator on a complex Hilbert space 7 .
An operator T is said to be positive (denoted by T > 0) if (Tx,x) > 0 for all x € 7,
and 7 is said to be strictly positive (denoted by 7" > 0) if T is positive and invertible.
A real-valued function f defined on J C R is said to be operator monotone if A <
B implies f(A) < f(B) for selfadjoint operators A and B whose spectra 6(A),5(B) C
J,where A< B means B—A > 0.

On operator means for two positive operators, Kubo and Ando [6] obtained that
there exists a one-to-one correspondence between an operator mean 91 and an operator
monotone function f > 0 on [0,e0) with f(1) =1 via f(x)I = 9(I,xI) as follows:

M(A,B) =A2f(A2 BAZ)A? 3.1)

if A>0 and B > 0. An operator mean is also expressed as 9t(A, B) = A 6B by using
infix notation. We remark that f is called the representing function of 91, and also
it is permitted to consider binary operations given by (3.1) even if f is a general real-
valued function. By (3.1), we can consider weighted operator means for two strictly
positive operators. For example, for A,B >0 and ¢ € [0,1], %, (A,B) = (1 —t)A+tB
(arithmetic mean) and &,(A,B) = A? (A%IBA%I)’A% (geometric mean). We remark
that their representing functions are A,(1,x), G;(1,x) (denoted by A;(x), G;(x)), re-
spectively. Similarly, we can introduce the operator mean 9t corresponding to the
representing function M(1,x) (denoted by M(x)) by the numerical mean M if M(1,x)
is operator monotone.

For all numerical means stated in section 1, we can consider their operator versions
under suitable conditions of g. Concretely, we can consider the weighted power mean
Bi[q and the power difference mean J) for two positive operators. In fact, B, [;(x) is
an operator monotone function on [0,c0) for ¢ € [0,1] and ¢ € [~1, 1], and also J|;(x)
is operator monotone on [0,00) for g € [—2,1] (see [3], for instance). We remark
that the weighted Heinz mean ﬁt’[q] and its operator version ﬁt7[q] for g € [0,1] are
introduced in [4] by using (3.2) stated below, and also the operator weighted logarithmic
mean £9)1; is considered in [7] (see also [4]).

An operator mean 9t is said to be symmetric if 9t(A,B) = M(B,A) (symmetry)
holds. A weighted operator mean 90, is said to be transpose symmetric if 9, (A, B) =
M;_;(B,A) (transpose symmetry) holds for all ¢ € [0,1]. The weighted means in sec-
tion 1 are not symmetric except the case r = %, but transpose symmetric. For two

operator means 9t and M, M < M (resp. M = M) means that M(A,B) < /E)ﬁ(A,B)

(resp. M(A,B) = M(A,B)) forall A,B > 0.
For an operator mean 21 and its representing function f, the operator means

whose representing functions are xf(x~!), f(x~!)~! and 7 are called transpose,

adjoint and dual of 9, and they are denoted by 90t°, 99t* and 9, respectively.
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We easily obtain that 91°(A,B) = M(B,A) for A,B > 0. An operator mean 9 is
symmetric if and only if 9t = 9° if and only if f(x) =xf(x"!) for all x > 0. An
operator mean 901 is said to be selfadjoint if 99t = 9t* holds, and 901 is selfadjoint if
and only if f(x) = f(x~1)~! forall x > 0, that is, f is selfadjoint. We also note that a
weighted operator mean 91, with the representing function f; is transpose symmetric
if and only if 9, = 95 _, for all # € [0,1] if and only if f;(x) = xf1_,(x~!) for all
x>0 and ¢ € [0,1], that s, f; is transpose symmetric.

Recently, in [4], we discussed the definition of weighted means and introduced the
notion of a transpose symmetric path of 7-weighted 9)T-means.

DEFINITION 3.1. ([4]) Let 91 be a symmetric operator mean and A,B > 0. If
the following conditions hold, then 91, is said to be a weighted 9)t-mean, and a one-
parameter family {imt}tem is said to be a transpose symmetric path of 7-weighted
IM-means.

(i) 9 is an operator mean for all fixed ¢ € [0,1].
(i) DMg(4,B) = A, My (A, B) = M(A,B) and M, (4,B) = B.
(ii)) 9 (A,B) =9 ;(B,A) forall ¢ € [0,1] (transpose symmetry).

(iv) 90, is r-weighted for all fixed 7 € [0,1], that is, f;(1) =1 for the representing
function f; of 91;.

In [4], we considered the function n;[@s] : [0,00) — [0,0) defined by
n@](x) = (1= 1)@y () + 1t s (x' ) for {@s} € Z and 1,5 € [0,1],  (3.2)

where Z = {{fz}te[o,l] . f; is the representing function of M; € {‘Jﬁ,}te[o’l]} for a
transpose symmetric path {90 },c(o 1 of #-weighted 9t-means, and {f; },c[o,1) is de-
noted by {f;} briefly. We showed that n,[@,] makes a transpose symmetric path of
t-weighted N[¢s]-means.

THEOREM 3.A. ([4]) Let {¢s} € Z and n|@s] be as in (3.2). Let M [@s] be the
binary operation whose representing function is n:[Qs], and also M[ps] =N ! [@s]. Then

the family {[@s]},c(0,1) is a transpose symmetric path of t -weighted N[@s]-means.

Here, as a generalization of n,[¢,], we introduce the function n;[@y,y,] : [0,00) —
[0,00) defined by

ny [(P.V,Yp} (x) =01 _t)(Pl—s(Yp(x)) +tYp(x)(Ps(Yl—p(xil)7l) (3.3)

for {¢s},{yp} € Z and t,s,p € [0,1]. Particularly, when ¢ is the representing function
of a symmetric operator mean, we can define

[, %)(x) = (1 =)0 (1p(x)) + 17 ()@ (11-p(x~) ") (3.4)

for 7,p € [0,1] as the case s = % in (3.3), where we do not have to consider a one

paremeter family {¢,}. We get the condition that n;[¢y,Y,] makes a transpose sym-
metric path of 7-weighted operator means as follows:
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THEOREM 3.1. Let {@s},{y,} € Z and n;[@s, v, be as in (3.3). Let N[y, Y]
be the binary operation whose representing function is n;[Qs,V,|. The the following
assertions hold for t,s,p € [0,1].

() M [@s,7,] is an operator mean.

(i) N[y, vp] is {(1 —s)p+st}-weighted. Moreover, for s € [0,1), M [@s, 7] is
t-weighted if and only if p =t.

(iii) Let p=t or p= % Then 2@y, yp) is transpose symmetric.
(iv) Let N[@s,y] = ‘ﬂ% [(p_y,y%]. Then the family {9 [@s, ¥i|}ie(0,1) is a transpose sym-

metric path of t -weighted N[y, Y] -means.

Proof. We can easily verify the case s = 1 since 9% [¢1,7,] =2, so we assume
s#1.
(i) We get operator monotonicity of 7;[¢y,y,] since
_ —1,) _ —1y -1
Yp(x) Op, X = Yp(x) @5 (Yp(x) x) = Yp(x) (P.\'({xyl—p(x )} x)
= Yp(x) (08 (Yl—p( 71)71)

ensures operator monotonicity of ¥, (x) @y (y1—,(x~!)~!), where o, means an operator
mean with the representing function ¢,. We also have n,[¢,,7,](1) = 1 obviously.
(i1) We have

s, 1p) () = (1= 1)1, (15(0) 1,() +1 {7} ><ps<yl P
10 (1) o) 6,

(3.5)

=

so that we obtain

m @5, vp)(1) = (1=1)(1=s)p+1{p+s(1=p)} = (1 —s)p+st.
Therefore M [¢y,yp] is -weighted if and only if (1 —s)p+st =1, thatis, p=1.
(iii) We have
xny[@s,v1-p)(x7)
= x{t(Pl—s (Yl—p(xil)) +(1— t)Yl—p(x71)¢s (Yp(x)il)}
= (=) px s (vp () ") + x5 (11-p(x7 1)
= (1 _Z)Yp(x)q)s (Yp(x)_l) +tx')/lfp(x_1)q)s (Ylfp(x_l)_l)
= (1=0)15(7,(0)) + 17, ()5 (11— (x ") 7")
= nl[(pMYP](x)

since @y and y, are transpose symmetric. Therefore, if p =1 or p = % holds, then
N;[@s,yp) is transpose symmetric.



THE WEIGHTED POWER DIFFERENCE MEAN AND ITS GENERALIZATION 975

(iv) We easily get that no[@s, y0](x) = 1 and n;[@y,v1](x) = x, and also n 1 [@s, 11 1(x)

is the representing function of M[@y, Y] obviously. Therefore we can verify that 9% [y, ;]
has four properties in Definition 3.1 by (i), (ii) and (iii)). [

We have the following property for the weighted operator means in Theorem 3.1.
It is immediately obtained by (3.3) and (3.5).

THEOREM 3.2. Let {5}, {@s}. {vp},{¥p} € Z. If o3 < @ and y, <Y, for all
s,p € [0,1], then

mt [(P.Y,Yp} < mt[(ﬁw?p]
holds for t,s,p € [0,1].

4. Relations among the weighted means

In [4], we obtained the following result by considering (3.2). Recall that LM, is
t-weighted as in [4, pp. 180-181].

THEOREM 4.A. ([4]) Fort,s € [0,1], the inequalities
9 <6 <H3y g <MILM) < R g <2 (4.1)
hold. In particular, for s = % we have
D <G <HI, 1) < EMy <K, () < (4.2)

We recognize that (4.2) is the operator version of Proposition 2.B, so that (4.1) and
Proposition 2.2 are different generalizations of (4.2). Here, we try to get a generaliza-
tion including both (4.1) and Proposition 2.2.

Put ¢(x) =Jig(x) and ¥ (x) = P, 4 (x) for £ € [0,1] and g € [~1,1] in (3.4). Then
the representing function of M [Jiy), P, g] (¢ #0,—1)is

e Jig), )} (%)
g {(1=0) 4+ —1
g+1 {(1—1)+mx1}—1
q {t+(1—t)x_q}% —1
g+1 {t+(1—r)xa}-1-1
(1= +0m —1

(1)

=(l—-1)

+t{(1—1) +txq}5

q
=—— | (1—¢
q+1 ( )

| x9t1 — @ —
+t{(1—1)+mx?}4 ! xq{;(((ll _tt)):__tgjq}}l -1
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_ 4 <(1 RSN

(L0 ) F (1) 1
ot =)+ ;q)ﬂ(i}_zn{zgz} = q}>

+1 +1
q 1—z{(1 —t)—i—txq}qT -1 n t xat! —{(1—t)—|—tx‘1}q7
Tg+1 | oo xq—1 1—1¢ xd—1

= Jrjg) (%)-
Similarly, for ¢ = 0,—1, we can get that
[ Jjo)s P o)) (x) = me[LM, Gy ] (x) = LMy (x) = J, o) (x)

and

"t[J[ 15 r[ 1]](x)

1—t10g{(1—t)+tx‘1} t logx ' —log{(1—1¢)+x}

t —1 1 —1 x1—1
= ,7[,1]()6).

Therefore, for operators on a complex Hilbert space, we can define the weighted power
difference mean J, ;) by 9% [J|y, P, g for z € [0,1] and g € [—1,1]. We note that the
following Proposition 4.1 holds.

PROPOSITION 4.1. Fort € [0,1] and q € [~1,1], B, [y < I [ < ™ holds.

Moreover, by using the representing function of the weighted power difference
mean 3:,[q] , we introduce

3,7[S7q] ‘ﬁt[ s,lq)> ,[q]] for t,s € [O, 1] and qc [—1, 1]

as a generalization of J; ;. Then we obtain a generalization of (4.1) in Theorem 4.A
and Proposition 2.2 as follows:

THEOREM 4.2. Let A,B>0 and t,s € [0,1]. If g € [-1,1], then

9:(A,B) < By (A, B) <A (B(1-5)0,1g) (A5 B), Bt (1-s1.g) (A, B)) 43
< St,[s,q] (A7B) < s ("Bt,[q] (AvB)7Qlt(A7B)) < Q[l‘(AvB) '
holds, and also if q € [0,1], then
®t(A7B) < E@[s] (A B) (mt (AvB)7q3t7 5] (A B)) (4.4)
<A (B1-s).[) (A B), Byt (1-5)1,q (A B)) < Iy 5,4 (A, B) .

holds.
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We remark that (4.3) leads (4.1) in Theorem 4.A by putting g = 0, and also (4.3)
leads the operator version of Proposition 2.2 by putting s = % .

In order to prove Proposition 4.1 and Theorem 4.2, we show the following lemma.

LEMMA 4.3. Let t,s € [0,1] and q € [—1,1]. Then the following equations hold
for x> 0.

() P g (Pa—s)r.1g) () Pt (1=5)1.q) (%)) = Prg (x).
(i) 7 [Py 1), Py (%) = A (Pt =) g) (%), Py (11—, (g1 (X)) -
(lll) ny [A57At] ()C) = At (.x) .

Proof. We can assume ¢ # 0 since the case g = 0 holds by considering the limit
as g — 0 or similar argument to the case g # 0. We get (i) since

P i) (P91 g) () P (1=t () |
(=01 = (= ) (1= )} 4 101 = (s (1= 5)e) + (5 (1= 5)r)a}]
= {(1—1)+ 1} 1 = B (x).
We obtain (ii) since {z + (1 —)x 9} 1 =x9{(1 —1) +x9} ! leads that
[Py 415 P )] (%)
= (1= 0)s+ (1 =9){(1—1) +1x7}]
F{(1—1) + 0} [(1—5) +s{t+ (1—)x 9} 1]
= (1= ) {1 — (1 =)+ (1— )i} 42 [(1—$){(1 —1) +127) +5x9] 7

=(1-0){1—-(1—s)+(1 —s)t)cq}é +i[1—{s+(1—s)}+{s+(1 —s)t})cq]é
= A (Pa—y, 1) (%), Po (1= g (%)) -

By putting ¢ = 1 in (ii), we have (iii) since

A, Al (x) = A (A(l—s)t(x)aAs+(l—s)t (X))

(I=0){1—(1=s)t+ (1 —s)x}+2[(1—s)(1—1)+ {s+ (1 —s)r}x]
(I—t)—(1=s)(1—=0)t+ (1 —s)(1 —)tx+ (1 —s)(1 =)t + {s+ (1 —s)t }1x
(1—1)+1x=A/(x).

Therefore the proof is complete. [

Proof of Proposition 4.1. We can obtain the result by Proposition 2.2, but we give
a direct proof here. It is known that %M < Jjq holds for g € [—1,1] (see [, 8], for
instance).
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By putting s = % in Lemma 4.3, we have

B 1q) (Py g (), Prgs 1 (x)) = Py g (x),

[Py, P i) (x) = Ar (Py 1) (%), Pz () (%)

and
n; [A7At] (.x) = At (.x)
Therefore for A,B > 0,

s’pt,[q] (AvB) = s’pt.[q] (s’pi [q](AvB)vs’Bﬂ [ ](AvB))

< (P 1)(AB), Py (A, B)) =W [Py, P, y](A,B)
<Ny Prigl(A,B) =31 4 (A, B)

and
Jijg) = Nelig) Brjg] < M[AA] =24

hold by Theorem 3.2. [

Proof of Theorem 4.2. The first inequality in (4.3) is well known and the first
inequality in (4.4) is easily obtained. We can assume g # 0 since the case ¢ = 0 holds
by considering the limit as ¢ — 0 or similar argument to the case ¢ # 0. By Lemma
4.3,

P, 1 (Pa—s)e 1 (0)s Pos (1=5)1,1q) (%)) = Prpg (%),
1 [Py g1 Pr 1) (%) = A (Pl —)1g) (%), P (1)1 ()

and
ny [AS7AI] (X) =A; (x)

hold, and also we obtain
n[As, By [g] (%)
= (1=0)[s+ (1 = ){(1—1) +1a}7]
+t{(1 —t)+tx‘1}5 [(1—s)+s{t+(1 —t)x*‘f}?l]
—s(1— 1)+ (1 =)L =) {(1—1) 4207 + (1 — $)e{(1 — 1) + 29} + stx
= (1= $){(1—1)+0x9}a +s{(1 —1) +1x}
= As (P 1y (%), A (x)).
Then for A,B >0 and ¢ € [—1,1]\ {0},

By g1 (A, B) = Bt 14 (Br1—5)r.1g1 (A, B), Bt (1-9)1,q) (A, B))

’ 4.5)
\Qlt(w(lfs)t,[q]( 3 )7('}35' +(1— ( ’ ))
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holds, and also

N [P.s',[q]vpt,[q]] <Ny [‘Is,[q]apt,[q]] <Ny [AﬁPI,[q]] <Ny [Astt]a
that is,

I (('B(lfs)t,[q] (AaB)7q3s+(lfs)t,[q] (A7B)) < 3[,[.3‘,(1] (A7B)
< A (s’pt.,[q] (AvB)7Qlt(A7B)) < Qlt(AvB)
holds by Proposition 4.1 and Theorem 3.2. Therefore we obtain (4.3) by (4.5) and (4.6).
Moreover, by putting ¢ = 0 in (ii) in Lemma 4.3, we have
ny [GS? Gl] (.X) =A (G(lfs)t ()C), GSJr(lfs)t (X))
= (1—1)xU ot 0 = 9 (1 — 1) 10y = HZ, (%),

(4.6)

and also we obtain
m[Gy, Py ] ()

D=0+ T L e{(1=0) 4 {14 (1= ) T

DL —1) +x) & e {(1—1) +1x)

(1= 1)+ T {(1— 1) + 16}

= Gy(P g (%), Py 5 (%))

Then for A,B >0 and g € (0,1], we get

(1-
(1-
{

mt [G.s‘a Gt] < mt [G.Ya})t,[q]] < mt [Ps,[q] 7Pt,[q]] < mt [Js,[q]a})t,[q]L
that is,

Et,[s} (A7B) < & (mt,[q] (AaB)7q3t,[s] (AaB))
< (;’B(lfs)t,[q] (A7B)7q3s+(lfs)t,[q] (A7B)) < :‘t,[s,q] (A7B)

by Proposition 4.1 and Theorem 3.2, so that we obtain (4.4). [
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