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ON NEW LYAPUNOV-TYPE INEQUALITY FOR
THE DIRICHLET PROBLEM OF THE FRACTIONAL
BAGLEY-TORVIK DIFFERENTIAL EQUATION

WEI ZHANG ™, JIANGPING WANG AND JINBO NI

(Communicated by Q.-H. Ma)

Abstract. This paper discusses a class of fractional Bagley-Torvik differential equations under
Dirichlet boundary conditions and establishes a new Lyapunov-type inequality. Firstly, by prov-
ing an auxiliary lemma, the discussed boundary value problem is effectively transformed into
an integral equation involving the Green’s function. Secondly, an upper bound estimate for
the Green’s function is provided. Finally, using a priori estimation methods, the corresponding
Lyapunov-type inequality is derived.

1. Introduction

Fractional calculus is a branch of mathematics that studies integrals and derivatives
of arbitrary order, extending traditional integer-order calculus. Fractional differential
equations (FDEs) are equations that include fractional differential operators. Over the
past few decades, FDEs have been recognized as particularly effective in describing
real-world phenomena characterized by memory and hereditary effects, thereby serv-
ing as a fundamental tool in the mathematical modeling of complex mechanical and
physical processes. At present, FDEs are extensively employed in diverse scientific
domains, including dispersion processes in fractal and porous media, capacitor the-
ory, electrochemical systems, semiconductor physics, turbulence modeling, condensed
matter theory, viscoelasticity, biomathematics, and statistical mechanics [7,9,20]. For
example, Bagley and Torvik [22] explored the application of FDEs in modeling the
behavior of viscoelastic materials and proposed the following model:

mx" (t) + 2A\/BpDY 2 x(1) + Kx(1) = 0, (1.1)
where Dgf is the Riemann-Liouville fractional derivative of order 3 / 2. Addition-

ally, p denotes the fluid density, p is the viscosity, m and A are the mass and area
of the thin rigid plate immersed in the viscous fluid, respectively, and K is the stiff-
ness of the string. The variable x represents the motion of the plate. The authors
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demonstrate that the constitutive relations established through fractional derivatives ef-
fectively describe the frequency-dependent behavior of viscoelastic polymers and ex-
hibit excellent applicability in finite element analysis. Equation (1.1) is the well-known
Bagley-Torvik equation. Given its extensive practical applications, recent years have
seen widespread academic interest in the study of the Bagley-Torvik equation and its
generalized forms [2,24].

On the other hand, the study of the Lyapunov inequality can be traced back to
1892, as Lyapunov proved the following result:

THEOREM 1.1. Let q(t) € C(Ja,b],R). If the Hill equation
x"(t)+q(t)x(t) =0, t€(a,b),
admits a non-trivial continuous solution under the Dirichlet boundary conditions
x(a) =x(b) =0,

then q(t) satisfies the following inequality:

b 4
/ lg(s)|ds > 5o (1.2)

This result is optimal, as the constant 4 cannot be replaced by a larger number [11].
Inequality (1.2) is referred to as the classical Lyapunov inequality. Lyapunov inequal-
ity and its generalizations have been demonstrated to be valuable tools in the study
of eigenvalue problems, disconjugacy, oscillation theory, and various other applica-
tions within the theories of ordinary differential equations, partial differential equations,
difference equations, impulsive differential equations, and dynamic equations on time
scales [1,8, 14,25].

In recent years, the advancement of fractional calculus theory has ignited sig-
nificant interest among scholars in the study of fractional Lyapunov-type inequali-
ties [4, 5,15, 16,21,23,27]. Ferreira [5] was a pioneer in deriving a Lyapunov-type
inequality for fractional boundary value problem (BVP) involving the Caputo fractional
derivative. The main result was stated as follows:

THEOREM 1.2. Let q(t) € C(|a,b],R). If the fractional BVP:

{(CDzax)(z) +q(t)x(t) =0, 1€ (a,b),
x(a) =x(b) =0,

has a nontrivial continuous solution, where 1 < o0 < 2, and CD2‘+ is the Caputo frac-
tional derivative of order o, then q(t) satisfies the following inequality:

b a’T(a)
/a lg(s)|ds > [(a—l)(b—a)]a_l. (1.3)

More recently, due to the diversity of definitions in fractional calculus, some
scholars have derived a series of fractional Lyapunov-type inequalities based on dif-
ferent fractional calculus. Toprakseven [21] discussed Lyapunov-type inequalities for




ON NEW LYAPUNOV-TYPE INEQUALITY FOR THE DIRICHLET PROBLEM 1061

a class of fractional differential equations with integral boundary conditions involv-
ing the Caputo-Fabrizio fractional calculus. Srivastava [19] investigated Lyapunov-
type inequalities for a class of fractional differential equations with Riemann-Stieltjes
integral boundary conditions including the Caputo fractional calculus. Dien and Ni-
eto [3] explored Lyapunov-type inequalities for a class of sequential fractional differ-
ential equations with mixed boundary conditions using the y -Hilfer fractional calculus.
Lupiriska [13] examined Lyapunov-type inequalities for a class of fractional differen-
tial equations with mixed boundary conditions based on the Katugampola fractional
calculus. Hamiaz [6] studied Lyapunov-type inequalities for a class of fractional differ-
ential equations with anti-periodic boundary conditions within the Atangana-Baleanu-
Caputo fractional calculus. Liu and Wang [12] discussed Lyapunov-type inequalities
for a class of fractional p-Laplacian differential equations with Dirichlet boundary con-
ditions concerning the local fractional calculus. For more recent work, please refer to
the latest review article on fractional Lyapunov-type inequalities by Bashir et al. [17].
Note that (D, u)(t) +¢g(t)u(t) = 0 is referred to as a single-term fractional dif-
ferential equation. In some cases, differential equations contain multiple derivatives
of the function. Such differential equations are called multi-term differential equa-
tions. For example, the previously mentioned Bagley-Torvik equation and the Langevin
equation are both multi-term differential equations. In recent years, numerous scholars
have investigated Lyapunov-type inequalities for fractional BVPs. However, up to now,
only a limited amount of literature has addressed Lyapunov-type inequalities for BVPs
of multi-term fractional differential equations [10, 18,26]. Among them, the authors
of [26] considered Lyapunov-type inequalities for fractional Langevin-type equations
involving the Caputo-Hadamard fractional derivative subject to mixed boundary condi-
tions. In [10], the authors studied Lyapunov-type inequalities for a class of Langevin-
type equations involving the Caputo fractional derivative under Dirichlet boundary con-
ditions and mixed boundary conditions, respectively. In [18], Pourhadi and Mursaleen
discussed Lyapunov-type inequalities for a class of multi-term fractional differential
equations with mixed boundary conditions. The main result was presented as follows:

THEOREM 1.3. Let p(t) € C'([a,b]) and q(t) € C([a,b]). If the fractional BVP:

{CDa+y() p(t)y (1) + <>y<r>=o7 a<i<b,
¥a) =y(a) =y(b) =

has a nontrivial continuous solution, where 2 < o < 3, and CD2‘+ is the Caputo frac-
tional derivative of order o, then the following inequality holds:

(i) If a <b—a+1, then

(1.4)

b
[ el 1P ) s > e e

(ii) If a > b—a+ 1, then

() (b—a)**
(o — 1)max{g(a),h(a),A(ct+ 1)}’

/ab (Ip(s)| + g ()| + |p/(s)])ds >
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where

gla) = Z(4—0) A() = 4o (0 —2)" 2,

N

(a=2)(3—-0a) 2-(a-2)?

o= (42) ()

It is worth noting that there is currently no literature mentioning the study of
Lyapunov-type inequalities for BVPs of fractional Bagley-Torvik differential equations.
Therefore, inspired by existing literature, in this paper, we focus on the Lyapunov-type
inequalities for the following fractional Bagley-Torvik differential equation:

DGy y() +uDY (1) +q()y(1) =0, a<t<b, (1.5)
subject to Dirichlet boundary conditions:
y(a) =y(b) =0, (1.6)

where 3 / 2< <2, CD}; . is the Caputo fractional derivative of order K = ¢ or 3 / 2,
q(t) is a real-valued continuous function, and u > 0 is a constant. The key highlights
of the paper can be summarized as follows:

e The Bagley-Torvik equation we study has practical significance, and discussing
the Lyapunov-type inequality for the Bagley-Torvik equation is of great impor-
tance for its qualitative analysis.

o The Bagley-Torvik equation is a type of multi-term differential equation, and dis-
cussing its Lyapunov-type inequality is more complex compared to single-term
equations. For instance, the Bagley-Torvik equation (1.5) includes a dissipa-
tive term CDi/f , which directly increases the difficulty of transforming problem
(1.5)—(1.6) into an integral equation with Green’s functions (for this, we prove
auxiliary Lemma 3.1 in this paper), and also complicates the discussion of the

properties of the Green’s function (see Remark 3.1).

e The equations discussed in this paper involve two fractional derivatives, which
are more general compared to the multi-term equations discussed in [18]. Ad-
ditionally, as u — 0O, the results obtained in this paper can degenerate to those
in [5]. Therefore, the results of this paper extend and enrich the existing litera-
ture, offering broader applicability.

The remainder of the paper is organized as follows: In Section 2, we review the
definitions and basic properties of Caputo fractional calculus. In Section 3, we use the
conclusions from Section 2 to transform the boundary value problem (1.5)—(1.6) into
an equivalent integral equation with a Green’s function, and provide relevant estimates
for the Green’s function using a combination of numerical and graphical methods. Ad-
ditionally, we establish a Lyapunov-type inequality for the problem (1.5)—(1.6) using a
priori estimation methods. In Section 4, we provide an example to verify the validity of
the obtained results. Finally, in Section 5, we provide a brief conclusion and an outlook
on future work.
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2. Preliminaries

We begin this section by recalling the definitions and associated properties of frac-
tional calculus.

DEFINITION 2.1. ([9]) Let [a,b] (—eo < a < b < +oo) be a finite interval on
the real axis R. Then, the a-th (@ > 0) order Riemann-Liouville fractional integral
1%, x(t) of an integrable real-valued function x defined on [a,b] is given by

I x(r) = ﬁ /ut (t—s5)*'x(s)ds, t>a,

provided the right-hand sides are pointwise defined on [a, b].

DEFINITION 2.2. ([9]) Let [a,b] (—eo < a < b < o) be a finite interval on the
real axis R. The a (o > 0) order Caputo fractional derivative “D%, x(t) of a function
x € AC"([a,b],R) is defined as

1

“Dx(t) = (13D = Ty / (6 —5)"" 2" (s)ds,

where n=[a]+1, D=d/dt, AC"[a,b] = {x: [a,b] — R|D""'x(t) € ACla,b]}, AC|a,]]
denotes the set of all absolutely continuous functions on [a, b].

LEMMA 2.1. ([9]) Let oc > 0. Suppose x € AC"[a,b], then
18,°Dgx(t) = x(1) + co+er(t —a) + ealt —a)f + -+ cpi(t—a)"™,
where n=[o]+ 1, ¢; = —@ (i=0,1,2,---,n—1).
LEMMA 2.2. ([9]) Let o, > 0. Suppose x € L*(a,b), then

1908 x(0) = 1P x(r), DL A% x(1) = x(1).

LEMMA 2.3. ([9]) Let o« >0, A > —1, t > a, then

T(A+1)
T(A+1+a)

T(A+1)

a0

I (1 —a)t = (t—a)**, D (1—a) =

In particular CD2‘+(t—a)k =0,fork=0,1,2,---,;n—1, where n=[o] + 1.

3. Main results

3.1. Green’s functions and their properties for BVP (1.5)-(1.6)

In this subsection, we first prove an auxiliary lemma. Then, using the prelimi-
nary knowledge from Section 2, we transform the boundary value problem (1.5)—(1.6)
into an integral equation involving the Green’s function. Additionally, we present the
relevant properties of the Green’s function.
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3
LEMMA 3.1. Let 5 < a <2 and y(t) € AC?[a,b], then

o Cr32 6o Y@—a)* ™ y(a)
18Dy () =L () Fla—(1/2)] Tla+(1/2)

Proof. In fact, it follows from the Definition 2.1 and Lemmas 2.1-2.3 that

] (t —a)* /2,

3/2 3/2),3/2 3/2
15D y(0) = 7P RECD )

=12 [y(t) = y(a@) — V(@) (t - a)]
~ 1 - 2 ; [ a=s6Pas

[ —(3/2
_ Y@@ pe-ap)
Io+(1/2)]
_eGp gy _y@e=a)* Y Y@ ap
A i P TN - R PATY ) A .

The proof is complete. []

LEMMA 3.2. A function y(t) € Cla,b] is a solution to the boundary value problem
(1.5)—(1.6) if and only if y(t) satisfies the following integral equation

y(l‘)zw/GllS dS+ /G2ZS )d

where

Io+(1/2)] (t—a)+u

(
Git.s) = 4 Tl 1/2)] (b—a)+u(b—a)”

o—
I [o+(1/2)] (t—a t—a) (b_s)f%—%, a<t<s

f— a)OC (1/2)
7( 2
(

) (b—s)ai%—(t—s)afg, a<s<t1<b,
)

1/
12

N
&

)
)
)+ (

T [a+(1/2)] (b—a) +p(b—a)* 1
T [a+(1/2)] (t—a)+pu(r—a)* M)
)

)

)

( -1 a—1
(b—s)*""—(t—s5)*"", a<s<t<b,
o—(1/2)
Galt,s) = I a+(1/2) )] (b—a +uEb a)
(

T [a+(1/2)] (t—a)+pu(r—a)* M)
I [o+(1/2)] (b—a)+u

oa—1
— <r<s<bh.
ba)” _(1/2)(b $)77, a<r<s<b

Proof. Applying the operator IZ, to both sides of equation (1.5), we have

1,.°D% y(1) + uI% SO 2y(t) + 1%, q(1)y(t) = 0.

By using Lemma 2.1 and Lemma 3.1, and incorporating the boundary condition y(a) =
0, we can derive

i) = (@)t —a) + =D g0 OB ) g, G
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Taking into account the boundary condition y(b) = 0, we obtain

Sy () iy + 12 a(0)y(0) s

b—a) 0P

17
/(a) nu’ a+

3.2
(b—a)+ G-

#(
Fla+(1/2)]
Substituting (3.2) into (3.1), we get

(3/2)

(1) <Mas YWl H YO a1
(b—a) + may (0~ @) a=(172)

3/2
— Py () = 1% q(0)y(0).
It follows that

PTla+(1/2)](t—a)+p(—a)
y(t) = [ H3/2]{/a *

U o+ (1/2)] (b—a)+u(b—a)* =7}

- [ hash = /att—s “y(s)g(s)ds

INa)
+/b Tlo+(1/2)] (t —a)+u(t a)a
o« Tla+(1/2)](b—a)+ub—a)*?

@)+l (1 - )|

a—(1/2)

5

b—s)*"2y(s)ds

that is,

y(t) = W/ Gl t, S dS+ / G2 t, S )dS (33)

Conversely, by utilizing Lemma 2.2 and Lemma 2.3, it is easy to verify that (3.3) satisfy
the equation (1.5) and the boundary conditions (1.6). Hence, Lemma 3.2 is proved. [J

LEMMA 3.3. ([5]) Let 1 < 8 <2, then

5
e-s)5- 0 < O 1

The following we present the properties of the integral kernel function as stated in
Lemma 3.2.

LEMMA 3.4. The integral kernel functions Gi(t,s) and G,(t,s) in Lemma 3.2
satisfy the following properties:

(i) |Ga(t,s)| < Ng, (t,s) € [a,b] X [a,b], where

(0-1)*' o a (a=1)*a—(1/2)]* 2 o a—(3/2)
F o+ (1/2)] (b —a) + e — (b~ a)

Ng = I‘[oc—i— (1/2)] (b—a) _,_‘u(b_a)af(l/z)
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(ii) / G (1.5)|ds = k(1), where

L (T (/2] a) +ple-a)* P
7l

K =52 Ta+(1/2)] (b—a)+pb—a)* 1P

x 26— CP — (b —a)* OP)] 4 (1 - @)~ } 1 € [a,b].

Proof. First, we prove property (i). To begin with, we define the following func-
tions:

filt,s) =t —a)* P (b—s)* 1 —(b—a)* WP (1 —5)* 1 a<s<r<b,
frlts) =t —a)(b—s5)*"1—(b—a)(t—s5)*", a<s<t<b,

gi(t,s) =nfi(t,s)+T[a+(1/2)] fr(t,s), a<s<t<b,
Li(t,s)=(t—a)(b—s5)*"", a<t<s<b,

Ly(t,s)=(t—a)* (-5 a<t<s<b,

g(t,s) =T o+ (1/2)] Li(t,5) + uls(t,s), a<t<s<b.

Then G;(z,s) can be rewritten as:

[Plat (/2] b-a)+ub-a P} g0, a<s<i<

{ [0+ (1/2)] (b~ a) + u(b —a) *(1/2)}71g2(t’s)’ a<t<s<

We now spread our proof in two steps.

Step 1. we estimate the upper bound of the function g (#,s). To this end, we only
need to estimate the upper bounds of the functions fi(z,s) and f>(z,s) separately. In
fact, from the definition of the function fj(¢,s):

filt,s) =@t —a)* P (p—s)* = (b—a)* WP (1 —5)* ! a<s<t<b.

Fixing the variable 7 € [a,b], we differentiate fj(z,s) with respect to the variable s, it
follows,

afi(t,s)

L (a1 =) P —5) 2+ (= b= P s

(= 1)(b—a)e 1P — 52 [1 _ (2:2)05—(1/2) (2:)2_“] >0,

thatis, fi(z,s) is monotonically increasing with respect to s on [a, b], which implies

filt,a) < fit,s) < fi(t,1).
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Note that
filta) = (1= @) 1P b =) — (b—a)* Pt 0!

:(b—a)“(l/z)(t—a)al< t‘“—1><o, 1 € [a,b],

b—a
and
fl(tvt):(t_a)a_(llz)(b_t)a_l =20, r€ [avb]'
Hence,
[f1(z,9)] < max{ max fi(z,¢), max —fi(z, a)}
t€la,b) t€la,b)
Let

K\(t) = fi(t,t), t€]la,b].
It is easy to see that K|(¢) is continuous on [a,b] and differentiable within (a,b), we
obtain

Kl (1) —(1/2))(t—a)* CP B —1)* ' — (o —1)(t —a)* VP (b —1)*2
:(t—a) Gr2)( f”{ —(1/2)](b—1)— (a—1)(t—a)}.

Let K{(r) = 0, then the function K{(r) has a unique zero ] in the interval (a,b),

Gl (1/2)]b+ (ot —1)a Cas [ —(1/2)](b—a)
b —(3/2) B 200—(3/2)
. (a=1)(b—-a)
=b— 20{_7(3/2) € (a,b).
Note that K (a) = K;(b) =0 and K;(r) > 0 for ¢ € [a,b], therefore,
(1/2)
ma K3() = i (1) = e [;” o Wl apetn, Gy

Let
K() =—filt,a) = (b—a)* P t—a)* ' = (t—a)* P b—a)*!, t€]ab].

It is not difficult to see that K,(#) is non-negative and continuous on [a,b], and differ-
entiable within (a,b), we obtain

K(t)=(a—1)(b—a)* P (t—a 1/2 *=GR)(p—a)*!
:(b—a)a_l(t—a)a_z{( )(b a)'? - 1/2 1/2}

Let K () =0, then K} () has a unique zero 7} in the interval (a,b),

2
* _oa-1 —a e (a
Hh=a+ a—(l/Z)] (b—a) € (a,b).
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Since Kz(a) = K»(b) =0 and Kx(t) > 0 for ¢ € [a,b], it follows that

_ 2(o—1)
max Ky () = Kx(25) = ! [ o1 ] (b—a)>*~ 0GP, (3.5)

t€la,b) 20—1[a—(1/2)
Define
max K () —(3/2)
H(a) = "2 = — 0/ J a<a
 max Ko(r) (a_l)cxfl 20— (3/2)] 2o GR)’ 2 <2.
t€(a,b)
1.55
1.50 1
1.45 4
3 140
=
1.35 1
1.30 1
1.25
1.5 1.6 1.7 118 1.9 2.0

Figure 1: The figure shows the graph of the function H(c) over the interval [3/2,2].

Then, it is evident from Figure 1 that

Ki(t) = K> (1).
max Ki(t) > max Ka (1) (3.6)

Combining equations (3.4)—(3.6), we obtain

10.9)] < max { max 7i(0,0),~ max i) |

€la,b] t€la,b

= max f1 (2,1)
telab

o= (/2] P!
2= /2]

If a <s <t <b,itcan be proven that

(b _ a)206—(3/2)'

(a—1)*""

o (b—a)”.

|f2(l,S)| <
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The detailed proof can be found in the literature [5, Lemma 2], and will not be elabo-
rated here. Therefore, we can conclude that

lg1(2,5)] = | fi(z,8)[+T [a+(1/2)] [ /2(t,5)]

[a—(1/2)]“ ) (o —1)%!

2a—(3/2)]

](a_l)a—l
aOC

(b _ a)20¢—(3/2)

(3.7)

+T[a+(1/2) (b—a)”.

Step 2. We estimate the upper bound of g»(z,s). In fact, from the definition of
Ly(z,s), it is easy to obtain that L, (¢,s) satisfies the following inequality

(OC _ I)Oc—l

o (b—a)°. (3.8)

0< Li(t,s) <Li(s,s) = fo(s,s) <

Based on the definition of L (z,s), it is easy to prove that L,(z,s) satisfies the following
inequality:

(OC o 1)06—1 [OC— (1/2)] a—(1/2)

20 (3/2)

0< Lo (1,5) < Lo (5,5) = Ki (s) < (b—a)@-01).

(3.9
Combining equations (3.8) and (3.9), we obtain
0< gz(l,S) =r [O( + (1/2)] L (I,S) +‘LLL2(Z,S)
<Tla+(1/2)] (0= )" (b—a)*
h o (3.10)

(0 — 1% a—(1/2)]* " (b — )20/,

20— 3/2) 7

In view of equations (3.7) and (3.10), we can derive that

+u

Ga(t,5)] < [ [+ (1/2)] (b—a)+ u(b—a) *(1/2)}_l

xmax{ max |gi(¢,5)|, max gg(t,s)}
t.s€[a,b] t.5€[a,b]

—1)e-! (172)
[ (1/2)] S (b — o)+ u LRI (e 62

Lla+(1/2)] (b—a)+pb—a)*

B No(.

Finally, we also need to prove that Property (ii) holds. In fact, since 3 5 <a<2,if
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a < s <t <b,then we can derive

a—(1/2
o+ 1/2 b a)+u(b )*“/2)

_ _ 2072 (5/2)-
:(Z_s)a(s/z){r‘a—f— 1/2)|(t —a) + u(t—a) (t—s) a—l}go.
—s

Tloc+ (1/2)](b—a) + u(b—a)* P \b
Therefore,
/ 1 ) _ a—(1/2)
/ \Glts ‘dS——/ OC+ / (t a)+“(t a) 12( —S) —(S/Z)d
a Tlo+ (1/2)](b—a) + (b —a)* 1

t_a)a—(lﬂ)
bh— a)a—(1/2) (

+/b Tlo+(1/2)](t—a

)
r[a+ 1/2)] (b—a)+

+/ 5/2
! r[a+ 1/2)] (- a) + - ) O
~ B/ [o+(1/2)] (b—a)+ub—a)* P
X [Z(b _,)af(s/z) — (b _a)af(s/z)}

L et
+O£—(3/2)(t ) 3/2 _k(t)v

_l’_
1)

which completes the proof of Lemma 3.4. [l

REMARK 3.1. In existing literature, the relationship between m[ax] fi(z,t) and
tela,b

m[ax] —f1(t,a) is typically established using the conclusion of Lemma 3.3, as seen
tela,b
in [5,23,27]. However, the conclusion of Lemma 3.3 is no longer applicable when

addressing the relationship between m[ayg] fi(z,t) and m[a);] —f1(t,a) in this paper.
rela, te

20— (3/2
In fact, let § = ( / )

o
a-(1/2)"

9

then 1 < < 2. By using Lemma 3.3, we find that

202
max Kz(l‘) = ! [aﬁa}z)] (b_a)2a*(3/2)

t€a,b] 200 —1
—(2-8)(6-1)T3 (b—a)* OP)
§—1)°%! B
<( 55) (b—a)2*~0P)

1

l 2 1/2 _1)0671 o—(172) .
{[ [/]3/2]2aa3/2) } prar
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 Le—0/2) e
Z [ 3/2]2a (3/2)

= max K; (7).
t€la,b]

(b o a)2067(3/2)

This further highlights the novelty of this paper, rather than simply repeating the work
of existing literature.

3.2. The Lyapunov-type inequality for the BVP (1.5)-(1.6)

In this subsection we present a Lyapunov-type inequality for the boundary value
problem (1.5)—(1.6). To this end, we define the Banach space C|a,b] endowed with the
norm ||x|]e = n}a);] |x(1)|, x(t) € Cla,b].

te

a’7

THEOREM 3.1. Let q(t) € C([a,b],R). If the boundary value problem (1.5)—(1.6)
has a nontrivial continuous solution, then

b ['(a) u
/a‘q(s)|ds> Na {I_F[a_(3/2)]|k|“’} (311)

Proof. In fact, by Lemma 3.2, the solution y(r) of the boundary value problem
(1.5)—(1.6) satisfies the following integral equation

y(I)ZW/ Gl t, S dS+ / G2 t, S )d te [a,b].

By applying Lemma 3.4, it follows that

u b 1 b
|y<z>|<W [ 16 e o)+ o[G0l (o)l s

<{ o7 o[l s [Mlats |ds}||y|w
u Ne [?
s {F[a—(s/z)] K=+ F(oc)/a Q(S>Ids} [

Hence,

Y No [P
DIEES {m|k|w+ml CI(S)|dS} |[3]|eo- (3.12)

By solving inequality (3.12), we can obtain (3.11). Therefore, Theorem 3.1 is proved. [J
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COROLLARY 3.1. Let ¢(t) € C([a,b],R). If the fractional boundary value prob-
lem

{CDHy() g(t)y(1)=0, a<i<b,
u(a) =u(b) =0,

admits a nontrivial continuous solution, then

b r
[ latsyias > 5. (3.13)
a Na
Proof. In fact,

. T(a) u _ I
Ny {l_r[a—@/z)]'k'”}_ No

Utilizing Theorem 3.1, it is known that equation (3.13) holds. Clearly, this coincides
with the results obtained in [5]. [

REMARK 3.2. In this paper, the condition o > % is imposed to ensure that
€DZ y(¢) in equation (1.5) represents the highest-order derivative term. As o — 2,
equation (1.5) degenerates into the model proposed in [22].

REMARK 3.3. If a < %, the model (1.5) cannot be referred to as the Torvik-

Bagley equation. However, we can still consider its Lyapunov-type inequality. By

simply interchanging the terms CDZE y(t) and “D%, y(¢) in model (1.5) and applying

the same analytical methods used in this paper, a new Lyapunov-type inequality can be
obtained. Interested readers may further discuss this topic, but it will not be elaborated
upon in this paper.

4. Example

EXAMPLE 4.1. Consider the following fractional boundary value problem

{ Dz/fy()+%c S+ Py(r) =0, 1<r<2, “h
y =

(1) =x(2)

Corresponding to problem (1.5)—(1.6), here

= == t)=t =1, b=2.
o= k=5 ql) , a=1,
Through direct calculation, we can obtain

8(r— 1)I(9/4) +4(r— 1)
2I(9/4)+1

k(t) = - -1]+4¢—D"*, 1<r<2.
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(=) Ma—(12)" P ) y2a-(3/2)

(a—1)*"1 @
F[OH—(]/Z)] otz (b—a)”+pu Ra—(3/2) )

N =
’ T [o+(1/2)] (b—a)+u(b—a)* ()
~0.2915.
N
t k(1)
] 1.6954 4.96814
g 1.6964 4.96817
21 1.6974 4.96818
1.6984 4.96817
] 1.6994  4.96814
o

T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0
t

Figtab 1: The figures respectively show the graph of the function k(t) on the interval [1,2] and
the maximum value of k(t) on the interval [1,2] as ||k||e =~ 4.96818.

According to Figtab 1, k(¢) attains its maximum value of ||k||., =~ 4.96818 at
t =1.6974. Then we have

N (o) IS
1.2190~/1 12| dr > N, {l‘r[a_(s/z)]}

09191 ( 2.4841

~02915\ 3.6256) ~0.9927.

This indicates that the condition in Theorem 3.1 is satisfied.

5. Conclusion

This paper delves into the Lyapunov-type inequalities for fractional Bagley-Torvik
differential equations under Dirichlet boundary conditions. By transforming the BVP
into an integral equation with a Green’s function and employing a priori estimation
methods, we successfully established the corresponding Lyapunov-type inequality. The
results of this paper not only provide a new theoretical perspective for studying Lyapu-
nov-type inequalities for fractional BVPs but also enrich the existing literature. This has
significant theoretical implications for the qualitative analysis of BVPs for fractional
Bagley-Torvik differential equations. We expect that future research will further ex-
plore this foundation, particularly in studying Lyapunov-type inequalities for fractional
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Bagley-Torvik differential equations under nonlocal boundary conditions and their ap-
plications involving generalized fractional calculus.
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