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Abstract. In this paper, we will study the complete moment convergence for the dependent linear

processes under some suitable conditions, which ¥; =3, j:,MA jXi—; be a dependent linear pro-
cess, where the {X,,n € Z} is a sequence of p*-mixing random variables, with stochastically
dominated a random variable X, and {A,,n € Z} is a sequence independent random variables.
As applications, we will present Marcinkiewicz-Zygumund strong laws and strong laws of large
numbers for this linear processes. Finally, we also present some numerical simulations to demon-
strate the finite sample performances of the theoretical results.

1. Introduction

Research on structured stochastic models, such as Markov chains, Gaussian pro-
cesses, and linear models including autoregressive moving average systems has been
extensive and well-developed. However, by mid-20th century, researchers recognized
an important gap: many observed time series resisted classification within these specific
frameworks, yet exhibited clear asymptotic independence characteristics. This realiza-
tion spurred the development of a comprehensive theoretical framework for “mixing
conditions” to address such cases. The present note offers a concise overview of this
theoretical development.

The theory of strong mixing conditions constitutes an expansive field of study
that far exceeds what can be adequately covered in this brief treatment. Limitations of
space prevent citation of relevant journal literature (with one exception) and proper ac-
knowledgment of the many researchers who have made significant contributions. What
follows is necessarily a focused glimpse into one portion of this important theoretical
domain.

In this paper, we will study focuses on exploring the complete moment conver-
gence of dependent linear processes. Hence, we present the concept of which is defined
as follows.
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DEFINITION 1.1. Let {X,, n € Z} be a doubly infinite sequence of random vari-
ables and {a,, n € Z} be a sequence of absolutely summable real numbers. Denote

=

}7[: 2 anlfjﬁ t:1727"'7 (11)

Jj=—o0
then {Y;, > 1} is called a linear process.

Linear process has a very important position in time series analysis, and a large
number of literatures have discussed various properties of linear process, which has a
wide range of applications in economics, engineering and physics, so many scholars are
committed to studying the limit theorem of linear process when the error term of lin-
ear process satisfies different conditions. For example, [30] established asymptotically
efficient selection for parameter estimation in linear processes; when the error term is
a martingale and strong mixed error random variable sequence, [10] and [4] studied
the corresponding central limit theorem (CLT) and functional center limit theorem for
linear processes, respectively. Under some appropriate conditions, there are many limit
results for linear processes. For example, [6] presented the principle of large deviations
in linear processes, [45] established the CLT and the law of heavy logarithms, and so
on.

In recent years, researchers have conducted extensive investigations into linear
processes, yielding significant findings. For instance, [25] explored the linear processes
governing somatic evolution; the asymptotic convergence and central limit theorems for
linear processes in Hilbert spaces presented in [34]; [37] investigated the central limit
theorems for linear processes generated by dependent random variables; [7] developed
a unified framework for model-based multi-objective linear processes. Employing two
types of testing data, [29] proposed a reliability estimation method based on a two-phase
Wiener process with an evidential variable. [48] investigated the asymptotic behavior
of maximum likelihood estimators for Ornstein-Uhlenbeck processes with large linear
drift, specifically dX; = —1(0X, — €'/2v)dt +dB; for 0 <t < T, where 6,v € R, and
{B;,t > 0} represents a standard Brownian motion, analyzing aspects such as the law
of iterated logarithm, consistency, and asymptotic distributions of the estimators. These
research endeavors underscore the profound significance of linear processes in statistics
and related disciplines.

Inspired by Definition 1.1, the concept of a linear process with random coefficients
is introduced as follows:

DEFINITION 1.2. Let {X,, n € Z} and {A,, n € Z} be two sequences of random
variables and

Y=Y AX—j, t=12,- (1.2)

Jj=—o0

Then {Y;, r > 1} is called a linear process with random coefficients.
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[32] established the complete moment convergence for a class of linear processes
with random coefficients generated by a specific type of random variables. [43] inves-
tigated the convergence properties of the CUSUM estimator for a mean shift in linear
processes with random coefficients.

Additionally, various other studies have explored related aspects of linear pro-
cesses. Notably, [17] conducted a comprehensive study on the complete moment con-
vergence of dependent linear processes with random coefficients, the key findings of
which are summarized below.

THEOREM 1.1. Suppose that oo >0, 1 <p <2, Y, = ZT:_OOAJ-X;_]- is a linear
process with random coefficients, where {X,,n € Z} is a sequence of END random
variables with mean zero and stochastically dominated by a random variable X with
E|X|P < eo. Furthermore, suppose that {A,,n € Z} is a sequence of END random
variables with zero mean with

2 ElAj <,

Jj=—o0

and for some p < q <2

If {Xy,n € Z} is independent of {An,n € Z}, then for any € >0,
— Ena> < oo,
+

The purpose of this paper is to study the complete moment convergence for
p*-mixing linear processes with random coefficients. Hence, we will initially intro-
duce the concept of p*-mixing random variables, details of which can be found in [5].

Let {X,,n > 1} be a sequence of random variables defined on a fixed probability
space (Q,#,P). Forany S C N={1,2,---}, define %y = o(X;,i € S). Given two
o -algebras ./ and # in Z, put

i nocpfoc72E (

n=1

IR
=1

where x4y = xI(x > 0).

|[EXY — EXEY)|
VEX —EX)2E(Y —EY)?

p(d,%):sup{ :XeLz(sz{),YeLz(%)}.

Define the p*-mixing coefficients by
o, =sup{p(Fs, Fr):S,T CN such that dist(S,T) > n},

where dist(S,T) = inf{|s —¢|: s € S,s € T}. Obviously, 0 < p, , <p, <p; =1.
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DEFINITION 1.3. A sequence {X,,n > 1} of random variables is called p* -mixing
if there exists some k € N such that p; < 1.

Significant progress has been made in establishing limit theorems for p*-mixing
sequences, such as [35] derived Rosenthal-type maximal inequalities for p*-mixing
random variables; [9] established the Hajek-Renyi type inequality for p*-mixing se-
quences; Kuczmaszewska (2008) as well as [41] independently proved the Chung-
Teicher type strong law of large numbers for p*-mixing random variables. Further
developments include: [31] obtained complete g-th moment convergence results for
arrays of rowwise p*-mixing random variables; [24] investigated the asymptotic prop-
erties of CVaR estimators under p*-mixing samples; [42] studied complete moment
convergence for weighted sums of p*-mixing sequences with applications to nonpara-
metric regression models; [8] extended these results by establishing complete and com-
plete moment convergence for weighted sums of p*-mixing random variables under
appropriate conditions, among other significant contributions; [23] studied complete
and complete moment convergence for randomly weighted sums of p*-mixing random
variables and its applications, and so on.

In this article, we will use the concept of slowly varying function as follows.

DEFINITION 1.4. Let k(x) be a real-valued function, which is positive and mea-
surable on (0,c0). If for any 7 > 0,

fim 0% _ 1, (1.3)
x—ee k(x)

then k(x) is said to be slowly varying at infinity.

Next, we restate the concept of stochastic domination. Some details in the defini-
tion of stochastic control can be found in [20].

DEFINITION 1.5. A sequence {¥;,n > 1} of random variables is said to be stochas-
tically dominated by a random variable Y, if there exists a positive constant C and for
all x > 0, we have

supP(|Y;| > x) < CP([Y| > x). (1.4)

i=1

The paper is organized as follows: Section 2 presents several lemmas, while Sec-
tion 3 provides the main results and their proof. Some numerical simulations are pre-
sented in Section 4.

Throughout this paper, we show some markers. Let C denotes a positive constant
not depending on n, which may be different in various places. Z represents the set of
integer. Let I(A) be the indicator function of the set A. Denote logx = Inmax(x, p) for
any p > 1, we denote ||X||, = (E|X|")"/? and x* = xI (x>0).
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2. Some lemmas and their proofs

In order to better illustrate our main results, we need the following lemmas as
tools.

LEMMA 2.1. ([12]) Suppose that random variables & and M are measurable
with respect to Ff and F,,. Moreover suppose that ||E||> < oo and |[n||> < ce.
Then

[EEN —ESEN| < p(n)|IE]l2]n]2-

LEMMA 2.2. ([42]) Suppose that {T;, 1 <i<n} and {L;, 1 <i<n} are two
sequences of random variables. For any [ >t > 0 €>0, and a> 0, denote C; = 1
when 0 <t <1,0r C,=2""' when t > 1. Then

)

and

E | max
1<k<n

> L

l n
+GE (
i=1

t
k
t
—ea| <Cle'+— )d'E| max D
I—t 1<ksn |2

4 1
t)
LEMMA 2.3. ([1] and [2]) Suppose that {Y,y,m > 1} is a sequence of random

variables, which is stochastically dominated by random variable Y . Then for any m >
1, a>0and b >0, and Cy and C, are two positive constants. Then

E(1¥alI ([Yal < b)) < CLAEIY[“I(Y| < b))+ 6°P(¥| > b)},

t
n
—8a> <G (£l+l’j)a’l]E< > T
i=1

+

En:T+L

!
T;

zk‘,(Ti'f‘Li)
=

k

XL

1<k<n

+GE ( max

E (Yo “I([Y] > b)] < GE[Y“I(|Y| > b)].

LEMMA 2.4. ([46] and [47]) Let ¢ > 1, and {X,,n > 1} be a sequence of p*-
mixing random variables with EX,, =
n=1,

J

q n
. < |4 <

i=1

and

q n n q/2
ZX ) G Z]EXi|’1+<2]EXi2> , q>2,

i=1 i=1

E | max
l<J<n

where C; > 0 is a constant depending only on q and the p* -mixing coefficients.
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We can get the following lemma form Lemma 2.4, the details are omitted.

LEMMA 2.5. Let g > 1, and {X,,n > 1} be a sequence of p*-mixing random
variables with EX, = 0 and E|X, |7 < e for each n > 1. Then for each n > 1,

]E<
q/2

q n n
) <G | YEX|1+ (21@){3) , q>2,
i=1 i=1

q n
) <G Y EX, 1<g<2,

i=1

J
>
i=1

and

J
>
i=1

|

where C; > 0 is a constant depending only on q and the p* -mixing coefficients.

LEMMA 2.6. ([3]) Ifwe let k(x) be a slowly varying function at infinity, then the
following hold:

(i) lim k(]f&)") =1 for each u> 0.
X—>00

(i) lim  sup
[—eo 2 <!+

(iii) 1im x%k(x) = oo, lim x %k(x) =0 for each § > 0.

K9 .

(iv) For each q > 0, € > 0 and positive integer 1, and Cy and C, are two positive
constants:

k
C12'k(e2") < Y 279k(e27) < Cr2Mk(£2").

j=1
(v) For each g < 0, € > 0 and positive integer I, and C3z and Cs are two positive

constants:

C32'%(e2") < Y 279k (27) < C42Mk(2").
j=l

LEMMA 2.7. ([28]) Suppose that k(x) is a slowly varying at infinity, C1—Cy are
four positive constants. Then for any g > 0,

oo

Cim ™ 9k(m) < Y 1717%(1) < Com™ k(m),
I=m

and

m
Csmk(m) < Y 17'M9k(1) < Cymk(m).
=1
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The following two lemmas are important to prove our results. The proofs can be
referred to [16] and [17], respectively. We only prove Lemma 2.8.

LEMMA 2.8. Let 1 < g < 2. Suppose that {X,,m > 1} is a sequence of p*-
mixing random variables, which satisfies zero mean and E|X,,|7 < oo. Suppose that
{Apm,m > 1} is a sequence of random variables, which satisfies B|Ap|? < oo. If we fur-
ther assume {X,y,m > 1} is independent of {Ap,m> 1}, and 7> ( ’If’;lifiAj)X,- < oo
a.s., then forany m > 1,

[=—c0

q
E[X;]1.

=

q
<G Y E

[=—c0

E

m—i
DA
j=li

Proof. By applying Fatou’s Lemma and the C, -inequality, we obtain the following

estimation:
oo n—i 4q m n—i 4
EIY Y Axi)| =Elim | Y [ Y 4;]X
i=—oo j=1—i M i=—m \j=1-i
m n—i + n—i - 4
< liminfE| ) Ail = Y 4 X;
mme i==m \ \y=1-i j=1—i
m n—i + 4
<27 'limsupE| Y, Aj Xi
m—eoi——p \ j=1—i
m n—i - 4
+2 imsupE | Y [ Y A | X
m—eo i \ j=1—i
=1 +1. (2.1)

Forall n > 1 and any j € Z, the term ( '};Lia )T represents a positive constant.

According to the Definition 1.3, we can get that the sequence {( ’;;LiajﬁX,-,i €z}
also p* -mixing random variables with zero mean. Consequently, by employing Lemma

2.5, we have:

. + q
m n—i
E| Y| X4 X
i=—m \Jj=1-i
. + q
m n—i
=E|E 2 aj X; ‘A,er]:a,erl, s Amn=Amtn
i=—m \Jj=1-i
. + q
m n—i
< C’i]E 2 E ( aj) Xi ‘A—m-‘rlza—m+la s Amn=0min
i=—m Jj=1-i

. +\ ¢
<G Y E(( Y Aj) ) E|X;|.
i=—m j=1-i
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Hence, for I}, we establish the following upper bound from C,-inequality:

Mm—ee  j—=—m

_ +\ 4
I} < Cylimsup Y, E(( D A,-) ) E[X;|?
j=1-i
p
E|X;|9.

=

<G Y E

[=—o0

n—i

Y A

J=1i

: k—i - . : *
Furthermore, since {max 1<k<n <Z i—1-ia j> Xi,i € Z} constitutes a sequence of p*-
mixing random variables with zero mean, we can derive an analogous bound for /,:

q
E[X;]7.

n—i

2 A

Jj=1-i

j=—o0

Consequently, combining the results from above, we obtain the desired inequality
(2.1). This completes the proof. [J

LEMMA 2.9. Let 1 < g < 2. Suppose that {X,,,m > 1} is a sequence of p*-
mixing random variables, which satisfies zero mean and E|X,,|7 < oo. Suppose that
{Am,m > 1} is a sequence of random variables, which satisfies E|Ay |9 < co. If we fur-
ther assume {X,,,m > 1} is independent of {An,m > 1}, and B2 (Y77 ;A j)Xi <eo
a.s., then forany m > 1,

q
E[X;[9.

4 o
)<@2E

[=—o0

m—i
DA
j=1-i

3. Main results and theirs proofs

THEOREM 3.1. Let 00 >0, 1 <r<p<gq<2and k(x) >0 is a slowly varying
function. Let Y, = Y5 AjX,—; be alinear process with random coefficients. Suppose
that {Xm,m € Z} is a sequence of p*-mixing random variable, which also satisfies
mean zero and stochastically dominated by a nonnegative random variable X with
E [|X|pk(|X|é)} < oo, [f we suppose that {Ay,,m € Z} is a sequence of indpendent
random variables with mean zero, which is independent of { Xy, m € 7},

Y EAj <o, ¥ EA <o, G.1)

Jj=—0 Jj=—o0

and

Z E|A;j|9 < co. (3.2)
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Then for any € > 0,

oo m r
S mer 2k (m)E (| Y Y| —em® | <o, (3.3)
m=1 t=1 +
which imply that
oo m
N m*P 2 k(m)P | | Y Y| > em® | < eo. (3.4)
m=1 t=1

Proof. Since EX; = 0, then we can denote that for i € Z and m > 1
X =x" —mxV + x2 —Ex?,
where
XY = XI(1X;| < m®) +m®I(X; > m®) — m®I(X; < —m®)
and
x® =X —xV = (X = m™)(X; > m®) + (X +mD)(X; < —m®).

Form above, we can get that
oo oo n—i
2 AjXi—j = Z 21, 'AJX
—=—o0 1=—oc0 j=]—1i
; sV -mx) + Y3 A (6P -Ex).

l=—°°j:17

M=
I
M=

Y

t=1

-
Il

Lj

||| M8

We can know that for i € Z, {Xl.(l) —]EXI.(I)} and {Xl.(z) —]EXI.(2)} are both
p*-mixing random variables form Definition 1.3, with mixing coefficients c(n) and
zero mean. We have by Lemma 2.2 that for ¢ > r >0

i m*P =% 2 (m)E (

m=1

& 1
<c) mal’*wfzk(m)fr)ﬂz l

a
1 nz(q

+C Y m* P2k (m)E

m=1

= C Y m*P 4 k(m)E

m=1

+C Y m* " 2k(m)E

m=1

=1 +1. 3.5




990 C. LU, G. XIONG, J. HAO, H. ZHOU AND J. WANG

For I}, by Lemmas 2.3-2.4, 2.6-2.8 and (3.2), then

szocp oq— 2k 2 ( 2 A )E’Xi(l)_EXi(l)‘q

= [=—o0

oo oo m—i
<C 2 mocp—ocq—2k(m) 2 E X(l)‘q 2 E‘Aj‘q
m=1 j=—o0 Jj=1—i
< CY mer-a2(m) ¥ 2 E|A,|9E X9 1(|X;] < m®)
m=1 Jj=—i=1—j
+C Y, m*P2k(m) Y, 2 E|A;17P(|X;| > m®)
m=1 j=—oi=1—j
<cy map*aq*lk(m){E[|X|ql(|X| < m®)] +m@P(X| > m® } Y Bl
m=1 j=—oo
o m—j
+ch0‘P “k(m) Y, Y EIAGE[X|I(1X] > n®)]
= Jj=—i=1—j

<C Z m*P =%k (m)E[[X[77(|X | < m®)]

m=1

+C i m*P e (m)E[|X|1(]X| > m®)]
m=1

=L+ 1. (3.6)

For I5, noting that p < g, then we get by Lemma 2.7 that,

CZmO‘p 2~ 1k(m) Y E[IX|((i— 1)* < [X] < i%)]

m=1 i=1

— CiE[|X|‘il((i— D% < |X| < i%)] 2 m%P= %4~ (m)

i=1 m=i

< C;io‘p_o‘qk(i)EHXWI((i— D% < |X| <i%)]

< CIE[|X|P1<<\X|%>} < oo, 3.7)

and

I = C S E[X|I(1* < |X| < (I+1)“ Zmap )
=1 m=1

< CS P RDE(X|I1® < |X| < 1+ 1)%)]

< CE [|X|PK(X )] < e (3.8)



COMPLETE MOMENT CONVERGENCE FOR p*-MIXING LINEAR PROCESSES 991

Next, we will analysis I,. Noting that ‘Xim‘ = (|1Xi] —n*)I(|X;] > n®*) < |X;|I(]X;] >

n%) and E [|X|pk(|X|é)} < oo, then we can obtain by Lemmas 2.3-2.4, 2.6-2.8 and
(3.1) that

<C 3 mr I m) Y 2 E|A;|"E[1X;|"T(1Xi] > m®)]

m=1 j——°°l 1—j
oo o m— j

<C Y m P 2k(m)E[|IX|'T(|X] > m®)] Y Z E\A "
m=1 J=—oi=

<C m P T m)EXT(X] > n%)]

m=1

2 [1X|"T(1% < |X| < (I+1)% Zm‘”’ @=L (m)

=1 m=1

< C 19 DE]el 107 < [X] < (1+ 1))
=1
< CIE[|X|P1<(\X\$)} < co, (3.9)

Thus, we can get (3.3) from (3.5)—(3.9) immediately. We will get (3.4) by (3.3)

again that
o0 > Zmap 4 =2k(m <ZY, —8m>
+

m=1
o » XY
= Zmal’ﬁk(m)/ plI=EL s iVrgear
m=1 0 m
m
o & XY
> Y m*P2k(m) / Pl =L 1> 0e | ar
m=1 0 m

m

R

m=1

=g Zmal’zk (

>2em )

THEOREM 3.2. Let o0 > p, 1 <r<p<q<2andk(x) >0 is a slowly varying
function. Let Y, = 37 AjX,— j be a linear process with random coefficients and
{Xy,n = 1} be a sequence of p*-mixing random variable, which also satisfies mean

zero and stochastically dominated by a random variable X with E [|X|pk(|X| a )} < oo,

Thus the proof is completed. [
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If we suppose that {A,,m € Z} is a sequence of indpendent random variables with
mean zero, which is independent of {X,,m € 7},

o q
]E( D Ai,»> < oo, (3.10)

j=—e

Then for any € > 0,

. k r
N meP=r 2k (m)E ( max (Y Y| — 8m°‘> < oo, (3.11)
— 1<ks<m | /=
m=1 t=1 +
Furthermore, we have
o k
ap—2 oo
m%m k(m)P <1I<nk22(m N Y| >em ) < oo, (3.12)

Proof. The proof is similar to Theorem 3.1, hence, we only provide a simple proof
for this theorem. First and foremost, we have following by Lemma 2.2 that

N m*P 2k (m)E ( max - sma>
+
q]

k

pR?

t=1

— 1<k<m
m=1

o

< CY mP~ %2k (m)E

k—i
(M _ _(1)>
P max. i=_w,-§i,-A 5 (% - mx,
o o k—i 4
+C 2 maﬁ*ar72k(m)E llngfg( 2 2 Aj (Xl(z) _EXL(2)> ‘|
m=1 SES | j=—o0 j=1—i
=N+ (3.13)

Similar to the proof of I}, by Lemmas 2.5, 2.9 and (3.10), we obtain

m—j

I < Zmo‘p %4=2f(m) sup 2
m=1 JEL j=

(1)”1

< C Y m*P U k(m)E[|X|71(1X] < m*))

m=1

€'Y m P (m)B(X| > m)

m=1
=L+
For 1, we have

1< CYEXII((i— 1) < [X] < 1) 3 mo?=o0 (m)

i=1 m=i
< CY P M kDE[X | ((—1)* < [X] <i%)]
i=1

< CE [[X|Pk(|X|#)] <.
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For I}, noting that p > 1, we have

I < CiE[|X|]((i— D% < |X| <i%)] i m*P~ % k(m)

i=1 m=i
<CY i kDEIX (i~ 1)% < X| < i%)
i=1
p 1
< CE [[X|Pk(1X|#)] <.

Finally, we prove I; < co. Note that ¥7___,E|A;| < e by (3.10). By Lemma 2.9,
we get

2
C 2 mOCp or— k
m=1 JGZz

()‘

r

<C 2 map_m_zk(m)E X(2) —Ee(z)

i i

m=1

<C m P mE(XI(X] > m®))

m=1

X7 11 < X| < 1+ D)%)

l=m

=C Y m*= " k(m)E

m=1

oo i
=CYE[XI"T(1-1)* <|X|<IN] Y, m*P~ % k(m)
=1 m=1

< CE [|X|Pk(|X|é)] < oo,

Thus the proof is completed. [

REMARK 3.1. Let a = 1/p, k(m) = 1, under the conditions of Theorem 3.1, we
can get by (3.4) that
i 1
m= lm

Then according to Marcinkiewica-Zygmund strong laws of large numbers for linear
processes with random coefficients, we have

ZY,

t=1

>8m/><°°.

a.s.
—ZYI—>O’ as m — oo,
ml/Ptil

Similarly, let o« = 1/p, k(m) = 1, under the conditions of Theorem 3.2, we can get by
(3.12) that

k

i lP(max 2Yt

1<k<m

>£m/><<><>7
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and

ml/ ZY, as m — oo,

For p =r =1, we can get the following two corollaries from Theorem 3.1 and
Theorem 3.2, respectively.

COROLLARY 3.1. Let o >0, 1 < g <2 and k(x) > 0 is a slowly varying func-
tion. Let Y; =37 AjXi_j be a linear process with random coefficients. Suppose
that {Xy,m € Z} is a sequence of p*-mixing random variables, which also satisfies
mean zero and stochastically dominated by a nonnegative random variable X with

E [|X|k(\X|é)} < oo, If we suppose that {A,,m € Z} is a sequence of indpendent

random variables with mean zero, which is independent of {Xy,m € Z},

Y E|Aj| <o and Y, E|Aj|? <o, (3.14)

Jj=—o0 Jj=—oo

then for any € > 0,

2 m2k(m Yy|—em®| <. (3.15)
=1 n
Furthermore, we have
oo m
S m*k(m)P [ | X Y| > em® | <. (3.16)
m=1 =1

Proof. The proof is similar to that of Theorem 3.1 with p =r = 1. We only need
to show Ip < oo, I3 < oo and Iy < oo,
For I5 and I4, by Lemmas 2.5-2.6, we can get

moc—ocq—lk(m)E[|X|ql(|X| <m%)]

ficn)
N\
a

M

3
L

m® @ g(m) Y E[|IX|1((i— 1)* < |X| <i%)]
=1

I
a
Ms

3
I

E[XI((i— 1% < [X] < )] 3 m® 4 1k(m)

m=i

T E@E[X I - D < [X] <i)]

I
a
M

—

N
a
Nk

ER

| X |k(|X | @ )} oo, (3.17)
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and

L<cC i mk(m) 3 E[X|I0% < [X] < (1-+ 1))

[=m

E[IX|1(1* < |X| < (I+ 1) Zm’lk

||
Ms

N
Il
—_

KOE[X[1(* < [X| < (1+1)%)]

N
a
M8

N
Il
—_

CE {|X|k(|x|é)} < oo, (3.18)

For I, we can obtain by Lemmas 2.3-2.4, 2.6-2.8 and (3.1) that

o m—j

CZm_zk ) Y Y EAE[XT(1X] > m™)]

m=1 Jj=—oi=1—j

<C m kmE[X|I(X] > m®)]

3
Il
—_

E[IX|1(1* < |X| < (I +1)* Zm’lk

||
M8

—
Il
—_

KOE[XI(* <X < (1+1)%)]

VAN
a
M8

~
—

E [|X|k(|x|é)] < oo, (3.19)

Thus, we can get (3.15) from (3.17)—(3.19) immediately. We can get (3.16) by
(3.15) immediately. Thus the proof is completed. ]

COROLLARY 3.2. Let o >0, 1 < g <2 and k(x) > 0 is a slowly varying func-
tion. Let Y; = Z;",ﬂoA iX;—j be a linear process with random coefficients. Suppose
that {Xy,m > 1} be a sequence of p*-mixing random variables, which also satisfies
mean zero and stochastically dominated by a nonnegative random variable X with

E [|X|k(|X|é)] < oo, [f we suppose that {A,,m € Z} is a sequence of indpendent

random variables with mean zero, which is independent of { Xy, m € 7},

- q
IE( 3 |A.,»|> < oo, (3.20)
==

then for any € > 0,

k

Y,

t=1

N m2k(m)E ( max
1<k<m
m=1 SES

- Ema> < oo, (3.21)
+
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which imply that

k

i m®~2k(m)P ( max 2 Y,

m—1 1<k<m

> em ) < oo, (3.22)

Proof. The proof can be referred to Theorem 3.2 and Corollary 3.1. Thus, the
details are omitted. [J

REMARK 3.2. Let a =1, k(m) = 1, under the conditions of Corollary 3.1, then
we can get by (3.16) that, for any € > 0
>w)<w

i 1

m= lm
Then according to Marcinkiewica-Zygmund strong laws of large numbers for linear
processes with random coefficients,

ZY,

1=

l m

a.s.
_ZYf —0, as m — oo,
m/

Similarly, let o = 1, I(m) = 1, under the conditions of Corollary 3.2, we can get by

(3.22) that
>m%%
1 m

a.s.
_ZYf —0, as m — oo,
m/

i 1P<max ZY,

m 1<k<m
m=1

and

For 1 < p=r <2, we can get the following two corollaries from Theorem 3.1
and Theorem 3.2, respectively. The proof can be referred to theorems and corollaries
above. Thus, the details are omitted.

COROLLARY 3.3. Let ¢ >0, 1 <p<q<2, 0<y<q—p and k(x) >0 is
a slowly varying function. Let Y, =¥ A;X;—j be a linear process with random
coefficients and the {X,,,m > 1} be a sequence of p*-mixing random variables, which
also satisfies mean zero and stochastically dominated by a nonnegative random vari-
able X with E [|X|I’k(|X|é)} < oo, [f we suppose that {Ay,m € Z} is a sequence of
indpendent random variables with mean zero, which is independent of { X, m € 7},

Y E|Aj| <o, and Y E|AjP <eoo. (3.23)

J=—o J=—o
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Y E|Aj|7 < oo, (3.24)

Jj=—o0

then for any € > 0,

m P
2 m2k(m Yy|—em®| <o (3.25)
=1 +
which imply that
2 m*P=2k(m ( Ny >em ) < oo, (3.26)
=1

COROLLARY 3.4. Let 00 >0, 1<p<q<2,0<y<g—pandk(x)>0isa
slowly varying function. Let Y; = 37 A;jX;— , be a linear process with random coef-
ficients and the {X,,,m > 1} be a sequence of p* -mixing random variables, which also
satisfies mean zero and stochastically dominated by a nonnegative random variable X

with E [\X\I’logq(l +e)k (\8\ é)} < oo, Ifwe suppose that {Ay,,m € Z} is a sequence

of indpendent random variables with mean zero, which is independent of {X,,,m € Z},

o q
]E( D Aq,») < oo, (3.27)

j=—e

then for any € > 0,

o k 14
-2 _ o o
Zlm k(m)E (12%1 ZY, em ) < oo, (3.28)
m= =1 +
which imply that

oo k

2 m*?~2k(m)P | max 2 ;| > em® | <oo. (3.29)
=1 1<k<m

REMARK 3.3. Let a = 1/p, k(m) = 1, under the conditions of Corollary 3.3, we
can get by (3.26) that, for any € > 0,

s

Then according to Marcinkiewica-Zygmund strong laws of large numbers for linear
processes with random coefficients, we have

>

t=1

>8m/><°o.

m
a.s.
X 450, as m oo,
ml/Ptil
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Similarly, let o« = 1/p, k(m) = 1, under the conditions of Corollary 3.4, we can get by

(3.29) that

k

ZYt

|

D P(max >€m/><oo7
— m 1<k<m

and

1 a.s
— > Y, —0, as m — oo,
ml/l’tzll ! ’

The next theorem is about the LP convergence for linear process with random

coefficients.

THEOREM 3.3. Let 1 < p<2. Let ¥; = E;-":_wAth_j be a linear process with
random coefficients and the {X,,,m € Z} be a sequence of p*-mixing random vari-
ables, which also satisfies mean zero and stochastically dominated by a nonnegative
random variable X with E|X|P < eo. If we suppose that {Ay,m € Z} is a sequence of
indpendent random variables with mean zero, which is independent of { X, m € Z},

Z E|Aj|p <o
==
then
P

sup < C <o,

If we further assume that pq > r+ 1, then as m — oo,

p

L _ O(n,lrJrlqu)7

m4

]E Ath_j

oo

M=
|||M3

t=1j

and thus

=

t 1 j=—0c0

Proof. By Lemmas 2.5, 2.8, E|e|? < o and (3.30), we can get that

1 | = P P
—E ; ';wA.,X,,j = —E ;w <2X, ,)
1= J= 1 o: " ;

S mr+1 j_f_,w Zixt_j E‘Aj‘p

< CE[X| Z EJAj|P < ee,

Jj=—o0

(3.30)

(3.31)

(3.32)

(3.33)
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which implies (3.31), and (3.32) follows from (3.31) immediately.
The proof is completed. []

REMARK 3.4. Note that Y, = Z;":_wA iXm—j. Under the conditions of Theorem
3.3, we have by C,-inequality and (3.31) that

p
1 S
sup —E[Vn|” = sup 2 2 AjX,_j— 2 Y AjX_;
LS =1 j=—o
1 m o p 14
<SCsup—=EIY Y AjX- +Csup Z Z AjX, -
m=1Mm" 1=1 j=—oo m= t=1j=—co
<C <o
If we further assume that pg > r+1, then as m — oo
1 & !
E|— ¥ AiXnj =O(m"'r), (3.34)
J—
and thus
1 & )72
— Y AjX,—;—0. (3.35)
j:—oo

4. Application

In this section, we will investigate the convergence of state observers for linear
time-invariant systems using Theorem 3.3.

For ¢t > 0, we consider a multi-input-single-output (MISO) linear-time-invariant
system as follows:

Ax(t) 4+ Bu(r), @D

—N
==
—~ =
-~ -~
S— —
I
)
=
=

where A € R"0*™0 B ¢ R"™0*™ and D € R are known system matrices, u(r) €
R™ is the control input, x(r) € R™ is the state and y(¢) € R is the system output. The
initial state x(0) is unknown. For some limited observations on y(z), it is interesting to
estimate x(7). In the setup, the output y(7) is only measured at a sequence of sampling
time instants {#;} with measured values y(#;) and the noise {d;} such that

y(t) =y(t)+di, 1<i<n. (4.2)

We would like to estimate the state x(¢) from information on u(¢), {} and
{y(#:)}. Let G’ represents the transpose of G. In order to proceed, we need the follow-
ing assumption.
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ASSUMPTION 1. The system (4.1) is observable, i.e., the observability matrix
W(; = [D/v (DA)/7 Tt (DAmOil)q
has full rank.
It follows from (4.1) that
r
x(t) = A0 x(10) + / AYBu(t)dr.
fo

Suppose that {#;, 1 <i< n} is a sequence of sampling times. We have that

ti
v(t) +di = y(t;) = DTx(1,)+D | D Bu(t)dz. (4.3)
In
Denote

tj
Wiita) =D [ AT Bu(yar, 1<i<n
tn

Then we can get

DA (1) = (1) — v(tiyta) + iy 1<i<n. (4.4)
Define
DeAt—n) (1) v(t1,tn) di
: DeA(tnflftn) " Y(tn_l) ! V(tn—latn) ' dn_l
D Y(tn) 0 dn

So, (4.4) can be rewritten as
D,x(t,) =T —V,+ Dy (4.5)
Suppose that ®,, is full rank. Then the least-squares estimator of x(z,) is given by
(1) = (@)D}, (T — Vi), (4.6)

From the equations (4.5) and (4.6), the estimation error for x(z,) at sampling time 7,
is

—1
e(tn) =X(ty) — x(ty) = (niq(l);,(l)n) niqCquDn 4.7

for some 1/2 < g < 1. For convergence analysis, one must consider a typical entry in
(1/n1)®),D, . In [26], by the Cayley-Hamilton theorem, the matrix exponential can be
expressed by a polynomial function of A of order at most mg — 1 as follows:

eAt :O(l(t)l+"'+am0(t)AmO_l, (48)
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where the time functions ¢;(7) can be derived by the Sylvester interpolation method.
Denote ¢'(t; —t,) = [0t (t; —tn), - - -, Oy (ti — 1,)] and

¢/(t1 _tn)
N :
O (th—1 —1n)
¢'(0)

Then ®,, =¥,,W,, which reduces to
1 / ! 1 !/
Eq)nq)n == WO n—q‘{lnl{InW()7
and
1 / l !
—@, D, = —Wy¥,D,.
n4 n4
As a result, one has

1 -1 /1 -1

By Assumption 4.1, it can be found that WO_1 exists. The convergence analysis
will be established by the sufficient conditions: nlq‘{‘;Dn — 0 a.s., and niq‘{’;‘{’,, > Al
a.s., for some A > 0. So, we need the following persistent excitation (PE, for short)
condition which has been used in [33] and [38].

ASSUMPTION 2. Forsome 1/2<g< 1,
1
11;’[; Omin (—q‘{’;‘{’n> > M > 0 a.s. for some M > 0, (4.10)
nz n

where 0, (H) is the smallest eigenvalue of H for a suitable symmetric H .

We focus on the convergence of partial sums of randomly weighted p*-mixing
random variables such that
1 n
— > AX, (4.11)

q
n j=1

for some 1/2 < g < 1. Since a typical entry of niq‘{’ﬁ,Dn is

> Zock(tj—tn)dj7 (412)
=1

The convergence analysis of e(z,) corresponds to a specific case of (4.11). It is
noteworthy that when the sampling time sequence follows a stochastic process, the
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oy (tj —t,) terms in (4.12) manifest as randomly weighted noise driven by p*-mixing
random variables.

In their recent work, [38] investigated the convergence analysis of a state observer
for a linear time-invariant system under rho* mixed sampling. [33] explored the con-
vergence analysis of double index and stochastic weighted sums for p*-mixing pro-
cesses and applied them to state observers. In addition, [40] delved into the complete
moment convergence of the randomly weighted sum of double indexes and applied it
to state observers, and so on.

As a direct application of Theorem 3.3, we derive the following theorem.

THEOREM 4.1. Suppose that Assumptions | and 2 hold. Let {d,, n > 1} be a se-
quence of zero mean independent random variables, and {oy(tj —t,),1 < j<n,n>1}
be an array of zero mean rowwise p* -mixing random variables, which is stochastically
dominated a random variable X;. for each 1 < k < mg. Furthermore, {Otk(tj —1),1 <
Jj <n,n>1} is independent of {dy, n > 1}. If

IE|Xk|2 < oo, foreach 1 < k< my

and
Z E|dj‘2 < oo,
j=1
then
supn®@'Ee (1,)e(t,) < oo, (4.13)
n>1
and
Eeé' (ty)e(ty) — 0, as n — oo. (4.14)

Proof. By Assumptions 1 and 2, we can get that W, ' and (}%‘I’;‘Pn)_l exist,
and Omax[(1/n9) W, ]! <1/M a.s., where Omax () stands for the largest eigenvalue.
Noting that

1
. 27 -1 0u(tj —tn)d;
! .
na T nPn= : ;
1
77 2= 1 Otmg (1 — tn)d;

we only need to verify that for each 1 < k < my,

2

4R | — <C<oo, n>1. (4.15)

n
i 3l

Applying Theorem 3.3 or Remark 3.3 with X,,_j = oq(t; —1,), Aj =d; and p =2, we
can get (4.15) immediately. Thus, the proof is completed. [
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5. Numerical simulation

In this section, numerical simulations will be performed to further verify the con-

vergence of the equation (4.14). We will evaluate the approximate validity of the equa-
tion (4.14).

Based on the Taylor approximation algorithm proposed by [26], we obtain explicit
expressions for ¢;(z), where 1 < i< mg. To simplify the analysis, we consider two
cases: mo =5 and mo = 10. For each 1 < j < myg, we set # = k/n, and for each
n > 1, d, is a sequence of independent identically distributed random variables, where
each d,, follows a standard normal distribution as specified in Theorem 4.1. By equation
(4.9), we compute e(z,). We consider sample sizes of n = 100, 200, 400, 800, 1600,
and 3200. We choose r = 0.2, r =0.5, and r = 0.8, and utilize Python software to
compute the mean of €/(z,)e(t,) for each n, repeating the calculation 1000 times.

For convenience, we define D(n) = ¢'(t,)e(t,). Figures 1 and 2 depict the trend
charts of the mean values of D(n) for mg =5 and my = 10, respectively. It can be
observed that regardless of the value of r, as the sample size n increases, the mean
values of E(n) gradually approach zero.

—==- r=0.8
r=0.5
—= r=0.2

¢ ——- =08
05713 r=0.5
i —- r=0.2

0.44

¢
\
044 1
!
[
[

e
w
TR

0.3
0.2

The mean of D(n)

o
=

0.0

AT
=

500 1000

1500 2000
Sample size n

The mean of D(n)

0.2 4
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0
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1500 2000
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Figure 1: The mean of D(n) as mg=>5. Figure 2: The mean of D(n) as mo = 10.
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