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THE LINEAR CANONICAL HANKEL WAVELET
TRANSFORM ON GELFAND-SHILOV SPACES
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Abstract. In this article, we discussed some fruitful estimates for linear canonical Hankel trans-
form on some Gelfand-Shilov spaces of type W. Also boundedness result of wavelet transform
involving the linear canonical Hankel transform on certain W -type spaces.

1. Introduction

The Gelfand and Shilov [9], gives an introduction about generalized functions
space of W -type and discusses various applications to analysis, PDE, stochastic pro-
cesses, and representation theory. Chung [4] provide symmetric descriptions of the
Gelfand-Shilov spaces of types S and W with regard to the Fourier transformation.
These findings provide a clear explanation of why these spaces are invariant to Fourier
transformations. The Gelfand and Shilov [9], Friedman [8] and Gurevich [3] investi-
gated the W -type spaces. They examined the behaviour of Fourier transform in W -type
spaces. Pathak and Upadhyay [14] discussed the spaces generalizing the spaces of type
W in L? norm. Pathak and Pandey [13] examined certain Gelfand-Shilov spaces of type
W using the continuous wavelet transform. They properly constructed spaces of type
W definedon R xR, Cx R, and C x C, the continuity and boundedness results for
continuous wavelet transform was obtained. Pilipovic et al. [15] studied the local and
global properties of wavelet transforms on Gelfand-Shilov type spaces. Upadhyaya et
al. [18] and Prasad and Mahato [16], discussed the characterization of W-type spaces
by using wavelet transform associated with the fractional Fourier transform. For the
more details of W -type spaces Cordero et al. [6] investigated localization operators in
the context of ultra-distributions.

The main objective of this paper is to investigate the nature of linear canonical
Hankel wavelet transform on Gelfand-Shilov type spaces of W -type. This work is mo-
tivated by the work of Mahato and Singh [11], Pathak [16] and Van [19]. In their work
they presented the results for characterizing the inverse of the fractional Hankel trans-
form on some Gelfand-Shilov spaces of type W. Furthermore they constructed some
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spaces of type W, on which they studied the nature of wavelet transform associated
with fractional Hankel transform.

As per [2,7], the continuous wavelet transform (CWT) Wy, (b,a) is a function of
two parameters and, therefore, contains a high amount of extra (redundant) information
when analyzing a function is defined as:

(Wy9) (b,a) = %/M(t)w(%) d (1)

where ¢,y ,(t) € L*(R).
The space Lﬁvﬂ, 1 < p < oo as the space of all those real valued measurable
function ¢ on I such that

101l < oo,

RN

1
_ ’/w ‘d)(x)‘vaﬂ O£+2v+ldx
0

The concept of linear canonical transformation (LCT) defined with four parameters
a,b,c,d was developed by the two projects, Collins [5] on the field of paraxial optics
and on the other hand, Moshinsky and Quesne [12] in the field of nuclear physics in
mid seventies. Wolf [20] presented the canonical Hankel transformation of function f
for n-dimension and v > 1 —n. Bultheel et al. [1] introduced % (y,x) to the kernel of

fractional Hankel transform by replacing @ = d = cos8 and b = —c =sin 8 as:
i(14v)(3-0) oo 2,2
] e 2 / 71"5% cotO x&
P EEE— J -~ d .
(708 ©) = g | f@)e V(o ) wax

Utilizing the hypothesis of Bultheel [1], Prasad and Kumar [17], characterized lin-
ear canonical Hankel transformation of the integrable function f over positive real
line. Like theory of LCT this transform can be states as depending on three more real
parameters Vv, o, 3 with uni-modular matrix A of order 2 x 2 along with condition
vu+2v—a>1 as

( v ﬁf / K (y,x X, )
where, the kernel of the transformations are given as:
( +“) ip 4 v
KA ( ) _ Vﬁ 12042y, 5 (ux2 +dy? )(xy)alﬂ (%(xy)v> . b#£0. (3)

The inversion formula of (1.1) is given by:

f( ) ('%pAv o.B ( vaﬁf / KA x y /j}ma,[}f) (y)dyv

where A~! denotes inverse of the matrix A.
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As per [10], the linear canonical Hankel wavelet y,, 4 of any function y €
L2, ,(I) by using the LCH-translation and dilation D,, defined as

w,v,o

Ynna = D (T3 W) (1) = Dpy’ (n,1)
_ m—2v+2aelfg“(m%71)t2velfgu(m%+l>nzvWA <% L) 7 )
for m>0, n>0.

LEMMA 1. Let y be any arbitrary function belong to Lfbv’a. Then the linear
canonical Hankel transform of W, , o is given by

(i) @) = e 070000 ) w1y, (B omy

X%A,v,a,ﬁ (o ‘V(Z)ef%“zzv)(mw),

Now by using Parseval’s relation and Lemma 1, the above defined continuous
wavelet transform (W, f) (n,m) becomes

(Wi f) (n,m) = %e_l%m”)/o KV (1,0)(mo) oo

< (il p ) (@)D, g e 5 (@) (mo)do. (5)

2. The spaces WM,mWQ'f” and Wﬂ?g

In this section, we discuss the definition and characterizations of W -type Gelfand-
Shilov spaces that will be employed in our study of the linear canonical wavelet trans-
form. For defining the spaces Wy ¢, WM and W;};’ we need two functions m(x),
(0 <x <) and o(y), (0 <y<e),on I be continuous increasing function such that
m(0) =0 = w(0) and m(x) — o as x — o and @(y) — o as y — oo, the function
M(&) and Q(n) foreach §,n > 0 are defined as [9],

¢
M(&) = [ mxax, ©)
and
n
o) = [~ @)y ™
The function M (&) and Q(n) are continuous and increasing, and satisfy with the value

M(0) =0, M({) — oo for { — e and Q(0) =0, Q(1) — oo for N — e by using these
value we can developed the condition for convex inequality which are the following

M(&+ &) = M(G)+M(&), Q(ni+m) = Q(m)+Q(m)- (®)
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If the function m(x) and w(y) are mutually inverse, that is, m(®(x)) = x and w(m(y))
=y. Consequently, the functions M and Q described above are referred to as dual in
the Young sense. The Young inequalities in this instance is given by

En<M(§)+Q(n), foreach =0, n=0. 9)

Now, as per [11, 16, 19] we define the W -type spaces as:

DEFINITION 1. Let g,k € Ny. A smooth function ¢(x) belongs to Wy 54 (0 >
0) if for every 6 > 0 there exist C, 5 > 0 depending on ¢ (x) such that

(2D, ) (= o VB ()| < C, 5 expl—M (6 — 8)x].

DEFINITION 2. The spaces W4 (n > 0) contains all smooth function w(z),
(z=x+1y € C) that for any p > 0 satisfy the following inequality

1B v
e 5 y(2)] < Crp explQ(n +p)yl, k=0,1,2,...

where Cy, > 0 depends on y/(z).

DEFINITION 3. Let M(x) be dual to Q(y) in the Young sense. We define the
space WM GA (o,m) as the collection of all entire analytic functions ¢(z), (z=x+
1y e C) that for any p,0 > 0 satisfy the inequality

ke B o (2)]| < Csp exp[-M(c —6)x+Q(n+p)yl, k=0,1,2,...,
where Cs ,, is a positive constant depends on ¢(z).

The following recurrence relation [17] we will use in further investigations:

(72 D)" [ (Bx)] = (—vB)" gy (B)Y. (10)

3. Linear canonical Hankel transform on W type spaces

In this section, we have studied about the nature of linear canonical Hankel trans-
form on Wy 5.4, wenA, Wﬂ?g 4 type spaces and will be employed in our study of
wavelet transform.

THEOREM 2. Let M(x) be the function which is dual to the function Q(y) in the
Young sense. Then the linear canonical Hankel transform %’L V.0 is defined as above
is continuous linear mapping from WA into WM A

Proof. Let g,k € N, z=x+1y and A is the uni-modular matrix defined as earlier
and ¢ € WA Then from Definition 2

1B v
IZkejEﬁ“Z2 0(z)| < CrpexplQ(n+p)y], k=0,1,2,...
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Now using, definition of LCHT

W (072 D)i(e B 0 (A, 50)(0)

_ B 2v o VP o <
= |0t (o' 2va)q{e s5a®’ (—vi aTﬁe 17(1+u)/ L1202y
0

xe%@wz”f‘*”)(w)“m(%(zw)v)"x}

b
o (0" Dy) 0 V* /0017170‘72"6261‘1Z Ju (g(zw)")dx.
0

Using recurrence relation (10) in the above equation

q
vB k/w vB —v(u+q) B v | —l-o+2vtvu+v
_ | e Juso| Bzoo uvg
) a)0< s (zm) li+q b(Z) z
xe%dzzvdx
1+q
o B
_ % wk/o (Z(l))_v(“+q)fﬂ+q(%(Z(D)V>Z_l o 2vHVU2Vg 3 dZY
I+g+k
0o B g 2v
< % 0 (Zw)_v(“+q)+kfu+’1<§(Zw)v>z_l_“+2V+V”+2vq_keﬁdZ2 dx|.

is bounded

Since uv+2v—a > 1, where o, v € R and ’( wz)~VikFatky, (ﬁ(wz) )

on 0 < |@z| < oo by Bﬂ v.ap €XP (—Im(wz)) (say).
(el *2+[2")

e the above ex-

In viewing Definition 2 and using the inequality |z|' <
pression becomes

1B v
wk(wliszw)qefz—bawz (D*V“’O‘(%f?v,a,ﬁ ‘P)((D)

D/ Bﬂ V.o /3 C l—o+2v+vu+2vg—k,p +C717a+2v+vu+2w17k+2,p)

X
142
DBAvaﬁ(C l—a+2v+vu+2vg—k,p +C_1- o+2v+vu+2vg— k+2p)
< dx

1+x2

x exp (—Im(wz))exp (Q(n+p)(y))

xexp(—wy+Q(n+p)(y)) A
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Now, consider the Young inequality for wy and replace w,y by (ni ) and (n+p)y,
respectively

n+p
exp (—wy+Q(n+p)(y)) = exp[—|o|[y| + QN +p)(y))]

— exp {-M(ﬁ)]

0, where 0 is arbitrary small number. Then the above inequality

wy :M<i) +Q((M+p)y)

Assume —— — L _
ssume oo =
becomes

wk(w1—2va)q(6—%ax2vw—Vﬂ—a(%f?vﬂﬁ¢)(w))‘

1
< C/—l—oc+2v+vu+2w1—k,p exp [_M (H - 5) w] .

This completes the proof. [

THEOREM 3. Let M(x) and Q(y) be same as in the above theorem, then the
linear canonical Hankel transform %A’v’ B is continuous linear mapping Wy 5 4 into
WQ,I/G,A

Proof. Let ¢ € Wy 5.4, then the definition 1 gives

1B v
0" (072 Dy )le 39 0 V()| < C,5[-M(0— 8)w], kq=0,1,2,3,...

Now, we see that

B 2v
|Z—vu—ae—ﬁaz

(’%p;fv,a,ﬁ ¢)(Z)|

_ ‘Zvuae(‘z’imz”%elg(wu)/ e;@(az"mw”)(zw)ajﬂ(
0

™™

(Zw)v>

% w—1—2a+2v¢(w)dw

< ﬂ Z—vu/ e%da)zvjﬂ E(Z(D)ZV w—l—a+2v¢(w)dw
b 0 b
< % / {(Z(D)_V“J,J (%(za))v>}w—l—a+2v+vue%da)2"¢(w)dw
0
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e /w{(zw)—vwkj (E(zw)v>}w—1+2v_k
b o | Flp™
(ot o
Bl -«

k (Dliszw)ik(Z ) V/J+kJ <%( ) )

1t}
le+2v{(wl2va)kwvu aﬂbd‘“zv(b(w)}d(g

7|

Using recurrence relation equation (10)

&
< % /N (-%w_v> (Z@)_V(“_k+k)fu+k<

{ 1—- 2vD o VHo ledco2 q)(a))}da)

7[5 /O (0)” V”Ju+k<§(zw>V>‘

wl+2v+k{(w12va)k —Vvu— oceZbdw ¢( )}

2~

™

(Z(D)V> 60_1+2v

X

Since vu +2v —o > 1, where u,o € R, is bounded on

CONTANCIEDN
0<|(zo)] < oo by ﬂ v.op exp(—Im(z))(say). Then the above expression estimate as

Z—vu—a+ke—ﬁaz (’%pAv o ﬁ¢)( )

<D [ Cusewp[-M(0=8)0IC) , 1 gexp(~wy)o' > do

< DCﬁ7v7a7ﬁCk75/0 exp[—M(c — 8)o]exp(wy) o' Vdo

< DCﬂ,v,a,ﬁCkﬁ/O exp[—M(o — )] eXp(wy)sz"dw

SDCﬂvaﬁCm/ explwy —M(c —28)w]exp[do]o' TV do.
Y 0

We can set a real positive number &, such that 0

0—1_25) = 5 +p, where p is arbitrarily

1

small together with . Finally we have

Z—vll—a+ke—7az (’%pAv aﬁ¢)( ) < Dk,cCXP ,
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where Dy 5 = Jolers

v pChs Jo expldo]odo. O

THEOREM 4. Let M(x) and M, (x) are dual to Q;(y) and Q( ), respectively, in
the Young sense. Then the linear canonical Hankel transform 74

w.v,o.pB
linear mapping from WM into WA?lll//rT A

is a continuous

Proof. Assume that z=u+1v, ® =x+1y and ¢ € Wi}g 4~ Then we obtain

‘('%ﬂAv aﬁ¢’)( )| _ '%e—l%(l-‘rﬂ)/Owe%(awzv'*‘dzzv)(a)z)a.]u (%((DZ)Q>

Xw—l—2a+2\/¢(w)dx

vB
b

/0 ‘e%(uwZVerzZV)(wZ)aJﬂ (%(wz)a> w7172a+2v¢(w)dx|

) <wz>v“fu<§<wz>“>|e‘z‘id*”zvu+a|

« |w717a+2v+vue%dw2"¢(w) |dx.

vB
b

Since vu+20c—a > 1, u,o0 € R and ’(wz)"“lﬁ (%(wz) )’ is bounded on 0 <

[(wz)| <= by Cy pEXp(—Im(wz)) (say).

Vﬁ 1B 4 0v
‘(’%ﬂﬂ%v,a,ﬁ(p)(zﬂ < 7/ vaﬁeXP xv—uy)‘eZbdZ AR

><|w—vu ae[ﬁawzv (w)||w—1+2v+2vu|dx
\%
<1l [ enpl - e e

xCs pexp[—M(0 — 8)x+Q(n+p)y] @12V H2VE gy
< D/|e%az2‘/zvu+a‘ /O°° exp(—xv — uy)
x exp[—M(c — 8)x+Q(n+p)y] @~ H2VEVR gy
Therefore,
e B A 0 p0) )

< D’/O explxv — M (o — 8)x]exp[—uy +Q(n +p)y] o~ T2V TVH|dx
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Y
o(2a))o

where Cgr oy = D' [17 | exp[—M(6x)]o~F2VHVi|dy. O

|exp[—M (8x)]@ T2V TV |dx

—M,

= D// exp
0

u
n-+p

4. Wavelat transform on W -type spaces

In this section, we have studied about the continuity and boundedness properties
of LCH wavelet transform on suitably constructed Gelfand-Shilov space of type W.
In order to continue our study about LCH wavelet transform on the above mentioned
space, we shall need to introduce the following function spaces.

DEFINITION 4. The space Wy, 54, 0 > 0 is defined to be the collection of all
complex valued infinitely differentiable functions ¢(n,m) € C*(C x R™), for § > 0,
and v as earlier satisfy the following inequality,

L e )]

<Cus exp[—M{ (HLW)(G— 6)}], where k1=1,2,3...

and Gy 5 are positive constant depends on the function ¢ .

DEFINITION 5. The spaces W°"%4 & > 0 and v as earlier contains of the
function ¢(s,m) € C*(C x R*) entirely analytic with respect to s = b+ 1A which for
any p,p’ > 0 satisfy inequality

1 1-2v 9 )t ‘
) (1 + |m| ) <m am) Osm)
<G exp[Q(G—i—p)?L —i—Q(GQ—i—p’)?L], with 1 =0,1,2...
where all positive constant C; , depend on ¢.
THEOREM 5. Let Q(y) is dual to M(x) in the Young sense. Suppose that

Vi—o B v
%’ﬁv,mﬁ (() vi—a ,— 5pd(.)? W()) (mw) € Wy oa and ‘}fﬁv,aﬁ(f)EWMﬁ:A’

then the linear canonical Hankel wavelet transform is a continuous linear mapping
from Wy 6 4 into Wwl/o.1/mo.A
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. _B v
Proof. Since %’L vap (( )"VH—O Fd()? ll/())(na)) € Wmoa, %ffv’aﬁ (f) €

W64 . therefore LCHT can extended to the complex value of s =n+ 1A according to
the definition 5, thus we obtain

\(m1—2V%)t<w$f><s,m>>\

:’%e_%(“'“)( 1— 2v / KA ((D s)(m(u) vi— ocezgai(ma))2

<AL 0 (DAL s (z‘“v“e—%“zz v(2)) (mo)do

o 1+p)/0 (ml 2v3m> Vﬂ F(l+w), ﬁ(awz‘Urd\z‘/)(ws)a

_’vﬁ b ¢

< (B os) o122 o) B s )

KA oy (@5 5y (2)) (m0)do)

_ )/0 efz—l,iaw walfaJrZV%AN’aﬁ (f)ef%uszv‘]ﬂ (g(sw)vﬂ <m1—2v%>t
x [ BAmoR a5 Y () (me) (me) @ Hdw 5
’/ ~Paw? -1- a+2v+u%flvaﬁ(f)e 1B a2y (ws)*“Jﬂ(g(sw)vﬂ <m172v3im>t

(Vi S W(z))(mw)}dwsa+ﬂ|.

8 {(mw) i aeﬁ, dme) ZV%AV a,p

is bounded by 0 < |(ws)| < e by D

v B exp(—Im(s®))

Since ‘(ms)—wﬂ (%(sm)V)
(say), the above inequality

(=22 ) s m)|

‘/ |e Zbuw o " a+2v+ﬂ+t%Avaﬁf( )‘ uva/}exp(_lw)

x'(mw)r<(mw)z%>f{(mw>vuaeggd(mw)

2v

XAL o p (2 59y (2)) (o)}

w.v,o.p

sOHH g~ Fas™ ’\m|_td(o

g[) |e—ﬁaw vw_Vﬂ_a(%Avaﬁ) (w)‘|w—1—2v+u+t+vu”m|—t

X {Dﬁ,v,a’/} CXP(—A CO)}‘ ((mw)f%> {(ma))vliaelzgd(mw)zv

B 2v
sa+ue— 25 a8

do.

T w<z>><m“’)}(mw)t
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Now using the Definition 1, we got

& t
<m12v%> (Wir f)(s,m)
< Dﬁ /w exp(Aw)Cs o exp[—M (o — ) w]

0
XC&,a’[—M(G — 6/)(1’)’1(0)] w7172v+y+[+vu do

1B v °°
sOTHem s ‘/ exp [le—M(G—&w
0

(14 |m|™) st Has™

v,0,

A _
< D/u,v,a,ﬁ (14 |m| t)

—M(G _ 5/)(1’)’1(0)] (D7172V+I~H’t+\/[,l do.

Applying the Young’s inequality properties, the above expression can be written as:

A
0—26}

_M[(6 - 8mo] + |A0| < —M[§'ma] +Q[ﬁ].

—M[(c—8)0]+|Ao| < —M[Sw] +Q[

Therefore, we obtain the above expression

<DE g (14 I B exp [ L) ra(E L))

></ @ 1TV exp - M(So)]do.
0

Since [;° @172V THHTVE exp[—M(§®)]d® < e and we can choose real number p,
p’ such that

! —1—1-’ and ! —1+
mo—o mo P 6o-26 o P

We thus obtain the above expression bounded by

1 3 ' P 2v
() (mw%) fsemnedie™ i nis.m

< Cop pr XD [Q(é +p>7L + Q(% +p’>/l] :

where Cp p o =D' [ 072V THH TV exp[—M(§w)]dw. O

THEOREM 6. Let Q(y) is dual to M(x) in the Young sense, and suppose ,%”‘fw p
q/(.)) (mw) € WA,

Then the linear canonical wavelet transform (W$ f)(n,m) is a continuous linear
mapping from WM into wel/nA

2v

e WA 4nd %j}v,a,ﬁ ((,)V”O‘elzgd(-)
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Proof. Since ¢,y € WA following the technique of Gelfand and Shilov [9],
the expression for the linear canonical wavelet transform defined by (5) can be written

as (y=n+1o)

(W) n,m)
= o5 H [TR (-4 10)) (0 )t
0

1B v
(i ap N+ 1)L, (20 2y (2)) (m(n + 1w)dn

s

:i —17(1+,u)/OOKA’I(,Y,nXYm)—vu aezlf)d(my)z"
v 0

K (Ao ap PN, g p (20 5 (@) ().

Then,

on om

_ i 172vi k i bre —viu—o B an? a1 —vu—o
~|vB (n 8n> (8m> /0 " e KT (y,m)(ym)

'(nl 2v J >k< J )lnfvufae%unz"(wlﬁf)(n,m)

B 2v —ﬁa v
xeB (A 0 g DAL, (@1 3% y(2)) (my)dn

_ /Ow(nl—Zv%>k(8im>l[n—vu ae—z—gan 7/_1 —2a+42v, B (an® +dy?)

—vi—a B amn? _WB v
x1ﬂ<§(7n>v)(m7> Ve A (2 By (2)) (my)

X (it ap ) (PN

() I (B2 g

8 ! B v B "
% () [ BN s (et 50y (@) Gy

<n1—2vi>k[(yn)_‘/“1ﬂ(%(yn) )}ezbayz —1= a+2v+v,u(ijvaﬁf)( )

A S ——— Y
x(—) |:62h (my) (my) VK OtjzﬂA’ ,a,/}(ZOH_we Saz W(z))(my)}dn .
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Therefore the above expression becomes,
d\kys d\!
‘(nl—zva) (5_m) e B (1))

<0 [T 5 b (yom)]

9 \! La(myp —VU—0 A _1B v
* <%) [6217 () '%il,v,a,ﬁ(za+vue %% W(Z))(”W)}drl .

e%ayz —1— a+2v+vu(%Av . ﬁf)( )‘

Now, using recurrence relation equation 1, we obtain

= [| (v [om (S|

» ez,,uyz ~1- a+2v+vu+vk(%pAvaﬁf)( )‘

m

=0 [7|(~v* [ s (Bam)]|

y e‘zizuyz —1- a+2v+v#+2Vk(%Ava;3f)( )’

l B v l Y
N e S

9 \IT 1 , s
(o) [e307™ )it o plasr e By @) (my) | a.

m

X

Since ‘(yn)_"(’“““k)lwrk(%(yn)v)’ is bounded on 0 < |(yn)| < e by Ej, 4

2
IZ‘+7+IZ‘ the above ex-

exp(—Im(yn)), using Definition 4 and the inequality |z’ <
pression becomes

(2 ai )k(%ynw b (WA F) (n,m)

/ 4 o p Xp(—Im(on)) ez,)ayz —1- a+2v+vy+2vk(%,4vaﬁf)( )|

a 1 l'Bd(m )2‘, - B A _ﬂa "
* <%) [e”’ T (my) HTOAR, g (2T W(Z))(my)]dn

< D”/O exp(—Im(wn)) {Ck7—1—a+2v+vu+2vk + Ck7—1—a+2v+vu+2vk+2}

)
1+|n?

% explQE + ) O]Cry g XPIAL + ') (oo
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<D expl-on+ Q((L+p)(1+mo)] [ it p=pf
o 1+|nl?

1 oo
<D"exp|-M n / an
0

l+mi+p 1+ n|*
We can set a real number 6 > 0 such that ﬁ = %— o, we get,

where Cy; ¢ 5 =D" [° dn

<n172v %)k (%) ln*VIJ*aeng”"zv (WA )(n,m)

S G sexp|—M

I+~
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