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Abstract. Let ̃n be a quasi-orthogonal polynomial of order 1 on the unit circle, obtained from
an orthogonal polynomial n with measure  , which belongs to BGM class, if there exists
another measure ̃ such that ̃n is a monic orthogonal polynomial. This article aims to inves-
tigate various properties related to BGM class. At first, we study the behaviour of the zeros of
n and ̃n . Along with numerical examples, we analyze the zeros of n , corresponding para-
orthogonal polynomial and its linear combination. Further, comparison of the norm inequalities
among n and ̃n are obtained by involving their measures. This leads to the study of the Lu-
binsky type inequality for the measures  and ̃ , without using the ordering relation between
 and ̃ . Additionally, similar type of inequalities for the kernel type polynomials related to 
and ̃ are obtained.

1. Introduction

Let assume that {n}n�0 is the sequence of monic orthogonal polynomials with
respect to the non-trivial positive Borel measure  supported on the unit circle D =
{z ∈ C; |z| = 1} . In other words, the polynomials satisfy the orthogonality condition:

∫
D

n(z)m(z)d(z) = −2
n nm.

Here −1
n = ‖n‖ , where ‖·‖ represents the L2(D,d) norm. Through the use

of a suitable sequence {n}n�0 , where each n belongs to the unit disk D , we can
recursively determine the monic orthogonal polynomials n . This process is achieved
using the forward Szegő recurrence relations:

n(z) = zn−1(z)−n−1∗
n−1(z), n � 1,

∗
n(z) = ∗

n−1(z)−n−1zn−1(z), n � 1, (1.1)

with the initial condition 0(z) = 1 and ∗
n(z) = znn( 1

z ) is known as reversed polyno-
mial. Verblunsky theorem means that given a sequence of complex numbers {n}n�0

in the unit disk, there exists a probability measure supported on the unit circle such
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that the corresponding sequence of Verblunsky parameters is {n}n�0 . It is worth
mentioning that these coefficients are sometimes referred to as reflection or Schur pa-
rameters [35]. The polynomial n(z) can be normalized to obtain the orthonormal

polynomial denoted by n(z) = n(z)
‖n‖ .

For several decades, the study of finite linear combinations of orthogonal polyno-
mials on the real line {Pn(x)}n�0 as well as on the unit circle {n(z)}n�0 has been
a vibrant area of research. The exploration of linear combinations of two consecu-
tive degrees of orthogonal polynomials on the real line (OPRL) was initially studied by
Riesz [30] while proving the Hamburgermoment problem. The necessary and sufficient
condition for the orthogonality of linear combinations of OPRL has been investigated

in [1]. For the Jacobi polynomials P ( , )
n (x) , the behaviour of zeros and interlacing

properties of Jacobi polynomials and quasi-Jacobi polynomials are discussed in [15].
The orthogonality of self-perturbations of those orthogonal polynomials, which are gen-
erated by Christoffel transformation of a measure on the real line, has been studied
in [23]. In the same article, the recovery of the original orthogonal polynomials from
quasi-type kernel polynomials and polynomials generated by linear spectral transforma-
tions is established. For the spectral transformation in other direction involving block
Hessenberg matrices corresponding to matrix orthogonal polynomials, we refer to [18].
There is a close connection between the quadrature formula and linear combination of
OPRL. More specifically, [28] provides the sufficient conditions on the coefficients an,t

for the polynomial Qn(x) =k
t=0 an,tPn−t(x) to have n distinct zeros within the interval

of orthogonality. These conditions ensure that when these zeros are utilized as nodes
in an interpolatory quadrature formula, the weights of the quadrature formula remain
positive.

In [6], the linear combination of two elements from a sequence of monic orthog-
onal polynomials on the unit circle (OPUC) is investigated. They introduced the se-
quence of monic polynomials

̃n(z) = n(z)−ann−1(z), n � 1,

and explored necessary conditions on the parameters an for which the sequence
{̃n(z)}n�0 becomes an OPUC. Later, in [5], the authors provided both necessary and
sufficient conditions for the orthogonality of ̃n(z) . In the same paper, they also pre-
sented a description of the orthogonality measure associated with the new sequence
{̃n(z)}n�0 . More generally, the orthogonality of a finite linear combination of or-
thogonal polynomials on the unit circle with respect to the Bernstein-Szegő measure is
discussed in [26]. In [8], the necessary and sufficient conditions are established for a se-
quence of monic OPUC {n}n�0 such that the convex linear combination of {n}n�0

and {n}n�0 becomes orthogonal with respect to a specific measure supported on the
unit circle.

The CD kernel of the orthonormal polynomials n is defined as:

Kn(z,w,) =
n


k=0

k(w)k(z). (1.2)
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A more concise expression for this kernel is known as the Christoffel-Darboux formula
[4, equation 3.2]. For any z,w ∈ C , with zw �= 1, the Christoffel-Darboux kernel can
be written as:

Kn(z,w,) =
∗

n (w)∗
n (z)− zwn(w)n(z)

1− zw
. (1.3)

Next, we state the class of measures which we call “BGM class”, named after the first
letter of the authors of the work [5] in which this class of measures is studied explicitly.

DEFINITION 1.1. Let {n}n�0 be sequence of monic OPUC with respect to a
non-trivial positive Borel measure  on the unit circle. If there exists a sequence of
constants {an}n�1 , where an ∈ C and a measure ̃ on the unit circle such that the
sequence of polynomials {̃n}n�0 defined by

̃n(z) = n(z)−ann−1(z), n � 1, (1.4)

is an OPUC with respect to ̃ , then we say that the measure  belongs to BGM class.

Note that similar concepts are studied by various authors, in the recent past, in
different directions, which are beyond the scope of this manuscript. The primary aim
of this manuscript is to explore the theory of quasi-orthogonal polynomials of order one
on the unit circle, while also deriving estimates based on Verblunsky coefficients and
the sequence of parameters an for polynomials within BGM class.

1.1. Organization

In Section 2, given the orthogonal polynomial n , we consider its quasi-orthogonal
polynomial ̃n from BGM class. We exhibited the expression which alternatively rep-
resents n as the linear combination of ̃n and its reversed polynomial ̃∗

n . This
is achieved through a recurrence relation with appropriate variable coefficients. We
conduct numerical experiments to observe the behavior of zeros of quasi-orthogonal
polynomials of order one on the unit circle and discuss examples belonging to BGM
class. The discussion about obtaining the expression for the positive chain sequence
in terms of Verblunsky coefficients from Definition 1.1 is also presented. In Section 3,
we provide a detailed description of the Lubinsky inequality involving the measures 
and ̃ , for which we prove certain norm inequalities. We define the kernel-type poly-
nomials and additional inequalities involving  and ̃ are exhibited for kernel-type
polynomials.

So far we have discussed the orthogonal polynomials on the real line. In this
chapter, we will discuss the orthogonal polynomials on the unit circle, an analogue of
the real line case. More precisely, the concept of quasi-orthogonality on the unit circle
is studied in [5, 6].
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2. Orthogonal polynomials in BGM class

It is clear from the Definition 1.1 that an �≡ 0, because an ≡ 0 gives the equivalence
of ̃n(z) and n(z) for each n ∈ N . In fact, we can say more about the constant an ’s.
The proof provided in [5, Theorem 4], which relies on the Szegő recursion for the
polynomial ̃n(z) , establishes that an �= 0 hold for n � 1.

The condition of non-zero an ’s plays a crucial role in order to prove that the poly-
nomial n cannot be orthogonal to the constant function 1 with respect to ̃ .

PROPOSITION 1. If  is in BGM class, then there does not exist any N ∈ N such
that

∫
N(z)d̃(z) = 0 .

Proof. Suppose that there exists an N ∈ N such that∫
N(z)d̃(z) = 0.

Using (1.4) and the fact that an �= 0 for each n � 1, we can deduce∫
N−1(z)d̃(z) = 0.

By applying reverse induction, we establish∫
n(z)d̃(z) = 0 for each n = 0,1, · · · ,N.

This eventually leads to the conclusion that ̃(D) = 0, which is a contradiction. �
In (1.4), we see that ̃n is an nth degree monic polynomial written as a linear com-

bination of known polynomials n and n−1 . Proposition 2 deals with the expression
the orthogonal polynomial n in terms of ̃n+1 and its reverse polynomial, which is
useful to give the information that z = a−1

n+1 will not be the zero of ̃∗
n+1(z) and n(z)

for any n ∈ N .

PROPOSITION 2. For any positive Borel measure  in BGM class, we can have
a sequence of constants {an}n�1 such that the following recurrence relations

((z−an+1)(1− an+1z)−|n|2z)n(z) = (1− an+1z)̃n+1(z)+n̃∗
n+1(z), n � 0,

(2.1)

((z−an+1)(1− an+1z)−|n|2z)∗
n(z) = nz̃n+1(z)+ (z−an+1)̃∗

n+1(z), n � 0,

hold. Moreover, an+1 = ̃n+1(0)+n
n−1

for non-zero n ’s.

Proof. If  is in BGM class, then by Definition 1.1, there exists a complex se-
quence {an}n�1 such that the polynomial sequence {̃n}n�0 is orthogonal with respect
to ̃ . Using the Szegő recursion satisfied by n , we can write the expression (1.4) as

̃n+1(z) = (z−an+1)n(z)−n∗
n(z). (2.2)
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Applying the reverse operation * on both sides of (1.4), we get

̃∗
n+1(z) = ∗

n+1(z)− an+1z∗
n(z). (2.3)

Again we can use Szegő recursion satisfied by ∗
n to write the expression (2.3) as

̃∗
n+1(z) = −nzn(z)+ (1− an+1z)∗

n(z). (2.4)

We can write (2.2) and (2.4) in matrix form as follows:(
̃n+1(z)
̃∗

n+1(z)

)
= A(an+1,n;z)

(
n(z)
∗

n(z)

)
,

with

A(an+1,n;z) =
(

z−an+1 −n

−nz 1− an+1z

)
.

The matrix A(an+1,n;z) is invertible since det(A(an+1,n;z))= (z−an+1)(1−an+1z)
−|n|2z �= 0. Hence we have(

n(z)
∗

n(z)

)
=

1
(z−an+1)(1− an+1z)−|n|2z

(
1− an+1z n

nz z−an+1

)(
̃n+1(z)
̃∗

n+1(z)

)
,

which gives the desired recurrence relations. If we substitute z = 0 in (2.3), then using
[32, Lemma 1.5.1], we get ̃∗

n+1(0) = 1. Hence, by plugging z = 0 in (2.1) and the

fact that n = −n+1(0) we get an+1 = ̃n+1(0)+n
n−1

for non-zero n ’s. �

COROLLARY 2.1. If there does not exist any n ∈ N such that n = 0 , then z =
a−1

n+1 is neither a zero of ̃∗
n+1(z) nor a zero of n(z) . Moreover,

n = −
̃∗

n+1

(
1

an+1

)
n

(
1

an+1

) an+1. (2.5)

Proof. Considering z = a−1
n+1 in (2.1), and using the fact that n �= 0, we have

n

(
1

an+1

)
n

an+1
+ ̃∗

n+1

(
1

an+1

)
= 0.

If either of n

(
1

an+1

)
or ̃∗

n+1

(
1

an+1

)
is zero, then eventually the other one is also

reduced to zero. This means both of them are non-zero leading to (2.5). �

Next, we consider a specific measure to derive the orthogonalitymeasure for quasi-
orthogonal polynomials on the unit circle.
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Let d(z) = |dz| be the Lebesgue measure on the unit circle and the sequence
{n}n�0 with n(z) = zn the corresponding OPUC. Then we can find the non-zero
complex constants an ≡ a such that

̃n(z) = zn −azn−1, for n � 1, (2.6)

is an OPUC with respect to measure d̃(z) = |dz|
|z−a|2 . Indeed,

∫
D

̃n(z)̃m(z)d̃(z) =
∫
D

zn−m|z−a|2 |dz|
|z−a|2 =

{
0, n �= m � 1

�= 0, n = m � 1
.

Since {̃n}n�0 is a sequence of OPUC, then by [32, Theorem 1.7.1], an ≡ a lies in the
unit disc.

Note that for a = 1 in (2.6), we can recover the polynomial n(z) = zn of degree
n using [22, equation 3.9].

The method illustrated in the case of Lebesgue measure yields a new measure
d̃(z) = |dz|

|z−a|2 . Subsequently, we initiate with the measure constructed in the previous

case and explore the measure associated with the linear combination of OPUC.
In the sequel, let d(z) = |dz|

|z−a|2 be a positive measure on the unit circle and the

sequence {n}n�0 defined by n(z) = zn−1(z−a) for n � 1 is an OPUC with respect
to  . Then there exist an ≡ b �= 0 in the unit disc such that

̃n(z) = zn−1(z−a)−bzn−2(z−a) (2.7)

is an OPUC with respect to measure d̃(z) = |dz|
|z−b|2|z−a|2 . Indeed, for n,m � 2, we

have∫
D

̃n(z)̃m(z)d̃(z) =
∫
D

zn−m|z−b|2|z−a|2 |dz|
|z−b|2|z−a|2 =

{
0, n �= m

�= 0, n = m
.

If b = −a , then ̃n(z) = zn−2(z− a)(z + a) for n � 2 is an OPUC with respect to
d̃(z) = |dz|

|z+a|2|z−a|2 .

If d represents the canonical Christoffel transformation [17] of the Borel mea-
sure on the unit circle, given by d = |z− ̃|2d , where ̃ ∈C , and if Kn−1(̃ , ̃,) > 0
for n � 1, then there exists a sequence of monic OPUC with respect to  , denoted by
n(z; ̃) , such that the following relation holds:

n−1(z; ̃) =
1

z− ̃

(
n(z)−

n(̃)
Kn−1(̃, ̃,)

Kn−1(z, ̃,)
)

, (2.8)

where n(z) represents monic orthogonal polynomials with respect to  , see [12,
proposition 2.4].

By generalizing 2.6 and 2.7, we arrive at the general form of measures in BGM
class, as outlined in [5, Theorem 14]. This form consists of measures expressed as

d(z) = K
|z− |2

|z− 1|2|z− 2|2
|dz|, (2.9)
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where 0 < | | � 1, 1,2 ∈ D and K > 0. Such measures belong to BGM class.
Additionally, the measure d̃ is given by:

d̃(z) = K
1

|z− 1|2|z− 2|2
|dz|. (2.10)

In other words, d̃ is a quadratic Bernstein-Szegő measure while d is a Christoffel
transformation of d̃ .

Suppose  is in BGM class, it follows from [5, Theorem 4] that the sequence
{̃n}n�0 , where

̃n(z) = zn−2̃2(z) = zn−2(z− 1)(z− 2), for n � 2, (2.11)

is a monic OPUC with respect to the measure ̃ . However, the explicit expression of
the polynomial ̃1 is not available. Using the backward Szegő recursion, it is possible
to determine ̃1 explicitly. The backward Szegő recurrence relation, given in [32,
Theorem 1.5.4], is expressed as

z̃n(z) = ̃−2
n

(
̃n+1(z)+ ̃n̃∗

n+1(z)
)

, (2.12)

where ̃2
n + |̃n|2 = 1, and ̃n are the Verblunsky coefficients corresponding to ̃ . For

n = 1 and the polynomial ̃2(z) = (z−1)(z−2) , the inverse Szegő recursion (2.12)
becomes

z̃1(z) = ̃−2
1 [(z− 1)(z− 2)+ ̃1(1− z1)(1− z2)]

= ̃−2
1 [z2 − 1z− 2z+ 12 + ̃1(1− 1z− 2z+ 12z

2)]

= ̃−2
1 [(1+ ̃112)z2 − (1 + 2 + 1̃1 + 2̃1)z+(̃1 + 12)]. (2.13)

Since ̃1(z) is a monic polynomial and z̃1(z) has no constant term, we have ̃1 =
−12 and ̃−2

1 = (1−|1|2|2|2)−1 . Thus, (2.13) can be rewritten as

̃1(z) = z− 1(1−|2|2)+ 2(1−|1|2)
1−|1|2|2|2

. (2.14)

Since the measure d is a Christoffel perturbation of the measure d̃ , the coefficients
an in (1.4) can be expressed in terms of 1 , 2 , and  . This is achieved by comparing
the coefficients of zn in (1.4).

PROPOSITION 3. Let  be in BGM class and {n}n�0 be a sequence of monic
OPUC with respect to d . Let ̃n(z) = n(z)− ann−1(z) be a monic OPUC with
respect to ̃ .

1. Suppose Kn(z,w, ̃) is the CD kernel with respect to ̃ . Then

Kn(z,z, ̃) =
1

2K
|1− z1|2|1− z2|2 −|z|2(n−1)|z− 1|2|z− 2|2

1−|z|2 . (2.15)
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2. The coefficients an can be explicitly written as

an = 

⎡
⎣1− (1−| |2)|

n−2
( − 1)( − 2)|2

|1−1|2|1−2|2 −| |2(n−1)| − 1|2| − 2|2

⎤
⎦ . (2.16)

Proof. If  is in BGM class, then ̃n(z) = zn−2(z− 1)(z− 2) and ̃∗
n(z) =

(1− z1)(1− z2) for n � 2.

1. For zw �= 1, using the CD formula, we can write

Kn(z,w, ̃) =
∗

n (w)∗
n (z)− zwn(w)n(z)

1− zw

=
(1−1w)(1−2w)(1−z1)(1−z2)−(zw)n−1(z−1)(z−2)(w−1)(w−2)

2K(1−zw)
.

For z = w , we obtain the closed form

Kn(z,z, ̃) =
1

2K
|1− z1|2|1− z2|2 −|z|2(n−1)|z− 1|2|z− 2|2

1−|z|2 .

2. Since d(z) = |z− |2d̃(z) , using (2.8), the polynomial n can be expressed
as

n(z) =
1

z−

⎛
⎝zn−1(z− 1)(z− 2)−


n−1

( − 1)( − 2)

Kn( , , ̃)
Kn(z, , ̃)

⎞
⎠ .

(2.17)

Using the above expression of n , the polynomial given in (1.4) becomes:

zn−2(z−)(z− 1)(z− 2)

= zn−1(z− 1)(z− 2)−


n−1
( − 1)( − 2)

Kn( , , ̃)
Kn(z, , ̃)

−an

⎛
⎝zn−2(z− 1)(z− 2)−


n−2

( − 1)( − 2)

Kn−1( , , ̃)
Kn−1(z, , ̃)

⎞
⎠ .

(2.18)

By comparing the coefficients of zn in (2.18), we get

− − 1− 2 = −1− 2−
1

2K
 |

n−2
( − 1)( − 2)|2

Kn( , , ̃)
−an.

By substituting the value of Kn( , , ̃) from (2.15) into the previous equation
and simplifying, we obtain the expression for an as given in (2.16).

This completes the proof. �



INEQUALITIES INVOLVING A MEASURE OF BGM CLASS 1025

2.1. Para-orthogonal polynomials and Chain sequences

The connection between chain sequences and the continued fraction representa-
tion of the ratio of Gauss hypergeometric functions [3], that are pivotal in the study of
orthogonal polynomials [10], is a well-known phenomenon. Furthermore, these hyper-
geometric functions serve as essential tools in diverse areas, including the inequalities
among the Gauss hypergeometric functions, as discussed in [25]. Chain sequences
can also be related to the complete monotonicity of sequences that are ratio of vari-
ous special functions. For example, the inequalities involving ratio of gamma function
and the corresponding logarithmic complete monotonicity results can be found in [16].
Subsequently, we proceed to represent the positive chain sequence in relation to the
Verblunsky coefficients ̃n associated with the measure ̃ . To achieve this, it is essen-
tial to introduce the notion of para-orthogonal polynomials on the unit circle (POPUC).
The POPUC associated with ̃n is given by

̃p
n(z; ) := ̃n(z)−

̃n( )
̃∗

n( )
̃∗

n(z) for  ∈ D. (2.19)

The CD kernel can be expressed in the framework of the POPUC and this equivalence
can be articulated as follows:

Kn(z,w, ̃) =
̃n+1( )2

n+1

w(z−w)
̃p

n+1(z; ).

The relationship between the POPUC and the CD kernel is extensively explored in
[21]. This connection is instrumental in deriving further insights, as exemplified in [9].
Notably, this linkage plays a crucial role in understanding the distribution of zeros of
para-orthogonal polynomials, as demonstrated in [33, section 2.14]. For the historical
background of the POPUC, we refer to [19, 20].

By utilizing (2.19), we consider the sequence {Ln(z; )}n�0 of monic polynomials
with deg Ln = n in the variable z defined as

Ln(z; ) =
1

1+ ̃n+1( )
̃∗

n+1( ) ̃n+1

̃p
n+1(z; )
z− 

, (2.20)

where ̃n ’s are Verblunsky coefficients associated with measure ̃ . An equivalent
formulation of (2.20) is given by

Ln(z; ) =
z̃n(z)−  ̃n( )

̃∗
n( ) ̃

∗
n(z)

z− 
. (2.21)

Now we have a sequence of polynomials {Rn}n�0 , which is defined by

Rn(z) = Tn−1Ln(z;1), (2.22)
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where

Tn−1 =

n−1

j=0

(
1− ̃n(1)

̃∗
n(1) ̃ j

)
n−1

j=0

(
1−Re

(
̃n(1)
̃∗

n(1) ̃ j

)) .

Thus, as established in [11, Theorem 2.2], the sequence of polynomials (modified CD
kernel) {Rn}n�0 satisfies the three-term recurrence relation. Notably, one of the recur-
rence coefficients in this sequence forms a positive chain sequence. More specifically,
the recursive expression for {Rn}n�0 is given by

Rn+1(z) = [(1+ itn+1)z+(1− itn+1)]Rn(z)−4ln+1zRn−1(z),n � 0, (2.23)

with initial conditions R−1(z) = 0 and R0(z) = 1 (see also [31]). A similar recurrence
relation is found in [14, equation 3.3], which is then simplified to a more concise form in
[14, equation 3.7] using normalization. Significantly, the sequences {tn}n�1 represent
real parameters, while {ln}n�0 constitutes a positive chain sequence. These parameters
are determined by the following expressions:

tn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− Im (0)
1−Re(0)

for n = 1,

−
Im
(

1−0−a1
1−−a1

(1−a20)
)

1−Re
(

1−0−a1
1−0−a1

(1−a20)
) for n = 2,

0 for n � 3,

and

ln+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
4

(1−|0−a1|2)
∣∣∣1− 1−0−a1

1−−a1
(1−a20)

∣∣∣2
(1−Re(0−a1))

[
1−Re

(
1−0−a1
1−0−a1

(1−a20)
)] for n = 1,

1
4

1−|1−a20|2[
1−Re

(
1−0−a1
1−0−a1

(1−a20)
)] for n = 2,

1
4 for n � 3.

(2.24)

The positive chain sequence {ln}n�1 can be expressed as ln = (1−gn−1)gn for n � 1,
wherein the sequence {gn}n�0 is referred to as the parameter sequence associated with
ln [2]. This parameter sequence is given by

gn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

|1−0|2
1−Re(0)

for n = 0,

1
2

∣∣∣1− 1−0−a1
1−−a1

(1−a20)
∣∣∣2[

1−Re
(

1−0−a1
1−0−a1

(1−a20)
)] for n = 1,

1
2 for n � 2.

In addition, for n � 2 and  = 1, we can write (2.21) as

Ln(z;1) =
zn−1̃2(z)− ̃2(1)

̃∗
2(1)̃

∗
2(z)

z−1
.
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For |z| < 1, we have

̃∗
2(z) = lim

n→

(1− z)̃∗
2(1)

̃2(1)
Ln(z;1).

Thus,

lim
n→

Rn(z) =
1−0

1−Re(0)

(
1− 1−0−a1

1−−a1
(1 − a20)

)
[
1−Re

(
1−0−a1
1−0−a1

(1 − a20)
)] ̃2(1)

(1− z)̃∗
2(1)

̃∗
2(z).

Note that for tn = 0 and ln = 1
4 , n � 1, (2.23) reads

Rn+1(z) = (z+1)Rn(z)− zRn−1(z). (2.25)

The polynomial corresponding to this recurrence relation is given by

Rn(z) =
zn+1−1

z−1
. (2.26)

The monic Christoffel polynomial of degree n obtained by the Christoffel transforma-
tion of normalized Lebesgue measure at point ̃ = 1 can be written in terms of the
derivative of Rn(z) as:

n(z;1) =
1

n+1
d
dz

(zRn(z)) =
(n+1)zn +nzn−1 + . . .+2z+1

n+1
. (2.27)

Additionally, the orthogonal polynomial corresponding to the Lebesgue measure on the
unit circle can be expressed in terms of Rn(z) as follows:

n(z) = zn = Rn(z)−Rn−1(z).

The corresponding POPUC is given by p
n(z; ) = zn−  n for  ∈ D.

The polynomial p
n(z; ) , which has degree n , is orthogonal to the set {z,z2, . . . ,

zn−1} with respect to the Lebesgue measure, and all the zeros of p
n(z; ) lie on the

unit circle. Specifically, for  = 1, we have

p
n(z;1) = zn−1. (2.28)

In Case 3, we will demonstrate the zeros of the polynomial resulting from the linear
combination of two consecutive elements in (2.28).

More generally, the linear combination of two consecutive elements of POPUC,
as defined in (2.19), is expressed as

p
n(z; ; ̃n) = ̃p

n(z; )+ ̃n̃p
n−1(z; ). (2.29)

An equivalent form of (2.29) can be derived by substituting the expression for
̃p

n(z; ) mentioned in (2.19).

p
n(z; ; ̃n) = ̃n(z)−

̃n( )
̃∗

n( )
̃∗

n(z)+ ̃n̃n−1(z)− ̃n
̃n−1( )
̃∗

n−1( )
̃∗

n−1(z)

= ̃n(z)+ ̃n̃n−1(z)−
̃n( )+ ̃n̃n−1( )

̃∗
2( )

̃∗
2(z) (2.30)
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The polynomials defined in 2.29 are referred to as “combined POPUC”. It may be noted
that, we are not calling (2.29) as quasi POPUC, because in the literature [7], this ter-
minology is used for another sequence of polynomials. Interestingly, our terminology
of POPUC coincides with the quasi POPUC of order one given in [7], wherein higher
orders of quasi POPUC and the properties of their zeros are discussed.

Further simplifying, we write p
n(z; ; ̃n) defined in (2.30) as:

p
n(z; ; ̃n) = zn +(̃n− 1− 2)zn−1 +(12− ̃n1− ̃n2)zn−2 + 12̃nzn−3

− 12Anz
2 +(1 + 2)An −An, (2.31)

where

An = (̃n +  )
 n−3( − 1)( − 2)
(1− 1)(1− 2)

=⇒ |An| = |̃n +  |.

Next, we analyze the location of zeros of the polynomial p
n(z; ; ̃n) defined in (2.31).

It is evident from the Cauchy theorem [29, page 247] that all the zeros of p
n(z; ; ̃n)

lie inside the disc |z| < 1+M , where

M = max{|̃n +  |, |̃n− 1− 2|, |12− ̃n(1 + 2)|, |12̃n|, |12||̃n +  |,
|(1 + 2)̃n +  |}.

We can also determine the bounds for the sum of the squares of the zeros of the poly-
nomial. To achieve this, the companion matrix corresponding to the polynomial (2.31)
is expressed as:

Cn =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎞
⎟⎟⎟⎟⎟⎠ ,

where the coefficients an are defined as follows: a0 = −An , a1 = (1 + 2)An , a2 =
−12An , an−3 = 12̃n , an−2 = 12 − ̃n1 − ̃n2 and an−1 = ̃n − 1 − 2 . All
other coefficients are zero. Then, the determinantal expression for the polynomial
(2.31) can be written as

p
n(z; ; ̃n) = det(zIn−Cn), (2.32)

where In is the n× n identity matrix. It is clear that z1 =  ∈ D is one of the ze-
ros of the polynomial (2.31). Let the remaining zeros of p

n(z; ; ̃n) be denoted as
z2,z3, · · · ,zn . From the Schur inequality [29, page 278], it follows that

n


j=2

|z j|2 � (n−2)+ |̃n +  |2 + |1 + 2|2|̃n +  |2 + |12|2|̃n +  |2 + |12̃n|2

+ |12 − ̃n1− ̃n2|2 + |̃n− 1− 2|2.
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Further, we impose conditions on the parameter ̃n to analyze the zeros of the
polynomial defined in (2.31), which we discuss in three cases.

Case 1. If we take ̃n = − , then An = 0 and (2.31) reduces to

p
n(z; ;− ) = zn − ( + 1 + 2)zn−1 +(12 + 1 + 2)zn−2 − 12 zn−3.

(2.33)

By simplifying this equation, we obtain

p
n(z; ;− ) = zn−3(z− 1)(z− 2)(z−  ). (2.34)

Thus, for the choice ̃n = − , exactly n− 1 zeros of the polynomial p
n(z; ; ̃n) lie

inside the unit disk, while one zero lies on the unit circle.

Case 2. If we take 1 = 0 and ̃n = − 1
2

, then (2.31) reduces to

p
n(z; ;−−1

2 ) =
z2 −1
2

(zn−1− 2z
n−2− ( − 2) n−2). (2.35)

This expression indicates that at least one zero lies outside the unit disc, specifically
z = −1

2 , and one zero lie on the unit circle, namely z =  . For the remaining zeros,
we observe that no specific pattern emerges. In other words, n−2 zeros may either lie
inside or outside the unit disk. It is noted that as the value of 2 approaches to zero, the
largest zero of p

n(z; ;−−1
2 ) for each n � 2 is z = −1

2 .

Zeros of zn−1 − 2zn−2− ( − 2) n−2

n = 7, 2 = 0.1−0.1i  = −e
i
4 n = 8, 2 = 0.5  = e

i
10 n = 9, 2 = 0.53+0.25i  = −e

i
8

−0.9902+0.2546i −0.8551+0.0848i −0.9238−0.3826i

−0.7071−0.7071i −0.5762−0.6521i −0.9199+0.4213i

−0.2999+0.9782i −0.4408+0.7572i −0.3513−0.9461i

0.2664−0.9449i 0.1888−0.8929i −0.3376+0.9921i

0.6738+0.7403i 0.3593+0.8538i 0.4622−0.9342i

0.9570−0.2211i 0.8731−0.4598i 0.4881+0.9998i

− 0.9510+0.3090i 1.0469−0.3508i

− − 1.0654+0.4506i

Table 1: Zeros of p
n (z; ;−−1

2 )

For n = 8, 2 = 0.5, and  = e
i
10 , six zeros of the polynomial defined in (2.31)

lie inside the unit disk, as shown by the magenta dots in Figure 1 and given in Table
1. On the other hand, for n = 9, 2 = 0.53 + 0.25i , and  = −e

i
8 , seven zeros,

represented by green dots in Figure 1, lie outside the unit disk. Furthermore, for n = 7,
2 = 0.1− 0.1i , and  = −e

i
4 , the zeros represented as red dots are distributed both

inside and outside the unit disk.

Case 3. If we take 1 = 2 = 0, then (2.31) reduces to

p
n(z;1; ̃n) = zn + ̃nzn−1− ̃n−1. (2.36)
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Figure 1: Zeros of zn−1 − 2zn−2 − ( − 2) n−2 , n = 8 , 2 = 0.5  = e
i
10 (magenta dots),

n = 9 , 2 = 0.53+ 0.25i  = −e
i
8 (green dots), and n = 7 , 2 = 0.1− 0.1i ,  = −e

i
4 (red

dots).

The polynomial defined in (2.36) is orthogonal to the set {z,z2, . . . ,zn−2} with respect
to the Lebesgue measure.

Zeros of p
n(z;1; ̃)

n = 6, ̃ = −0.9 n = 7, ̃ = −0.2 n = 6, ̃ = −2 n = 7, ̃ = −9.1

−0.583128 −0.846258−0.419346i −0.678351−0.458536i −0.964456

−0.237066−0.553379i −0.846258+0.419346i −0.678351+0.458536i −0.49786−0.834243i

−0.237066+0.553379i −0.187738−0.942i 0.195377−0.848854i −0.49786+0.834243i

0.47863−0.494043i −0.187738+0.942i 0.195377+0.848854i 0.480095−0.864496i

0.47863+0.494043i 0.633997−0.755073i 1 0.480095+0.864496i

1 0.633997+0.755073i 1.96595 1

− 1 − 9.0999

Table 2: Zeros of p
n(z;1; ̃)

Interestingly, no longer, all the zeros of p
n(z;1; ̃n) lie on the unit circle. Particu-

larly, when ̃n = ̃ ∈ (−1,0) , (2.36) becomes

p
n(z;1; ̃) := zn + ̃zn−1− ̃−1. (2.37)

It is evident that the zeros of (2.28) lie on the unit circle. However, when we perturb
the polynomial to obtain (2.36), with one zero at z = 1 and the others depending on the
parameters ̃n , interesting patterns emerge. For instance, setting ̃n = ̃ ∈ (−1,0) , the
zeros of (2.37), except for z = 1, reside within the unit disk. This behavior is illustrated
for n = 6, ̃ = −0.9 and n = 7, ̃ = −0.2 in the Table 2 and figures 2 and 3.

On the other hand, if ̃ < −1, then at most one zero of (2.36) extends beyond
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the unit disk, as detailed in the Table 2. Additionally, as ̃ approaches −1 from within
(−1,0) , the zeros of (2.37) tend towards the origin, while as ̃ approaches 0, they move
closer to the unit circle. The rational modification of (2.28) given by (2.26) exhibits a
distinct behavior, with all its zeros lying on the boundary of the unit disk. Furthermore,
figures 2 and 3 depict an intriguing alternation in the placement of zeros between (2.26)
and (2.28) along the unit circle.

Figure 2: Zeros of p
6(z;1) (Red),

R6(z) (Blue),
p

6(z;1;−0.9) (2.37) (Magenta)

Figure 3: Zeros of p
7(z;1) (Red),

R7(z) (Blue),
p

7(z;1;−0.2) (2.37) (Magenta)

3. Lubinsky type inequalities involving  and ̃

In the previous section, it has been observed that the zeros of the linear combi-
nation of POPUC and quasi-orthogonal polynomials may lie outside the support of the
measure. This leads to the question of examining the relation between the measure  in
BGM class and its corresponding measure ̃ involving the quasi orthogonal polynomi-
als. In this section, we determine several inequalities involving  and ̃ . In particular,
we are interesting in finding an inequality similar to Lubinsky inequality [24], which
require one of the following norm inequalities.

3.1. Norm inequalities

Here, we discuss some norm inequalities involving ̃n and n with respect to
different measures.

PROPOSITION 4. Let {n}n�0 be a sequence of monic OPUC with respect to the
measure  . Let ̃n(z) = n(z)−ann−1(z) , n � 1 be a polynomial of degree exactly
equal to n. Then

‖̃n‖2
 � (1+ |an|2)mo(), n � 1 , (3.1)
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where mo() =
∫ 2
0 d(ei ) .

Proof. Let ̃n(z) = n(z)− ann−1(z) be a polynomial of degree n. Using the
minimization property of n with respect to  , we get

‖̃n‖2
 =

∫
|̃n(z)|2d(z) =

∫
(n(z)−ann−1(z))

(
n(z)−ann−1(z)

)
d(z)

= ‖n‖2
 + |an|2‖n−1‖2

 � ‖zn‖2
 + |an|2‖zn−1‖2



= (1+ |an|2)mo().

This completes proof. �
Further, if we assume that  is in BGM class, then it is possible to achieve sharp

bounds that remain independent of an .

THEOREM 3.1. Let  be in BGM class. Suppose {n}n�0 and {̃n}n�0 are
sequences of monic OPUC with respect to  and ̃ , respectively. Then, for n � 2 , the
following holds:

1. ‖̃n‖2
̃ = ‖̃∗

n‖2
̃ = 2K .

2. ‖̃n‖2
 = 2K(1+ | |2) .

3. 2K � ‖n‖2
̃ � 2K(1+ | |2)dist( ,supp)−2 .

Proof. If  is in BGM class, then the polynomial ̃n is given by ̃n(z)= zn−2(z−
1)(z− 2) .

1. We have

‖̃n‖2
̃ =

∫
D

|zn−2(z− 1)(z− 2)|2K
1

|z− 1|2|z− 2|2
|dz|

= K
∫
D

|dz|

= 2K.

Since ‖̃n‖2
̃ = ‖̃∗

n‖2
̃ , it follows ‖̃∗

n‖2
̃ = 2K .

2. We can write

‖̃n‖2
 =

∫
D

|zn−2(z− 1)(z− 2)|2K
|z− |2

|z− 1|2|z− 2|2
|dz|

= K
∫
D

|z− |2|dz|

= K
∫ 2

0
(1−e−i −ei + | |2)d

= 2K(1+ | |2).
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3. Using the minimization property of ̃n with respect to ̃ , we obtain

‖n‖2
̃ � ‖̃n‖2

̃ = 2K. (3.2)

On the other hand

‖n‖2
̃ =

∫
D

|n(z)|2d̃(z)

=
∫
D

|n(z)|2

|z− |2
d(z)

� dist( ,supp)−2
∫
D

|n(z)|2d(z)

� dist( ,supp)−2
∫
D

|̃n(z)|2d(z).

The last inequality was obtained using the minimization property of n with
respect to  . Now, using item (2), we get:

‖n‖2
̃ � dist( ,supp)−22K(1+ | |2). (3.3)

This completes the proof. �
Next, we obtain the measure of the unit circle with respect to ̃ and  using the

Cauchy integral formula.

PROPOSITION 5. Let ̃ and  be the measures given in (2.10) and (2.9), respec-
tively. Then we have the following

∫
D

d̃(z) = 2K
(1−|1|2|2|2)

(1−|1|2)(1−|2|2)|1− 12|2
, (3.4)

∫
D

d(z)

= 2K
(1−|1|2)(1+ | |2−2Re(2))+ (1−|2|2)

(
(1+ | |2)|1|2 −2Re(1)

)
(1−|1|2)(1−|2|2)|1− 12|2

.

(3.5)

Proof. For the given measures ̃ and  , we write∫
D

d̃(z) =
∫
D

K
1

|z− 1|2|z− 2|2
|dz|

=
K
i

∫
D

z
(z− 1)(z− 2)(1− z1)(1− z2)

dz.

Since 1 and 2 lie inside the unit disk, by the Cauchy integral formula, it follows that∫
D

d̃(z) =
2K

1− 2

[
1

(1−|1|2)(1− 12)
− 2

(1−|2|2)(1− 22)

]
.
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By simplifying the right-hand side of the above equation, the factor 1−2 will cancel
out, which proves (3.4).

On the other hand, we write

∫
D

d(z) =
∫
D

K
|z− |2

|z− 1|2|z− 2|2
|dz|

=
K
i

∫
D

(z−)(1− z )
(z− 1)(z− 2)(1− z1)(1− z2)

dz

=
2K

(1− 2)

[
(1 −)(1− 1 )

(1−|1|2)(1− 12)
− (2−)(1− 2 )

(1−|2|2)(1− 21)

]
.

The final equality is obtained by solving the complex integral using the Cauchy inte-
gral formula. Upon simplifying the right-hand side of the equation, the factor 1 − 2

cancels out, resulting in a compact form∫
D

d(z) = 2K
(1+ | |2)(1−|1|2|2|2)−2(1−|1|2)Re (2)−2(1−|2|2)Re (1)

(1−|1|2)(1−|2|2)|1−12|2
.

By writing 1−|1|2|2|2 = (1−|1|2)+ |1|2(1−|2|2) , we can further simplify and
obtain (3.5) and this completes the proof. �

3.2. Lubinsky type inequality without ordering of the measures

In [24], Lubinsky introduced an important tool, which Simon calls Lubinsky in-
equality [33], to prove the universality limits, which is essential for giving information
about the zeros of para-orthogonal polynomials on the unit circle (POPUC). We have
a well-developed theory in the literature [27, 32] to study the asymptotic behaviour of
the Christoffel function, which makes the Lubinsky inequality “a powerful tool” since
this allows us to control the off-diagonal CD kernel to diagonal CD kernel. If we drop
the hypothesis of the Lubinsky inequality i.e. work with a general pair of measures,
then the upper bound for L2 -norm of the CD kernel of 2 with respect to 1 will
create a challenge. In our setting of Theorem 3.3, we drop the hypothesis of the Lubin-
sky inequality and get the control of the off-diagonal CD kernel from the diagonal CD
kernels.

For clarity, we give the statement of the Lubinsky inequality. Its proof can be
found in [34] (see also [24]).

THEOREM 3.2. Let 1 � 2 . Then for any complex numbers z and w, we have

|Kn(z,w,1)−Kn(z,w,2)|2 � Kn(w,w,1) [Kn(z,z,1)−Kn(z,z,2)] .

LEMMA 3.1. Let  be a positive Borel measure supported on the unit circle as
defined in Definition 1.1 and Kn(z,s, ̃) denote the CD kernel corresponding to the
measure ̃ as defined in (1.2). Then

‖Kn(z,s, ̃)‖2
 � 4Kn(z,z, ̃). (3.6)
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Proof. For ̃ given in (2.10), we write

‖Kn(z,s, ̃)‖2
 =

∫
D

|Kn(z,s, ̃)|2K |s− |2
|s− 1|2|s− 2|2

|ds| (3.7)

� 4
∫
D

|Kn(z,s, ̃)|2d̃(s)

=
∫
D

Kn(z,s, ̃)Kn(s,z, ̃)d̃(s).

By using the reproducing property of the CD kernel with respect to ̃ , we get

‖Kn(z,s, ̃)‖2
 � 4Kn(z,z, ̃).

This completes the proof. �
The above Lemma helps to achieve the following Lubinsky-type inequality.

THEOREM 3.3. Let  be a positive Borel measure supported on the unit circle as
defined in Definition 1.1. Suppose Kn(z,w,) and Kn(z,w, ̃) denote the CD kernels
corresponding to the measure  and ̃ , respectively, as given in (1.2). Then, for any
complex numbers z and w, we have

|Kn(z,w,)−Kn(z,w, ̃)|2 � Kn(w,w,) [Kn(z,z,)+2Kn(z,z, ̃)] . (3.8)

Proof. By the reproducing property of CD kernel, we can write

Kn(z,w,)−Kn(z,w, ̃) =
∫

(Kn(z,s,)−Kn(z,s, ̃))Kn(s,w,)d(s),

and using the Cauchy-Schwarz inequality, the above expression becomes

|Kn(z,w,)−Kn(z,w, ̃)|2 �
∫
|Kn(z,s,)−Kn(z,s, ̃)|2d(s)

∫
|Kn(s,w,)|2d(s)

= Kn(w,w,)
(∫

|Kn(z,s,)−Kn(z,s, ̃)|2d(s)
)

.

(3.9)

Now, we denote the bracketed term in (3.9) as I then

I =
∫

Kn(z,s,)Kn(s,z,)d(s)−
∫

Kn(z,s, ̃)Kn(z,s,)d(s)

−
∫

Kn(z,s, ̃)Kn(s,z,)d(s)+
∫

Kn(z,s, ̃)Kn(z,s, ̃)d(s). (3.10)

Substituting (3.6), in (3.10), we have

I � Kn(z,z,)−2Kn(z,z, ̃)+4Kn(z,z, ̃). (3.11)

Hence, by using (3.11) in (3.9), we obtain (3.8) which completes the proof. �
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REMARK 3.1. In one sense, Theorem 3.3 improves Theorem 3.2 since the order-
ing between the  and ̃ ( ≶ ̃ ) is not required. On the other hand, we obtain the
bound in terms of the diagonal kernel, as in the Lubinsky inequality, but the bound is
not sharp. This non-sharpness is due to the fact that max |s− | = 2, for s ∈ D and
 ∈D , in (3.7). This maximum value is not sharp. We can obtain better optimum either
for special values of  or considering the more particular measure.

3.3. Sub-reproducing property

We observe that Kn(z,w,) denotes the kernel polynomials for orthonormal poly-
nomials. It is important to note that normalization plays a crucial role in defining kernel
polynomials, providing the reproducing property [34, eq 1.18] and CD formula. On the
other hand, if we define the kernel polynomials for orthogonal polynomials, then it will
not yield the reproducing property. Nevertheless, we can still inquire about some esti-
mates related to the reproducing type property for the kernel polynomial of orthogonal
polynomials. We define

Kn(z,w,) =
n


j=0

 j(w) j(z). (3.12)

We refer to Kn(z,w,) as kernel-type polynomials. In the subsequent result, we ob-
tain one-sided inequality for the reproducing property, which is called sub-reproducing
property.

PROPOSITION 6. (Sub-Reproducing property) Let Kn(z,w,) denote the polyno-
mial of degree n in z, as defined in (3.12). If p(z) is any polynomial of degree at most
n such that Re (〈p, j〉) � 0 for every j = 0,1, · · · ,n, then for any w ∈ C such that
 j(w) � 0 for each j = 0,1, · · · ,n, we have

Re

(∫
p(z)Kn(z,w,)d(z)

)
� m0()Re (p(w)). (3.13)

If  is a probability measure on the unit circle, then

Re

(∫
p(z)Kn(z,w,)d(z)

)
� Re (p(w)). (3.14)

Proof. Let p(z) = n
j=0 j j(z) . For any w ∈ C such that  j(w) � 0 for each

j = 0,1, · · · ,n , we can write

Re

(∫
p(z)Kn(z,w,)d(z)

)
= Re

(∫ n


j=0

 j j(z)
n


i=0

i(w)i(z)d(z)

)

=
n


j=0

Re ( j j(w))‖ j‖2


� m0()Re (p(w)),
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where the inequality follows from the minimization property of n with respect to
 . �

COROLLARY 3.1. Let Kn(z, ,) denote the polynomial of degree n in  , as
defined in (3.12). Then for any z ∈ C and mo() =

∫ 2
0 d(ei ) , we have

∫
Kn(z, ,)Kn( ,z,)d() � m0()Kn(z,z,). (3.15)

Proof. For any z ∈ C , we write

∫
Kn(z, ,)Kn( ,z,)d() =

n


j=0

 j(z) j(z)‖ j‖2
 � m0()Kn(z,z,). �

In the next theorem, we obtain estimates for the absolute difference of diagonal
elements of the kernel-type polynomials with respect to the measures  and ̃ .

THEOREM 3.4. Let z ∈ D and { j} j�0 be representing the Verblunsky coeffi-
cients for the measure  , we have

|Kn(z,z, ̃)−Kn(z,z,)| �
n


j=0

((
| j−1|+1

)2 +2|a j|2
)

exp

(
2

j−2


k=0

|k|
)

.

Moreover, if n �= 0 for n � 1 , then

|Kn(z,z, ̃)−Kn(z,z,)| � M +6
n


j=3

1
| j−2|2

e2 j−2, (3.16)

where M = 2e4(6+
2

j=0

|a j|2) and a j ’s given in (1.4).

Proof. We can write the reproducing kernel-type polynomial with respect to the
measure ̃ as

Kn(z,w, ̃) =
n


j=0

( j(z)−a j j−1(z))( j(w)−a j j−1(w))

=
n


j=0

 j(z) j(w)−
n


j=0

a j j−1(z) j(w)−
n


j=0

a j j(z) j−1(w)

+
n


j=0

|a j|2 j−1(z) j−1(w), (3.17)
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which implies

Kn(z,w, ̃)−Kn(z,w,)

=
n


j=0

|a j|2 j−1(z) j−1(w)−
n


j=0

a j j−1(z) j(w)

+
n


j=0

a j j−1(z) j(w)−
n


j=0

a j j−1(z) j(w)−
n


j=0

a j j(z) j−1(w)

=
n


j=0

|a j|2 j−1(z) j−1(w)−
n


j=0

2Re(a j j−1(z) j(w))+
n


j=0

a j j−1(z) j(w)

−
n


j=0

a j j(z) j−1(w).

For z = w , we have

Kn(z,z, ̃)−Kn(z,z,) =
n


j=0

|a j|2 j−1(z) j−1(z)−
n


j=0

2Re(a j j−1(z) j(z)).

Using the triangle inequality, we get

|Kn(z,z, ̃)−Kn(z,z,)| �
n


j=0

|a j|2| j−1(z)|2 +
n


j=0

2|Re(a j j−1(z) j(z))|.

We know that 2|Re(zw)| � |z|2 + |w|2 . Hence,

|Kn(z,z, ̃)−Kn(z,z,)| �
n


j=0

| j(z)|2 +2
n


j=0

|a j|2| j−1(z)|2.

For z ∈ D , using the inequality [32, equation 1.5.19] |n+1(z)| � (1+ |n|)|n(z)| ,
we can write

|Kn(z,z, ̃)−Kn(z,z,)| �
n


j=0

((
| j−1|+1

)2 +2|a j|2
)
| j−1(z)|2,

from which again using the inequality [32, equation 1.5.17], we obtain the desired result

|Kn(z,z, ̃)−Kn(z,z,)| �
n


j=0

((
| j−1|+1

)2 +2|a j|2
)

exp

(
2

j−2


k=0

|k|
)

.

If n �= 0 for n � 1, then using an+1 = n
n−1

[5, Theorem 4], we have

|Kn(z,z, ̃)−Kn(z,z,)| �
2


j=0

((
| j−1|+1

)2 +2|a j|2
)

exp

(
2

j−2


k=0

|k|
)

+
n


j=3

((
| j−1|+1

)2 +2
| j−1|2
| j−2|2

)
exp

(
2

j−2


k=0

|k|
)

� M +6
n


j=3

1
| j−2|2

e2 j−2,
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where M = 2e4(6+
2

j=0

|a j|2) . �
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