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COMPLETE PICTURE ON THE MONOTONICITY CHARACTER

OF A CLASS OF SEQUENCES WITH A PARAMETER

STEVO STEVIĆ ∗

(Communicated by L. Mihoković)

Abstract. We describe the monotonicity character of the class of sequences z()
n := (1−)xn +

yn, n ∈ N, where the parameter  belongs to the interval [0,1], xn = n
j=1

1√
j − 2

√
n , and

yn = n
j=1

1√
j − 2

√
n+1, on the whole domain, that is, on the set N . If for some value of the

parameter  the sequence is not strictly decreasing or strictly increasing on the whole domain,
we determine the exact value of the index n where the monotonicity is changed, as well as the
types of the monotonicity before and after the value of the index. A comparison of the problem
of describing the monotonicity character of the sequence on the whole domain and the problem
of describing its eventual monotonicity, as well as some methods for dealing with the problems,
is also given.

1. Introduction

Let N be the set of positive integers, Z the set of whole numbers, Nk be the set
{ j ∈ Z : j � k} where k ∈ Z is fixed, and R be the set of real numbers.

A sequence (xn)n∈Nl ⊂R is monotone if it is nondecreasing, or strictly increasing,
or nonincreasing, or strictly decreasing on the whole domain (i.e., on the set Nl ), that
is, if the inequality xn+1 � xn , or xn+1 > xn , or xn+1 � xn , or xn+1 < xn , hold for every
n � l , respectively. A sequence (xn)n∈Nl ⊂ R is called eventually monotone if there is
index n0 ∈ Nl+1 (i.e., n0 � l + 1) such that the subsequence (xn)n∈Nn0

is monotone,
but the subsequence (xn)n∈Nn0−1 is not.

The problem of describing the monotonicity character of real sequences is one of
the basic problems in the research area, which is frequently connected to the conver-
gence. For some problems and results in this direction see, for instance, [1, 2, 3, 4, 5,
6, 8, 9, 11, 15, 17, 18, 19, 20, 21, 22, 23, 29, 30, 31, 32, 34, 36, 37, 41, 42, 43] and
the related references therein, where can be found many methods and tricks for dealing
with the problem of monotonicity of various sequences of real numbers, which can be
given by concrete formulas or by some recursive relations/difference equations.

Since researches are usually interested in the long term behavior of sequences
of real numbers, the problem of determining their monotonicity character essentially
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reduces to determining their eventual monotonicity. Because of this fact, the problem
of describing the monotonicity character of a real sequence on its whole domain of
definition is neglected. However, it turned out that there are some classes of sequences
of real numbers of some interest, for which it is possible to describe the monotonicity
character on the whole domain, as it was the case in [39].

In many cases it is suitable to study some pairs of real sequences which are in a
sense related to each other. For instance, in [2, 5, 7, 11, 14, 15, 17, 18, 23, 26, 27, 28,
29, 33, 34, 35, 36, 38, 39, 40, 41, 42] can be found such pairs of sequences, which in
many cases are monotone and converge to the same limit from which some other facts
or characteristics can be obtained.

Let us mention now some results, problems and studies, which motivated us for
the investigation in this paper.

Every mathematician certainly has seen the following pair of sequences

an =
(

1+
1
n

)n

and bn =
(

1+
1
n

)n+1

, n ∈ N, (1)

and knows that an is strictly increasing, whereas bn is strictly decreasing, which can
be proved by several methods. Since 0 < bn−an = an

n < b1
n , n ∈ N , they converge to

the same limit, the base of the natural logarithm e , so we also have(
1+

1
n

)n

< e <

(
1+

1
n

)n+1

, (2)

for every n ∈ N ([16, 18, 23, 29, 43]).
From (2), it follows that

1
n+1

< ln

(
1+

1
n

)
<

1
n
, n ∈ N. (3)

The estimates for the number e given in (2) can be improved. Namely, it can be
proved that (

1+
1
n

)n(
1+

1
4n

)
< e <

(
1+

1
n

)n(
1+

1
2n

)
, (4)

for every n ∈ N. The estimates can be found, for example, in [29] as Problem 171.
They have a geometric interpretation connected to the sequences (an)n∈N and (bn)n∈N .
Namely, if the interval [an,bn] is divided into four equal subintervals, then the number
e occurs in the second one from the left for each n ∈ N . Some better estimates than
the ones in (2) and (4) can be found in [11] and [19]. However, one of the sequences
therein estimating the number e need not be monotone on the whole domain, that is,
on the set N . This means that it is only an eventually monotone sequence.

The following pair of sequences

ân =
2n


j=n+1

1
j

and b̂n =
2n


j=n

1
j
, n ∈ N, (5)



CLASS OF SEQUENCES WITH A PARAMETER 1095

can be also found frequently in the literature and problem books. It is easy to show that
the sequence ân is strictly increasing, whereas the sequence b̂n is strictly decreasing.
Employing the inequalities in (3) it is shown that they both converge to ln2, so we also
have

2n


j=n+1

1
j

< ln2 <
2n


j=n

1
j
, (6)

for every n ∈ N (see, e.g., [15, 23, 29]; for some related sequences see [10, 24]).
The estimates for the number ln2 given in (6) can be improved. Namely, it can be

proved that

1
8n

+ ân < ln2 <
1
4n

+ b̂n, (7)

for every n ∈ N. The estimates in (7) can be found in [41]. They have a geometric
interpretation connected to the sequences (ân)n∈N and (b̂n)n∈N . Namely, if the interval
[ân, b̂n] is divided into eight equal subintervals, then the number ln2 occurs in the
second one from the left for each n∈N . An elementary proof based on investigating the
monotonicity of these two sequences, can be found in [39] and [42]. A more complex
proof based on some geometric considerations and the Hermite-Hadamard inequalities
([12, 13, 21]), can be found in [39].

In [39] we presented several results and gave many interesting comments and re-
marks. Among other ones, we proved therein a bit surprising result. Namely, for the

sequence c()
n = (1−)ân + b̂n, n∈ N, where  ∈ [0,1], and the sequences (ân)n∈N

and (b̂n)n∈N are defined in (5), we managed to describe the monotonicity character

of the sequence (c()
n )n∈N for each value of the parameter  on the whole domain of

definition (i.e., on the set N). This means that if for some value of the parameter 
the sequence is not strictly decreasing or strictly increasing on the whole domain, we
determined the exact value of the index n where the monotonicity is changed, as well
as the types of the monotonicity before and after the value of the index. The cases of
strict monotonicity also occur. Namely, it was shown that if  ∈ [1/4,1], the sequence

(c()
n )n∈N is strictly decreasing, whereas if  ∈ [0,1/6) that the sequence is strictly

increasing.
In [39] were also studied the sequences

ãn =
3n


j=n+1

1
j

and b̃n =
3n


j=n

1
j
, n ∈ N, (8)

and was proved a similar theorem which describes the monotonicity character of the

sequence c̃()
n = (1−)ãn + b̃n, n ∈ N , for each value of the parameter  on the

whole domain of definition. The proof of the theorem is similar to the one dealing with

the sequence (c()
n )n∈N , but is much more technical. The theorem reveals an interesting

thing related to the dyadic divisions of the intervals mentioned above. Namely, it shows
that the dyadic divisions of the intervals [ãn, b̃n] n ∈ N , are not naturally connected to
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the location of their joint limit, that is, the number ln3. In fact, more suitable divisions
are the triadic ones.

These two theorems presented in [39] also show that, in fact, it is more natural
to study monotonicity of the convex combinations of the sequences, that is, of the se-

quences (c()
n )n∈N and (c̃()

n )n∈N , than the monotonicity of the sequences which are
obtained by the dyadic divisions of the intervals [ân, b̂n] and [ãn, b̃n] . This observation
suggests investigation of the convex combinations of other known pairs of sequences
of real numbers.

Here we continue this line of investigations by studying the monotonicity character
of the convex combinations of the following pair of sequences

xn =1+
1√
2

+ · · ·+ 1√
n
−2

√
n, (9)

yn =1+
1√
2

+ · · ·+ 1√
n
−2

√
n+1, (10)

for n ∈ N. These sequences are related to the two pairs of sequences given in (5) and
(8), and can be also found in the literature and many problem books (see, for instance,
[15, 23]).

Let us mention some known facts on the sequences (9) and (10). Note that

xn− yn = 2(
√

n+1−√
n) > 0,

for every n ∈ N,

xn+1− xn =
1√

n+1
−2(

√
n+1−√

n) =
1√

n+1
− 2√

n+1+
√

n
< 0,

for every n ∈ N, and

yn+1− yn =
1√

n+1
−2(

√
n+2−√

n+1) =
1√

n+1
− 2√

n+2+
√

n+1
> 0,

for every n ∈ N, that is, the sequence (xn)n∈N is strictly decreasing, the sequence
(yn)n∈N is strictly increasing and we also have that

yn < xn

for every n ∈ N .
From this and since

xn− yn =
2√

n+1+
√

n
,

for every n ∈ N, the sequences xn and yn converge to the same limit, that is,

lim
n→

xn = lim
n→

yn = c1/2, (11)

for some c1/2 > 0. So, we have

y1 < · · · < yn < c1/2 < xn < · · · < x1,
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for every n ∈ N (see, e.g., [15, 21, 23]).

REMARK 1. Note that the sequences (xn)n∈N and (yn)n∈N , are obtained from the
sequences

an( f ) :=
n


j=1

f ( j)−
∫ n

0
f (t)dt,

bn( f ) :=
n


j=1

f ( j)−
∫ n+1

0
f (t)dt,

for n ∈ N , respectively, where f is a real decreasing function on the interval (0,+) .
Indeed, it should be taken the function

f (t) =
1√
t
. (12)

This is not a unique case. For example, the sequences converging to the Euler
gamma constant [10, 15, 25] are obtained in a similar way, by taking the function

f (t) =
1
t
.

But, since unlike the function (12), it is not integrable on the interval (0, ] ,  > 0, it
is considered on the interval [1,+), and the integrals

∫ n
0 f (t)dt and

∫ n+1
0 f (t)dt are

replaced by
∫ n
1 f (t)dt and

∫ n+1
1 f (t)dt , respectively.

Motivated by above-mentioned investigations here we consider the following se-
quences

z()
n := xn +(1−)yn, n ∈ N, (13)

where  ∈ [0,1] .
Note also that combining the relations in (11) and the definition of the sequence

(13), it follows that

lim
n→

z()
n = c1/2,

for each  ∈ [0,1], so the problem of convergence for the class of sequences is not of
a special interest.

The purpose of this investigation is to present a complete picture on the mono-
tonicity character of the sequences defined in (13), for each value of the parameter 
in the interval [0,1]. If for some value of the parameter  the sequence is not strictly
decreasing or strictly increasing on the whole domain, we determine the exact value of
the index n where the monotonicity is changed, as well as the types of the monotonicity
before and after the value of the index. A comparison of the problem of describing the
monotonicity of the sequence on the whole domain and the problem of describing its
eventual monotonicity is also given, where it is explained why the first problem is more
difficult than the second one.
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2. Two examples of the sequences in (13)

Beside above-mentioned studies and problems, two special cases of the sequence
(13) also served as a natural motivation for the investigation in this paper, namely, the
cases  = 1/2 and  = 1/4. We present them here as a good motivation and for the
benefit of the reader. The reason why these special cases were taken for a preliminary
investigation of the problem of describing the monotonicity character of the class of the
sequences in (13) was based on our expectation that in these two cases it is possible
to solve the problem by using some relatively simple algebraic calculations and use of
some simple algebraic formulas, especially, the following one

√
x−√

y =
x− y√
x+

√
y
, (14)

when max{x,y} > 0 and min{x,y} � 0.
These two cases are incorporated in two examples. The first example deals with

the case  = 1/2, whereas the second example deals with the case  = 1/4.

EXAMPLE 1. In this example we consider the case  = 1/2. By using some
standard calculations and (14), we have

z(1/2)
n+1 − z(1/2)

n =
1√

n+1
−2

(√n+1+
√

n+2
2

−
√

n+
√

n+1
2

)
=

1√
n+1

− (
√

n+2−√
n) =

1√
n+1

− 2√
n+2+

√
n

=
√

n+2−√
n+1− (

√
n+1−√

n)√
n+1(

√
n+2+

√
n)

=
( 1√

n+2+
√

n+1
− 1√

n+1+
√

n

) 1√
n+1(

√
n+2+

√
n)

=
√

n−√
n+2

(
√

n+2+
√

n+1)(
√

n+1+
√

n)
√

n+1(
√

n+2+
√

n)
< 0, (15)

for every n ∈ N . From (15) we immediately obtain that the sequence (z(1/2)
n )n∈N is

strictly decreasing on the whole domain.

EXAMPLE 2. In this example we consider the case  = 1/4. By using some
standard calculations and (14), we have

z(1/4)
n+1 − z(1/4)

n =
1√

n+1
−2

(√n+1+3
√

n+2
4

−
√

n+3
√

n+1
4

)
=

1√
n+1

− 1

2(
√

n+1+
√

n)
− 3

2(
√

n+2+
√

n+1)

=
1

4
√

n+1
− 1

2(
√

n+1+
√

n)
+

3

4
√

n+1
− 3

2(
√

n+2+
√

n+1)
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=
√

n−√
n+1

4
√

n+1(
√

n+1+
√

n)
+

3(
√

n+2−√
n+1)

4
√

n+1(
√

n+2+
√

n+1)

=
1

4
√

n+1

( 3

(
√

n+2+
√

n+1)2
− 1

(
√

n+1+
√

n)2

)

=
4n+2

√
n+1(3

√
n−√

n+2)
4
√

n+1(
√

n+2+
√

n+1)2(
√

n+1+
√

n)2

=
4n+2

√
n+1 8n−2

3
√

n+
√

n+2

4
√

n+1(
√

n+2+
√

n+1)2(
√

n+1+
√

n)2
> 0, (16)

for every n ∈ N . From (16) we immediately obtain that the sequence (z(1/4)
n )n∈N is

strictly increasing on the whole domain.
These two examples together with the above-mentioned description of the mono-

tonicity of the sequences xn and yn give some hints about the monotonicity character of
the other sequences belonging to this class. It is clear that the method dealing with the
cases  = 1/4 and  = 1/2 cannot be applied in many cases, say, in the case  = e

 .
So, a more complex method can be developed to include all the cases when  ∈ [0,1].
In the sections that follow we state and prove our main results which completely solve
the problem of describing the monotonicity character of the sequences in (13).

3. An auxiliary result

In this section we present an auxiliary result, which is incorporated in the following
lemma. The lemma will be used in the proof of the main result, and is one of the
important parts of the proof.

LEMMA 1. Let

g(t) :=
(
√

t +1+
√

t)(
√

t +2+
√

t)
4
√

t +1(
√

t +2+
√

t +1)
. (17)

Then,

lim
t→+

g(t) =
1
2
, (18)

and the function g is strictly increasing on the interval [1,+) .

Proof. We have

lim
t→+

g(t) = lim
t→+

(
√

t +1+
√

t)(
√

t +2+
√

t)
4
√

t +1(
√

t +2+
√

t +1)

= lim
t→+

(√
1+ 1

t +1
)(√

1+ 2
t +1

)
4
√

1+ 1
t

(√
1+ 2

t +
√

1+ 1
t

) =
1
2
, (19)



1100 S. STEVIĆ

proving the relation in (18).
To prove the second claim in the lemma, we use a useful representation of the

function g . Note that the function g can be written in the form

g(t) =
1
4

(
1+

√
t

t +1

)(
1+

√
t −√

t +1√
t +2+

√
t +1

)

=
1
4

(
1+

√
1− 1

t +1

)(
1− 1

(
√

t +2+
√

t +1)(
√

t +1+
√

t)

)
, (20)

from which it follows that the function is strictly increasing for t � 1 (moreover, for
t � 0), due to the fact that the functions

1+

√
1− 1

t +1
and 1− 1

(
√

t +2+
√

t +1)(
√

t +1+
√

t)

are obviously strictly increasing and positive on the set. �

REMARK 2. Note that we have managed to prove the monotonicity of the function
(17) in an elegant and elementary way. It is expected that this can be also done by
inspecting the derivatives of the function, but due to the complexity of the function this
is a much more complicated way to prove the monotonicity of the function.

4. Main result

In this section we formulate and prove our main result.

THEOREM 1. Let (z()
n )n∈N be the sequence defined in (13), where  ∈ [0,1],

and

k =
(
√

k+1+
√

k)(
√

k+2+
√

k)
4
√

k+1(
√

k+2+
√

k+1)
, k ∈ N0. (21)

Then,

(a) if  ∈ [1/2,1], the sequence (z()
n )n∈N is strictly decreasing;

(b) if  ∈ [0,1), the sequence (z()
n )n∈N is strictly increasing;

(c) if  = 1, the sequence (z()
n )n∈N is nondecreasing;

(d) if  ∈ (k,k+1] for a fixed k ∈ N , the sequence is nondecreasing for n � k + 1
and strictly decreasing for 1 � n � k+1.
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Proof. (a) By using some standard calculations and employing formula (14) sev-
eral times, we have

z()
n+1− z()

n =(1−)(yn+1− yn)+(xn+1− xn)

=
1√

n+1
−2

(
(2−1)

√
n+1+(1−)

√
n+2−

√
n
)

=
1√

n+1
−2(

√
n+2−√

n+1)

+2
(√

n+2−√
n+1− (

√
n+1−√

n)
)

=
1√

n+1
− 2√

n+2+
√

n+1

+2
( 1√

n+2+
√

n+1
− 1√

n+1+
√

n

)

=
√

n+2−√
n+1√

n+1(
√

n+2+
√

n+1)

+2
( √

n−√
n+2

(
√

n+2+
√

n+1)(
√

n+1+
√

n)

)
=

1√
n+1(

√
n+2+

√
n+1)2

− 4
(
√

n+2+
√

n+1)(
√

n+1+
√

n)(
√

n+2+
√

n)
, (22)

for every n ∈ N.

Since due to Example 1 the sequence (z(1/2)
n )n∈N is strictly decreasing, and the

function

f (t) =
1√

t +1(
√

t +2+
√

t +1)2

− 4
(
√

t +2+
√

t +1)(
√

t +1+
√

t)(
√

t +2+
√

t)
, (23)

is strictly decreasing in  for each fixed t � 0 (if we regard  as a variable), we have

that the sequence (z()
n )n∈N is also strictly decreasing for each  ∈ [1/2,1].

From (23) it follows that a zero t of the function f (t) satisfies the relation

 =
(
√

t +1+
√

t)(
√

t +2+
√

t)
4
√

t +1(
√

t +2+
√

t +1)
, (24)

for a given  ∈ [0,1].
Now we show that for each  ∈ [0,1/2) there is a unique zero t of the function

f(t) .
Let g be the function defined in (17). The function is obviously continuous on the

interval [0,+) . By Lemma 1 the function is strictly increasing and tends to 1/2 as
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t → + . By using these facts it follows that for each  ∈ [0,1/2), there is a unique
t � 0 such that

g(t) = . (25)

From this and since

f (t) =
4

(
√

t +2+
√

t +1)(
√

t +1+
√

t)(
√

t +2+
√

t)
(g(t)−), (26)

it follows that for each  ∈ [0,1/2) a unique zero of the function g(t)− is also
a unique zero of the function f (t) , which means, that t is the zero of the function
f(t).

Above-mentioned facts also imply that there is a continuous inverse of the function
g on the interval [0,1/2) , from which together with (25) it follows that

t = g−1().

Since the function g satisfies the condition (18), we also have that t → + as  →
1/2−0.

Let the sequence (k)k∈N0 , be defined in (21). Then from the definition of the
sequence we have that k = g(k) for every k ∈ N0. This means that the number k is a
unique zero of the function g(t)−k for each k ∈ N0, that is, k = tk for k ∈ N0.

(b) Let  ∈ [0,1). Then by using (26), it follows that

f(n) =
4

(
√

n+2+
√

n+1)(
√

n+1+
√

n)(
√

n+2+
√

n)
(g(n)−), (27)

for each n ∈ N.
Since the function g is strictly increasing on the interval [1,+) , we have that

g(n) > g(1), (28)

for each n ∈ N.
Combining the relations in (27) and (28) it follows that

f(n) � 4

(
√

n+2+
√

n+1)(
√

n+1+
√

n)(
√

n+2+
√

n)
(g(1)−), (29)

for each n ∈ N.
From (29) and since

1 = g(1), (30)

we have

f(n) � 4

(
√

n+2+
√

n+1)(
√

n+1+
√

n)(
√

n+2+
√

n)
(1 −), (31)
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for each n ∈ N.
Since  ∈ [0,1), then from (31) we have

f(n) � 4

(
√

n+2+
√

n+1)(
√

n+1+
√

n)(
√

n+2+
√

n)
(1 −) > 0

for each n ∈ N, from which together with (22) it follows that the sequence (z()
n )n∈N is

strictly increasing.
(c) We have  = 1 . From (27), (28) and (30), we have

f1(n) =
4

(
√

n+2+
√

n+1)(
√

n+1+
√

n)(
√

n+2+
√

n)
(g(n)−1) > 0

for each n∈N2, from which together with (22) it follows that the subsequence (z(1)
n )n∈N2

is strictly increasing.
Beside this, from (27) and (30), we have

f1(1) =
4

(
√

3+
√

2)(
√

2+1)(
√

3+1)
(g(1)−1) = 0,

from which together with (22) it follows that z(1)
1 = z(1)

2 .

All these facts show that the sequence (z(1)
n )n∈N2 is really nondecreasing, as

claimed.
(d) By Lemma 1 we have that the sequence (k)k∈N0 is strictly increasing and that

limk→+k = 1/2. Hence, we have

⋃
k=1

(k,k+1] =
(
1,

1
2

)
.

This means that the union of all the intervals (k,k+1] when k ∈ N , is the set of all
the values of parameter  which has not been considered yet. Hence, when we finish
dealing with this case, all the possible cases are taken into the consideration.

Assume that  ∈ (k,k+1] for a fixed k ∈ N. Since

g(k) = k and g(k+1) = k+1,

and due to the monotonicity of the function g, we have that in this case a unique zero
t of the function g(t)− belongs to the interval (k,k+1]. Hence, as a consequence
we have that

g(n) �  for n � k+1, (32)

and

g(n) <  for n � k. (33)
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From (27) and (32) we have

f (n) =
4

(
√

n+2+
√

n+1)(
√

n+1+
√

n)(
√

n+2+
√

n)
(g(n)−) � 0,

for n � k+1, from which together with (22) it follows that the subsequence (z()
n )n∈Nk+1

is nondecreasing.
From (27) and (33) we have

f (n) =
4

(
√

n+2+
√

n+1)(
√

n+1+
√

n)(
√

n+2+
√

n)
(g(n)−) < 0,

for n � k, from which together with (22) it follows that the subsequence (z()
n )n=1,k+1

is decreasing, completing the proof of the theorem. �
REMARK 3. From the proof of Theorem 1 we see that, in fact, more is proved.

Namely, an inspection of the inequalities in the proof of the theorem shows that the
following theorem was obtained.

THEOREM 2. Let (z()
n )n∈N be the sequence defined in (13), where  ∈ [0,1],

and (k)k∈N0 be the sequence defined in (21). Then,

(a) if  ∈ [1/2,1], the sequence (z()
n )n∈N is strictly decreasing;

(b) if  ∈ [0,1), the sequence (z()
n )n∈N is strictly increasing;

(c) if  = 1, the sequence (z()
n )n∈N is nondecreasing;

(d) if  ∈ (k,k+1) for a fixed k ∈N , the sequence is strictly increasing for n � k+1
and strictly decreasing for 1 � n � k+1;

(e) if  =k+1 for a fixed k∈N , then the sequence is strictly increasing for n � k+2 ,

z()
k+1 = z()

k+2 , and it is strictly decreasing for 1 � n � k+1.

REMARK 4. Note that since by the result in Example 2 the sequence (z(1/4)
n )n∈N

is strictly increasing, and the function in (23) is decreasing in  for each t � 0, we

have that the sequences (z()
n )n∈N are also strictly increasing for each  ∈ [0,1/4].

However, since

1 =
(
√

2+1)(
√

3+1)
4
√

2(
√

3+
√

2)
=

√
6+

√
3+

√
2+1

4(
√

6+
√

2)
>

1
4
,

the result in Example 2 is not enough for describing all the sequences in (13) which are
strictly increasing on the whole domain.

Nevertheless, the sequence (z(1/4)
n )n∈N really served as a good motivation for the

investigation. Note also that f1/4(t) = 0 implies t1/4 ∈ (0,1).
On the other hand, it happened that the result in Example 1 is enough for describing

all the sequences in (13) which are strictly decreasing on the whole domain, but, of
course, it is only a sufficient case to be proved, and only Theorem 1 shows that it is also
the necessary one.
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5. Eventual monotonicity of the sequence (13)

The problem of determining eventual monotonicity of a sequence of real numbers
is much simpler, since there are some standard methods for dealing with the problem.
Namely, in order to determine the type of eventual monotonicity of a sequence it should
be found n0 ∈ N such that the sequence is monotone on the set Nn0 . In many cases this
can be done by some asymptotic formulas.

The method is quite old. For example, several problems in [29] are solved by
using some asymptotic formulas (see, also [18, 23]). However, the formulas are usually
not suitable for solving the problem of determining monotonicity of a sequence on the
whole domain of the definition. But, the formulas are frequently useful for establishing
the type of eventual monotonicity of a sequence, which can suggests the type of the
monotonicity of the sequence on the whole domain (in the case if a sequence is really
monotone on the domain).

Let us see what we can get by using the asymptotic relation

(1+ x) = 1+x+
 ( −1)

2
x2 +

 ( −1)( −2)
6

x3 +O(x4)

as x → 0, with  /∈ Z (see, e.g., [18, 23, 43]), in the case of the sequences given in
(13).

We have

z()
n+1 − z()

n = (xn+1− xn)+ (1−)(yn+1− yn)

=
1√

n+1
−2

(

√

n+1+(1−)
√

n+2−
√

n− (1−)
√

n+1
)

=
1√
n

(
1+

1
n

)−1/2

−2
√

n
(


(
1+

1
n

)1/2
+(1−)

(
1+

2
n

)1/2−− (1−)
(
1+

1
n

)1/2)
=

1√
n

(
1− 1

2n
+

3
8n2 −

5
16n3 +O

( 1
n4

))
−2

√
n
(


(
1+

1
2n

− 1
8n2 +

1
16n3 +O

( 1
n4

))
+(1−)

(
1+

1
n
− 1

2n2 +
1

2n3 +O
( 1

n4

))
−

− (1−)
(
1+

1
2n

− 1
8n2 +

1
16n3 +O

( 1
n4

)))
=

( 1
2 −)
2n3/2

+
3−2

4n5/2
+O

( 1

n7/2

)
,

from which it immediately follows that the sequence z()
n is eventually increasing for

each  ∈ [0, 1
2 ) , whereas it is eventually decreasing for each  ∈ ( 1

2 ,1].
If  = 1

2 , then we have

z(1/2)
n+1 − z(1/2)

n = − 1

8n5/2
+O

( 1

n7/2

)
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from which it follows that the sequence z(1/2)
n is eventually decreasing.

So, we have that the sequence z()
n is eventually decreasing when  ∈ [1/2,1],

whereas it is eventually increasing when  ∈ [0,1/2).
These results match with the ones obtained in Theorem 1 in the sense of eventual

monotonicity. So, they can serve as some suggestions for the type of the monotonicity
of the sequences defined in (13). However, as they hold for sufficiently large values
of index n , they are not suitable for the determining the monotonicity character of the
sequences on the whole domain.
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