lournal of
athematical
nequalities

Volume 19, Number 4 (2025), 1043-1058 doi:10.7153/jmi-2025-19-67

MUCKENHOUPT WEIGHTS ASSOCIATED
WITH A CLASS OF HOMOGENEOUS TREES

LUOBIN LIU AND JIANG ZHOU *

(Communicated by M. Krni¢)

Abstract. In this paper, the authors introduce the Muckenhoupt weights on a class of homoge-
neous trees, study some important properties of Muckenhoupt weights, and establish an equiva-
lence of Muckenhoupt weights on the trees. As applications, the characterizations of the maximal
operator M associated with admissible trapezoids on weighted Lebesgue spaces are obtained.

1. Introduction

The origin of trees can be traced back to the work of Euler, who laid the founda-
tion of graph theory in the study of the Konigsberg bridge problem in 1736. While the
research conducted during that period primarily focused on general graphs rather than
trees, the significance of this work for advancing tree theory should not be overlooked.
In 1857, Cayley [4] explicitly introduced the concept of trees while calculating the iso-
mers of saturated hydrocarbons. In the latter half of the 19th century, the application of
trees in circuit theory and network analysis developed and became one of the essential
tools for circuit analysis, see for instance [7, 8, 17]. In 1972, Cartier [5] first study of
problems on harmonic analysis in the framework of trees, laying the foundation for the
theory of harmonic analysis on trees. For work on tree-based harmonic analysis theory
since the 1980s, see [11, 13, 14].

For a vertex set ¥ on an infinite homogeneous tree T, equipped with the natural
distance d and a flow measure u, the metric measure space (¥ ,d,u) does not sat-
isfy the doubling condition and exhibits exponential growth. Consequently, the classi-
cal Calderén-Zygmund decomposition theory is not applicable in this setting. In 2003,
Hebisch and Steger [9] established an abstract Calder6n-Zygmund decomposition tech-
nology applicable to (#',d, i) and obtained the weak (1,1) boundedness of the maxi-
mal operator associated with admissible trapezoids R. In 2020, using the technology in
[9], Arditti, Tabacco and Vallarino [2] introduced the atomic Hardy spaces H 1 (1) on
the tree T, studied its properties and obtained the boundedness of maximal operators
associared with trapezoids on (¥',d,u). In 2021, Arditti, Tabacco, and Vallarino [3]
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introduced the BMO(u) spaces on the tree T, further developing the harmonic anal-
ysis theory on trees. However, we find a lack of research on weighted theory for such
tree. Therefore, this paper aims to establish a Muckenhoupt weight theory for the tree
T.

In classical harmonic analysis, the research on weighted theory began with Muck-
enhoupt’s work [12]. He proved that for 1 < p < oo, the Hardy-Littlewood maximal
operator is bounded on L} (R") if and only if the weight @ satisfies the following

condition:
(o)l
sup| — [ @ —/w = < oo,
o \10|Jo 10| Jo

where the supremum is taken over all cubes Q in R”, and |- | denotes the Lebesgue
measure of a set. The weight @ that satisfies the above inequality is later referred to as
an A, weight or a Muckenhoupt A, weight. In 1974, Coifman and Fefferman [6] fur-
ther simplified the proof of the boundedness of the Hardy-Littlewood maximal operator
with weighted norm and obtained some properties of the A, weights, especially when
® € A, the reverse Holder inequality holds.

Due to the significant role in establishing various weighted inequalities and analyz-
ing the properties of function spaces, discrete Muckenhoupt weights have been studied
by many scholars. In 2021, Saker et al. [15] proved some fundamental properties of the
discrete Muckenhoupt weights. In the same year, Saker and Agarwal [16] established
the discrete Rubio de Francia extrapolation theorem.

Inspired by the aforementioned works, we establish the Muckenhoupt weight the-
ory on this tree 7. In Section 2, we present some definitions about infinite homoge-
neous trees, including the Muckenhoupt classes A p and A, as well as the definition of
the reverse Holder classes RH,. In Section 3, some properties of A, and A, weights
are proven. Additionally, we establish an equivalence between A p weights associated
with levels and .27,(Z). Through this equivalence, we demonstrate that some of the
weights associated with levels belong to A p- In section 4, certain conditions for the
weighted weak and strong boundedness of the maximal operator are obtained.

In this paper, let @ (x) > 0 be a weight, and suppose E C ¥, we define w(E) =

> w(x)ql(x). The letter C denotes a constant not necessarily the same at each oc-
X€E
currence, p’ is the conjugate exponent to p,ie. 1/p'+1/p=1, |-] and [-] repre-

sent the floor and ceiling functions, respectively, Z denotes the set of all integers and
N=1{0,1,2,---}.

2. Preliminaries

2.1. Homogeneous tree

DEFINITION 1. [9] An infinite homogeneous tree of order g+ 1 is a graph 7' =
(¥, &) that satisfies the following conditions:

(1) T is connected and acyclic;

(i1) Each vertex in ¥ has exactly g + 1 neighbors,
where ¥ is the set of vertices, and & is the set of edges. The distance d(x,y) between
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two vertices x and y in T is the length of the shortest path between x and y.

DEFINITION 2. [1] A doubly-infinite geodesic g in the infinite homogeneous tree
T =(¥,&) is asubset of ¥ that satisfies the following conditions:

(1) For each element x € g, there are exactly two neighbours of x in g;

(i1) For arbitrary two vertices x,y € g, the shortest path between x and y is con-
tained in g.

DEFINITION 3. [9] Let T = (¥, &) be an infinite homogeneous tree and N : g —
7 is a mapping on the double-infinite geodesic g such that

N(x)_N(y):d(xvy)7 vxayEg~

Choosing an origin o € g such that N(o) = 0, and determining an orientation for g,
one can obtain a numberation of the vertices on g.
Then, define level function [ : ¥ — Z as:

I(x) =N —d(x,x),

where X’ is the only vertex in g such that d(x,x') = min{d(x,z):z€ g}. For x,y € ¥,
x lies below y or y lies above x, if I(y) —I(x) =d(x,y).

DEFINITION 4. [9] Let T = (¥,&) be an infinite homogeneous tree of order
g+ 1, p is a measure on ¥ such that for any non-negative function f: 7 — R,

DEFINITION 5. [2] Let T = (¥, &) be an infinite homogeneous tree and equipped
with the natural distance d. Given X' € ¥ and r > 1. The sphere S,(x') :={x€ ¥ :
d(x,x') =r} and the closed ball B,(x') :={x€ ¥ :d(x,x') <r}.

2.2. Admissible trapezoids and Calderén-Zygmund sets

In [2], Arditti, Tabacco and Vallarino proved that the measure u is of exponential
growth, thus the space (¥',d,u) does not satisfy the doubling condition. Therefore,
they used two special geometric structures to study the related theory of (¥#',d,u),
namely admissible trapezoids and Calderén-Zygmund sets.

DEFINITION 6. [1] A subset R of ¥ is called an admissible trapezoid if it satis-
fies at least one of the following conditions:

(1) R={xg} with xg € ¥, thatis R consists of a single vertex;

(ii) There exists xg € ¥ and h(R) € Z* such that

R ={x € ¥ :xlies below xg,h(R) < I(xg) — I(x) < 2h(R)},
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where h(R) is called the height of R and i(R) =1 in the first case and h(R) =h € Z™
in the second case. The vertex xg is called the root node of the admissible trapezoid
R. In addition, the quantity w(R) = ¢'*®) is called the width of R. According to the
structure of the tree T, it is easy to obtain u(R) = h(R)w(R).

DEFINITION 7. [1] Let R be an admissible trapezoid, its envelope R is defined
as follows:

(1) If R consists of a single vertex, then R=R;

(i1) Other situations,

- R
R= {xe ¥ : x lies below xg, @ <lxg) —1(x) < 4h(R)}.

The envelope of an admissible trapezoid is also called a Calderén-Zygmund set.

LEMMA 1. [2] Let R be an admissible trapezoid, then (R) < 4u(R).

2.3. Muckenhoupt weights and the reverse Holder inequality

Next, we introduce the definition of Muckenhoupt weights and the reverse Holder
class on the space (7#',d,u). We first recall the definitions of weighted Lebesgue and
weak Lebesgue spaces.

DEFINITION 8. Let 0 < p < o, the weighted Lebesgue space Lk (7) is defined
as follows:

Lo(7) =A{f :Ifllg <<},

P
where 1= ( 3 lrotod®)
X7

The weighted weak Lebesgue space WL is defined as follows:

WL(7) ={f : || fllwrr, <=},
where [|fllyz == supAw({xe ¥ : f(x) > A})7.
A>0
For p=co, | fllzz :=||fll= and LG (V) =L™(7).

DEFINITION 9. (A, and A, weights) Denote % as the set of all Calderdn-
Zygmund sets. Let @ be a weight, 1 < p < oo, if @ satisfies the following condition:

1

p—1
L i (L — 5 ) < o |
;2%<“(R)%§w(xm ) (H(R)E,Rw(x) q , )

then o is called an A, weight, denoted as w €4,,.

p—1 —1
When p =1, (ﬁ D w(x)l’llql(")> is understood as (inﬁw(x)) :

xER *ER
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Denote Z as the set of all admissible trapezoids. Observe that, for any admissible
trapezoid R, it follows from Lemma 1 that u(R) < 4u(R). Therefore, if o € A »» then
o also satisfies the following condition:

p—1
1
S Pl oo, 2
E‘é%(u(m%“’(") )( 7200 ") - @

o that satisfies inequality (2) is called an A, weight, denotedas w € A,.

DEFINITION 10. If there exist 1 < r < oo and C > 0 such that, for all Calderdn-
Zygmund sets R,

(ﬁ > w(x)’a“”) < “(CR) Y w(x)q'", 3)

XxER

then w belongs to reverse Holder class, denoted as w € RH,-.

3. Properties of A, weights

In this section, we discuss the main results of the article concerning A p weights on
the infinite homongeneous tree T . These results include the equivalent propositions of
Muckenhoupt weights, the relationship between A p weights class and BMO spaces, the
equivalence between A p weights in relation to level I and #7,(Z) and other properties.

First, we present several key properties of A p- As the proofs are similar to those
for the classical Euclidean space, we will omit them.

THEOREM 1. (i) For 1 < p<oo, @ € A if and only if

@ 2 W (zxemf( )P o)¢" ’) " vremm),

XER ZXGRw( ) ( )

for all Calderén-Zygmund set R C V' ;
() If 1< p<s<oo, then Ay, CA;
i) If p > 1, then w e}p if and only ifwl’pl EAI,/ P
@iv) For p> 1, if o € A, then forany 0 < e <1, w® € A,;
V) If oy, @y € Ay, then a)lwzl*p €A.

REMARK 1. If we replace R with R, the results of Theorem 1 still hold.

Next, we will demonstrate the relationship between A » weights and BMO spaces.
In [3], Arditti, Tabacco and Vallarino introduced BMO spaces on the trees 7. Let
t € [1,00). The space BMO; () is defined as follows:

1 . 1/t
BMO; (1) = {f- [ £llBmo, = SIIJ?P (ﬁ/ﬁf_fﬁ dH) < °°}~
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where fz = ﬁ [z fdu.

LEMMA 2. (Jensen’s inequality) Let E be a measurable set, f¢ € L(E), ¢ €
L(E), ¢ >0 and [z ¢(x)dx >0, if g is a convex function, then

(ffEﬂp) < fEij{;)‘p

THEOREM 2. For p > 1, if ® €A, then ¢(x) :=Inw(x) € BMO;(u).

Proof. Since € A p and p > 1, there exists a constant C > 0 such that for all R

-1
L B AN )T ) ’
(u(ﬁ%‘””" )(Mﬁ%‘”“ ’ ) =

Let ¢(x) = Inw(x), then w(x) = e?™ , we have

p—1
1 o)
(1) — = e_l’qul(x) <C
(s 54 (s 3544

The above inequality is equivalent to

—1
1 0(x)—0g b
9 —0z - T gl <C
q ~ e 7 q X C. (4)
(“ xe% )(“(R%Z?é )

Iflet E=R, f(x)=¢(x)— ¢z, ¢(x) =1 and g(x) = ¢, then from Lemma 2, it follows

that

xeR

Since
1
o) = 0zld Y =Y 0(x)d'D = ¥ | —% 3 00" | ¢'¥ =0,
XER xER x€R ‘LL(R) R

then
ed’(x)_d’kql(x). 5)

Iflet E =R, f(x) = ¢(x) — ¢z, 0(x) =1 and g(x) = e 71, similarly to the above
proof, we can obtain

e p—1 ql(x) . (6)
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From (4), (5) and (6), we have

1
- 0(X) =0z 1 (x)
sup ——= e g’ <
& MU(R) <R

and

()0
1~ z o ¢ ’))71¢R ql(x) <o
H(R) XGR

sup

Since x < e, it is obvious that

1
7 2 10(x) — gl <

sup
R ( ) xeR

This shows that ¢(x) € BMO;(u). O

Next, we will establish the equivalence between the A p weight associated with
level and .27,(Z).

DEFINITION 11. [10] A discrete weight w is said to belong to the discrete Muck-
enhoupt class <1 (Z) if

1
||w||m(2)—517112m sz(k) < oo,

For 1 < p < e, a discrete weight w is said to belong to the discrete Muckenhoupt class

o, (Z) if
0]l = sup Lyo) (LYo "
N EEAVAIE:; ’

where [|||,z) denotes the norm of weight @ and J is any bounded interval in Z.
Define

U %2

1<p<eo

THEOREM 3. Let o(x) = f(I(x)) >0, then w € A, if and only if f € 7,(Z).
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Proof. Forall Re %,

I(x) _ 1(x)
— Y ox)gY =—= ) f(l(x))q
H(R)g‘é (x) H(R)g‘é (1(x))
1 Ll(x%—'éj .
- fU(x))q
H(R) japy a1 v R 100 =k
LG0T

where L denotes the number of levels, that is L = 4h(R) — [@ 1.
By a similar argument, we can also obtain

Pl l1(xp)- 4] o

1 _ 1 l(x)) 1 2 _ 1

—— D 0x) g =l X frnl .
( K (R) x€R L k=I(xg)—4h+1

Let J' is the collection of all simple points in Z or sets of the form Z N [l(xg) —4h+

L [1(xr) = 3]

Then (1) holds if and only if the following inequality is true

p—1
sup ]/ 2 (k) ]/ 2 (k) < oo,
reg\| 7] ket 7] ket

Next, we define a family of sets _# as:
J ={la,b|NZ|a,b € Z,a < b}.
According to the definitions of _#’ and _# , we have there exists J{ € _#’ such that
JicJcC2=:J;.

On one hand, it is obvious that

p—1
e, (|,, 2 ) (lf’ PR )
p—1

\fé‘?(V%f )(Jkezjf ) |
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On the other hand,

p—1
Ji‘{,%<|1|k§,f )(J%f )
p—1
\J’S;§’<J/|k§zf )(Ulkgjzf )

p—1
=27 sup [ — Y f(k) Y fk) = =

Je 7! |‘] | ke, “]2| ked)

Then,
p—1
sup | = 2K ) | 7 2 ()
Je 7! ‘J keJ “] | keJ'
p—1
(lJ = |J =

Therefore,

R xER ‘u xelé
1 1 o\
= suwp | Y, f(k) Vi Y f(k) v < oo
Je g! | keJ’ | keJ’

p—1
¢:>2?(£”gyf ><J;§f ) < oo,

This shows that ® € A, if and only if f € o7,(Z). O

REMARK 2. In [10], Hao, Li and Yang established the equivalence relationship
between «7,(N) and /,(Z). So, by Theorem 3, for f defined on N and o = f(|I(x)]),
we also get that w € A, if and only if f € 7,(N).

Using the above equivalence relationship, we find that the power functions related
to level belong to the A, weight class.

THEOREM 4. For 1 <p<oo,let —1 <o < p—1and w(x)= (JI(x)|+1)%, then
w €A,
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(k+1)*, fe (N). Let J=[a,b—1]NN,aeNand b=1,2,---, then

p—1
(ﬁZ(k—k 1)“) (ﬁ;(k—f— 1)nal>

-1

Proof. From Theorem 3 and Remark 2, it is sufficient to prove that, for f(k) =

7
1 b 1 b o p
~ (b a/ (x+1)adx) <—b a/ (x+1)_ﬁdx>
“al, /.
a o -1
1 (b+ 1) — (q+1)%+! (b-l—l)l_f’%ll—al‘,ﬁ P
p—1

<a+1>P<<%>°‘“—1> ()
P o

o+1 s

b+l _ 3
Case 1. If 1 < a1 < i,then

<b+l>a+l—1z(a+1)<%—1> :(aﬂ)(Z:)

a+1
and
=551
() =055 ) - (55)(
Thus,
ooy (G121 (L)1 T
(b—a)P a+1 — % -

+1 =
(at P ((B)" -1\ [ () 7T -1
(b—a)r o+ 1 1-2%
11 1o\ Pl
a+1\"((&9)" (z) ™!
b—a oa+1 —p%l

In conclusion, from (7) and (8), it is follows that f € .@7,(N)

A,. O

(7

®)

. Thus, o(x) €
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4. Weighted norm inequality for the maximal operator

As an application of Muckenhoupt weights, we will study the weighted estimates
of the maximal operator, starting with its definition.

DEFINITION 12. [2] The maximal operator is defined as follows:

Mf()= sup ﬁ;lﬂvm’“’.

ReZ, Rox

LEMMA 3. [1] For any Calderén-Zygmund set R, there are three admissible
trapezoids Py, Py, Py with w(Py) < u(Py) < u(Ps) such that R C PLUP,UPs and
u(P) <2qu(R) for i=1,2,3.

LEMMA 4. If @ € A, with p > 1, then ®(R) < C(8q)?w(R).

Proof. From Holder’s inequality, the definition of A » and Lemma 3, we have

1 _p®) 1 g
55 u) () 2P
_ 1 b o) 5 )

==
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) <%>;(2N (Cg((;’?)

<2 (28’ (L)

Therefore, ®(R) < C(8¢q)Pw(R). O

THEOREM 5. Let 1 < p < o and w be a weight. M is bounded from L}, to WL,
ifand only if o € Ap.

Proof: When p =1, given xo € R; C Ry and let f = xg, . If & € Ry, then

_ 1 1(y) 1 1) _ MR
Mf(x) Reﬁ;gax“(m %Jf(ﬂ\q > me yEEI;Z 1f()lq (R

Therefore, Ry C {x € ¥ : Mf(x) > LBy —. 7.
Furthermore,

2 w(x)ql(x) < 2 w(x)ql(x) =) gc“(Rz) 2 w(x)ql(x)_
XER, xeM u(Ry) XER,

It shows that

C
2‘ 1(x) 2‘ 1(x)
(x < (x .
u(R) &, ®) u(Rry) &, ®a

If R; = {x}, then for any admissible trapezoid R, containing x, we have

@ 2;5 o(x)g'"Y < Co(x).

Taking the supremum on the left side and the infimum on right side, we obtain w € A; .
When p > 1, since @ = 0 obviously does not belong to A, for any fixed admis-
sible trapezoid R, we may assume ®(x) > 0.

Let f(x) = (x) 71 ze(x) and A = gl 3. F(x)¢'®, then

o({xe? :Mf(x)>A}) < % Zw(X)_%w(x)ql(ﬂ

XER
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From the definition of A, it is obvious that R C {x € ¥ : Mf(x) > A}. Thus,

l—p
oR) < o({xe ¥V :Mf(x)>A}) < <2w qu) .

XER

It implies that

-1
B B AN )T ) ’
(u(m%“’( )4 )(M(R)%w() q ) <C.

Therefore, w € A,.
Next, we will prove that the following inequality holds:

o(fxe? :Mf(x) > 2}))7 <Cl|fly. Vi>0. ©)

Let’s assume f € L!'(7,u). Otherwise, replace f XB,(o) With f. Indeed, if f €
LY(7,u), (9) is valid. Therefore, for all f € L5 (¥), we set g,(x) = f(xX) X8, (o) » then

Y lgr@)lg'™ =Y 1f(x)ld (x)

xeV X€B,(0)

/ 4
<<2|<>Pw )(zw %”> <o,
XEB,(0) XEB,(0)

This shows that g,(x) € L' (7). Thus, for all » > 0, we have

V4
o({x: Mg, (x) > A}) <c<”g;”“’v>

On the one hand, since g,  f, from Levi’s Lemma, it follows that

8rllzz, = 1A Nz = oo

On the other hand, M f(x) > A if and only if there exists an admissible trapezoid Ry
such that

! 1) 5 3

and for sufficiently large r, it is obvious that Ry C B,(0) and then Mg,(x) > A . Thus,
{Mf(x)> 2} [J{x: Mg, (x) > A}
r=0

Furthermore, we have

o({x:Mfx)>A}) <o (}Lngo{x : Mg, (x) > x}) = lim o ({x: Mg, (x) > 1}).
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Clearly,
o({x: Mg (x) >A}) <o({x:Mf(x) >A}).
Therefore,
lim o ({x: Mgr(x) >A}) = ({x: Mf(x) >A}).

r—o0

From the above, it is sufficient to prove the case for f € L!(7,u). Define Sy as the
family of all admissible trapezoids R such that

Y 1f@)lg"™ = Au(R).

XER

By employing the methods described in [2, p. 29], we can find a countable set of ad-
missible trapezoids R;, such that

{x:Mf(x)> 21} C|JR;.
J
From Lemma 4 and Theorem 1, we obtain

o({xeR": Mf(x) > A}) Zw

<C8q1’2w
14
oy | R »
e T Flg é%Lf el
<c<8q>pz(;) 3 1l ol)
j x€R

<ctsr (3 ) 1718,

The proof of Theorem 5 is complete. [

In Theorem 5, we have obtained the necessary and sufficient condition for the
weighted weak (p, p) boundedness of the maximal operator. However, due to the lack
of corresponding techniques as in R”, we are unable to prove that @ € RH, when
@ € A, and thus, the necessary condition for the (p,p) boundedness of the maximal
operator for p > 1. Nevertheless, we still provided a sufficient condition for the (p,p)
boundedness of the maximal operator. We begin with a lemma.

LEMMA S. If o € Ap with p > 1, and there exists r > 1 such that w'~? € RH,,
then w € A for some 1 <s < p.

Proof. According to the definition of RH,-, we have
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Let s =1+r(p'—1), itis easy to see that 1 < s < p. Thus,

S od® ) [ S o @)

(“(R)xe%w( )q ) (“(mxe%w( ) "q )

— (LS ome@ ) [ 3wt e
u(R) % u(R) =

1 gl 1 e 1) o
gc(‘u(k) xéiw( )q ) (‘U(R) xeﬁw( ) ! )

<C. 0O

THEOREM 6. If @ € A, with p > 1, and there exists r > 1 such that o) e
RH,, then |Mf|p < Clfll. -

Proof. According to Lemma 5, we have @ € A, for some 1 < s < p. Thus,
from Theorem 5, it follows that || Mf||ws, < C||fl|zs . Since |- ||z = - [z~. then
M is bounded from L, to L. By Marcinkiewicz’s interpolation theorem, we obtain
[Mfll» < C|fll,z - The proof of Theorem 6 is complete. [

In Section 3, we have established the equivalence between A » weights related to
level and .o/, weights on the integer set Z. Therefore, for weights related to level,
the necessary and sufficient condition for the weighted boundedness of the maximal
operatoris @ €A,.

Whether there exists a relationship between AP, A, and RH,, similar to that in
R, can be considered an open question.
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