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NEW WEIGHT CHARACTERIZATIONS FOR THE

DISCRETE HARDY INEQUALITY WITH KERNEL

KOMIL KULIEV ∗ AND TOHIRBEK TURAKULOV

(Communicated by R. Oinarov)

Abstract. In this work, we present new pairs of equivalent conditions for the validity of discrete
weighted Hardy inequality with kernel satisfying Oinarov’s conditions for the parameters 1 <
p � q < . In addition, we give lower and upper estimates for the best constant of the inequality.

1. Introduction

Let 1 � p,q <  and u = {un}n=1 , v = {vn}n=1 be positive sequences of real
numbers, which we in the sequel call weighted sequences. lp,v denote the space of

all sequence f = { fn}n=1 of real numbers whose norm || f ||lp,v
= (

n=1 |vn fn|p)1/p is
finite. Let us consider the following discrete weighted Hardy inequality for nonnegative
sequence f = { fn}n=1 in the form

(



n=1

uq
n

(
n


k=1

an,k fk

)q) 1
q

� C

(



n=1

vp
n f p

n

) 1
p

, (1)

where
{
an,k
}

is a nonnegative triangular matrix (i.e., an,k � 0, n � k � 1 and an,k = 0,
k > n � 1) is called kernel of the inequality, and C is a constant independent of f .

Various expressions related to the kernel and the weight sequences occur as a re-
sult of the estimation process for the best constant C of inequality (1). When we obtain
the desired forms from these expressions, there are certain losses. The estimation of
the best constant is adversely affected by this. At the expense of minor losses, it is
required to analyze the expressions themselves and derive estimations from them. Con-
sequently, new equivalent conditions are created. The Hardy inequalities’ theory has
already identified instances of this type.

If an,k ≡ 1, then (1) takes the form

(



n=1

uq
n

(
n


k=1

fk

)q) 1
q

� C

(



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n f p

n

) 1
p

. (2)
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G. Bennet [1, 2] proved that, if 1 < p � q < then inequality (2) holds for all nonneg-
ative sequence f = { fn}n=1 if and only if either

A1 := sup
n∈N

(



k=n

uq
k

) 1
q
(

n


k=1

v−p′
k

) 1
p′

<  (3)

or

A2 := sup
n∈N

(
n


k=1

v−p′
k

)− 1
p
(

n


k=1

uq
k

(
k


m=1

vp′
m

)q) 1
q

< 

or

A3 := sup
n∈N

(



k=n

uq
k

)− 1
q′
⎛
⎝ 


k=n

v−p′
k

(



m=k

uq
m

)p′
⎞
⎠

1
p′

< .

Moreover, the best constant is estimated as

max
{

q−1/qA2,(p′)−1/p′A3

}
� A1 �C � min

{
p′A2,qA3

}
� min

{
p′q1/q,q(p′)1/p′

}
A1.

This finding implies that any new equivalent condition can be useful in estimating the
best constant. L.-E. Persson, A. Wedestig and Ch. A. Okpoti [15] provided another
equivalent conditions depending on a parameter, where were shown that estimates for
the best constant could be significantly improved due to a convenient choice of the
parameter. In general, the equivalent conditions ensuring the validity of inequality (2)
and the various estimates for the best constant are sufficiently well investigated for the
values of the parameters 0 < p,q <  . For more information, see [5]. Let us present
the following estimates

A1 � C � C̃A1, (4)

which will be used in the proofs of the main results of this work, where C̃ =
(
1+ q

p′
) 1

q

(
1+ p′

q

) 1
p′ , see [2].

If the kernel {an,k} of inequality (1) is different from constant sequence, then
the process becomes a little more complicated. In this case, inequality (1) with kernel
satisfying certain conditions has also been investigated. One such kernels is the kernel
an,k , which is increasing in n and decreasing in k, and satisfies the condition that there
exists a constant h � 1 such that

an,k � h
(
an,s +as,k

)
for all n � s � k � 1, (5)

which is referred to as Oinarov’s kernel. In the early 21st century, R. Oinarov and S. Kh.
Shalginbayeva were among the first to establish necessary and sufficient conditions for
the validity of inequality (1) for a class of kernels broader than the Oinarov kernel; see
[10, 11, 12] for details. However, estimates for the sharp (i.e., best possible) constant in
inequality (1) for such kernels had remained scarce until 2024, when A. Kalybay and
S. Kh. Shalginbayeva [4] addressed this issue and established the following theorem:
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THEOREM A. Let 1 < p � q < and a matrix
{
an,k
}

be Oinarov’s kernel. Then

for any nonnegative f ∈ lp,v the inequality (1) holds if and only if A = max{A1,A2} <
, where

A1 = sup
s∈N

( 


n=s

aq
n,su

q
n

) 1
q
(

s


n=1

v−p′
n

) 1
p′

;

A2 = sup
s∈N

( 


n=s

uq
n

) 1
q
(

s


n=1

ap′
s,nv

−p′
n

) 1
p′

.

Moreover,

A � C �
(
2(h+1)q +(h+1)2q(1+hC̃q)

) 1
q A

and C is the best constant in (1).

L.-E. Persson, A. Wedestig and Ch. A. Okpoti have also made contributions to es-
tablishing parameter dependent conditions that ensure the validity of inequality (1) for
separable kernels, as well as parameter-dependent sufficient conditions for its validity
in the case of general kernels; see [13, 14, 15] for details. New equivalent conditions
for the integral form of (1) and estimates for its best constant were obtained; for further
information, see [6, 7, 8, 9]. In [3] were also given parameter dependent sufficient con-
dition for satisfying of integral inequality with rather general kernel and upper estimate
for its best constant.

In this paper, we present new equivalent conditions for the validity of inequality (1)
with Oinarov’s kernel and, as a key advantage of these conditions, we derive convenient
estimates for the sharp constant. The paper is organized as follows: the first section is
Introduction. In the second section we give our main results, proof of which will be
given in the next section.

2. Main part

Let us denote:

Ã1 (s) =
( 


n=s

aq
n,su

q
n

) 1
q
(

s−1


n=1

v−p′
n

) 1
p′

;

Ã2 (s) =
( 


n=s

uq
n

) 1
q
(

s−1


n=1

ap′
s,nv

−p′
n

) 1
p′

;

B1 (s) =

⎛
⎝ 


n=s

v−p′
n

(



k=n

aq
k,nu

q
k

)p′
⎞
⎠

1
p′q( s


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v−p′
n

) 1
p′q′

;

B2 (s) =

⎛
⎝ 


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v−p′
n

(



k=n

ak,nu
q
k

)p′
⎞
⎠

1
p′( 


n=s
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n

)− 1
q′

;
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B3 (s) =

(
s


n=1

uq
n

(
n


k=1

an,kv
−p′
k

)q) 1
q
(

s


n=1

v−p′
n

)− 1
p

;

B4 (s) =

(
s


n=1

uq
n

(
n


k=1

ap′
n,kv

−p′
k

)q) 1
qp′( 


n=s

uq
n

) 1
qp

.

THEOREM 1. Let 1 < p � q < and a matrix
{
an,k
}

be Oinarov’s kernel. Then
for any nonnegative f ∈ lp,v inequality (1) holds if and only if

B1 = sup
s∈N

B1 (s) < , B2 = sup
s∈N

B2 (s) < . (6)

Moreover, the best constant of the inequality (1) satisfies

max

{
sup
s∈N

[
Ãp′q

1 (s)+Bp′q
1 (s)

] 1
p′q

,sup
s∈N

[
Ãp′

2 (s)+Bp′
2 (s)

] 1
p′
}

� C � X , (7)

where X is a positive solution of the corresponding nonlinear equation

Xq−hq−1qB2X
q−1 = hq−1q

p′+1
p′
(
q′
) q−1

p′ Bq
1 if 1 < q � 2,

Xq′ −h(qB2)
q′−1X = hq

p′+1
p′(q−1)

(
q′
) 1

p′ Bq′
1 if q � 2. (8)

THEOREM 2. Let 1 < p � q < and a matrix
{
an,k
}

be Oinarov’s kernel. Then
for any nonnegative f ∈ lp,v inequality (1) holds if and only if

B3 = sup
s∈N

B3 (s) < , B4 = sup
s∈N

B4 (s) < . (9)

Moreover, the best constant of the inequality (1) satisfies

max

{
sup
s∈N

[
Ãq

1 (s+1)+Bq
3 (s)
] 1

q , sup
s∈N

[
Ãp′q

2 (s+1)+Bp′q
4 (s)

] 1
p′q
}

� C � X , (10)

where X is a positive solution of the corresponding nonlinear equation

X p′ −hp′−1p′B3X
p′−1 = hp′−1(p′) q+1

q p
p′−1

q Bp′
4 if 1 � p′ � 2,

X p−h
(
p′B3

)p−1
X = hp

1
q
(
p′
) q+1

q(p′−1) Bp
4 i f p′ � 2. (11)

EXAMPLE 1. (i) If 1 < p � q = 2 then equation (8) and its positive solution take
the forms

X2−2hB2X = 2(p′+2)/p′hB2
1 and X =

(
hB2 +

√
h2B2

2 +2(p′+2)/p′hB2
1

)
,
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respectively. Therefore, the following upper estimate holds

C �
(

hB2 +
√

h2B2
2 +2(p′+2)/p′hB2

1

)
.

(ii) If 2 = p � q <  then equation (11) and its positive solution take the forms

X2−2hB3X = 2(q+2)/qhB2
4 and X =

(
hB3 +

√
h2B2

3 +2(q+2)/qhB2
4

)
,

respectively. Therefore, the following upper estimate holds

C �
(

hB3 +
√

h2B2
3 +2(q+2)/qhB2

4

)
.

EXAMPLE 2. Let p = q = 2,
{
an,k
}

= {n− k} (i.e., h = 1) and the weight se-
quences un = vn = 2−

n
2 then we have

(i) according to A. Kalybay and S. Shalginbayeva’s estimates: 3.46 � C � 32.49,
d = 29.026;

(ii) according to Theorem 2.1: 4 � C � 8.76, d = 4.756;

(iii) according to Theorem 2.2: 5.18 � C � 12, d = 6.82;

(iv) according to Theorems 2.1 and 2.2: 5.18 � C � 8.76, d = 3.58,

where d is the difference between the upper and the lower estimates.

3. Proofs

First we deal with the duality principle, which will be used in the proofs of the
main results.

Duality principle. When it comes to creating new conditions and working with
conjugate inequality, the concept of duality is critical.

LEMMA 1. Let 1 < p,q < and 0 <C < . Then the inequality (1) holds if and
only if “dual” inequality

⎛
⎝ 


n=1

v−p′
n

(



k=n

ak,ngk

)p′
⎞
⎠

1
p′

� C

(



n=1

u−q′
n gq′

n

) 1
q′

(12)

holds for all nonnegative g = {gn} ∈ lq′,u−1 .
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Proof. Suppose that the inequality (1) holds. Then using succevely the definition
of the norm, Fubini’s theorem and Hölder’s inequality we have⎛
⎝ 


n=1

v−p′
n

(



k=n

ak,ngk

)p′
⎞
⎠

1
p′

= sup
|| f ||lp,v=1

(



n=1

(



k=n

ak,ngk

)
fn

)

= sup
|| f ||lp,v=1

(



k=1

(
k


n=1

ak,n fn

)
gk

)

� sup
|| f ||lp,v=1

(



k=1

uq
k

∣∣∣∣∣
k


n=1

ak,n fk

∣∣∣∣∣
q) 1

q
(




k=1

u−q′
k gq′

k

) 1
q′

� sup
|| f ||lp,v=1

(



k=1

uq
k

(
k


n=1

ak,n| fk|
)q) 1

q
(




k=1

u−q′
k gq′

k

) 1
q′

� C sup
|| f ||lp,v=1

(



k=1

vp
k | fk|p

) 1
p
(




k=1

u−q′
k gq′

k

) 1
q′

= C

(



k=1

u−q′
k gq′

k

) 1
q′

,

which implies (12). The converse inequality is shown analogously. Lemma is proved. �

3.1. Proof of theorem 1

Proof. Necessity and lower estimate. Assume that the inequality (1) holds, where
C is the best constant. Then by lemma 1 we have that the inequality (12) is also hold
with the same constant C . Let k0 ∈ N be a fixed. Then choosing test sequence

gn,k0 = aq−1
n,k0

uq
n, n = 1,2, . . .

we get for the right hand side of (12)(



n=1

gq′
n,k0

u−q′
n

) 1
q′

=

(



n=k0

aq
n,k0

uq
n

) 1
q′

(13)

and for the left hand side of (12)⎛
⎝ 


n=1

v−p′
n

(



k=n

ak,ngk,k0

)p′
⎞
⎠

1
p′

=

⎛
⎝ 


n=1

v−p′
n

(



k=n

ak,na
q−1
k,k0

uq
k

)p′
⎞
⎠

1
p′

=

⎛
⎝k0−1


n=1

v−p′
n

(



k=k0

ak,na
q−1
k,k0

uq
k

)p′

+



n=k0

v−p′
n

(



k=n

ak,na
q−1
k,k0

uq
k

)p′
⎞
⎠

1
p′
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[using the monotonicity of an,k in the first sum as ak,n � ak,k0 for 1 � n � k0 and in the
second sum as ak,k0 � ak,n for k0 � n ]

�

⎛
⎝(k0−1


n=1

v−p′
n

)(



k=k0

aq
k,k0

uq
k

)p′

+



n=k0

v−p′
n

(



k=n

aq
k,nu

q
k

)p′
⎞
⎠

1
p′

. (14)

Taking into account (13) and (14) in (12) we obtain

(
k0−1


n=1

v−p′
n

)(



k=k0

aq
k,k0

uq
k

)p′

+



n=k0

v−p′
n

(



k=n

aq
k,nu

q
k

)p′

� Cp′
(




n=k0

aq
n,k0

uq
n

) p′
q′

.

Multiplying both sides of the estimate by
[
k0

n=1 v−p′
n

]q−1
we have

(
k0−1


n=1

v−p′
n

)(
k0


n=1

v−p′
n

)q−1( 


k=k0

aq
k,k0

uq
k

)p′

+

⎛
⎝ 


n=k0

v−p′
n

(



k=n

aq
k,nu

q
k

)p′
⎞
⎠( k0


n=1

v−p′
n

)q−1

� Cp′
(




n=k0

aq
n,k0

uq
n

) p′
q′
(

k0


n=1

v−p′
n

)q−1

and then(
k0−1


n=1

v−p′
n

)q( 


k=k0

aq
k,k0

uq
k

)p′

+

⎛
⎝ 


n=k0

v−p′
n

(



k=n

aq
k,nu

q
k

)p′
⎞
⎠( k0


n=1

v−p′
n

)q−1

� Cp′
(




n=k0

aq
n,k0

uq
n

) p′
q′
(

k0


n=1

v−p′
n

)q−1

,

i.e.,

Ãp′q
1 (k0)+Bp′q

1 (k0) � Cp′A
p′(q−1)
1 (k0).

Using the lower estimate in theorem A, i.e., A1 � C , we get

Ãp′q
1 (k0)+Bp′q

1 (k0) � Cp′q.

This proves the necessity of the condition B1 <  in (6) and the first part of the lower
estimate in (7).

To prove the rest part of the necessity we choose the test sequence in (12) as

gn,k0 = uq
n[k0,) (n) , n = 1,2, . . . ,
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where k0 ∈ N is a fixed and [k0,) (n) is characteristic sequence.
Then we get (




n=1

u−q′
n gq′

n,k0

) 1
q′

=

(



n=k0

uq
n

) 1
q′

and

⎛
⎝ 


n=1

v−p′
n

(



k=n

ak,ngk,k0

)p′
⎞
⎠

1
p′

=

⎛
⎝ 


n=1

v−p′
n

(



k=n

ak,nu
q
k[k0,) (k)

)p′
⎞
⎠

1
p′

=

⎛
⎝k0−1


n=1

v−p′
n

(



k=k0

ak,nu
q
k

)p′

+



n=k0

v−p′
n

(



k=n

ak,nu
q
k

)p′
⎞
⎠

1
p′

.

From these and (12) we obtain

k0−1


n=1

v−p′
n

(



k=k0

ak,nu
q
k

)p′

+



n=k0

v−p′
n

(



k=n

ak,nu
q
k

)p′

� Cp′
(




n=k0

uq
n

) p′
q′

,

i.e.,

⎛
⎝k0−1


n=1

v−p′
n

(



k=k0

ak,nu
q
k

)p′
⎞
⎠
(




n=k0

uq
n

)− p′
q′

+



n=k0

v−p′
n

(



k=n

ak,nu
q
k

)p′( 


n=k0

uq
n

)− p′
q′

� Cp′ .

Using monotonicity of the kernel as ak,n � ak0,n for k � k0 in the first sum we obtain

{
Ãp′

2 (k0)+Bp′
2 (k0)

} 1
p′ � C.

This proves the necessity of the condition B2 <  and the second part of the lower
estimate in (7).

Sufficiency and upper estimate. Let us denote

S =



n=1

uq
n

(
n


k=1

an,k fk

)q

,
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then consequently using Lagrange’s mean value theorem, Fubini’s theorem and Hölder’s
inequality we get (here we suppose that 0

k=1 an,k fk = 0)

S =



n=1

uq
n

(
n


m=1

[(
m


k=1

an,k fk

)q

−
(

m−1


k=1

an,k fk

)q])

= q



n=1

uq
n

⎛
⎝ n


m=1

an,m fm

(
m−1


k=1

an,k fk + man,m fm

)q−1
⎞
⎠

� q



n=1

uq
n

⎛
⎝ n


m=1

an,m fm

(
m


k=1

an,k fk

)q−1
⎞
⎠

= q



m=1

fm

⎡
⎣ 


n=m

an,muq
n

(
m


k=1

an,k fk

)q−1
⎤
⎦

= q



m=1

[vm fm]

⎡
⎣v−1

m




n=m

an,muq
n

(
m


k=1

an,k fk

)q−1
⎤
⎦

� q

(



m=1

vp
m f p

m

) 1
p

⎛
⎜⎝ 


m=1

v−p′
m

⎛
⎝ 


n=m

an,muq
n

(
m


k=1

an,k fk

)q−1
⎞
⎠

p′
⎞
⎟⎠

1
p′

= q‖ f‖lp,v
S

1
p′ ,

where m ∈ (0,1) , m = 1, . . . ,n and

S =



m=1

v−p′
m

⎛
⎝ 


n=m

an,muq
n

(
m


k=1

an,k fk

)q−1
⎞
⎠

p′

. (15)

So, we get the following estimate

S � q‖ f‖lp,v
S

1
p′ . (16)

Further, we estimate S . We divide the proof into two cases.

Case 1. Let q � 2. Using (5) and Minkowski’s inequality we estimate for the
inner sum of S as⎛

⎝ 


n=m

an,muq
n

(
m


k=1

an,k fk

)q−1
⎞
⎠

1
q−1

� h

⎛
⎝ 


n=m

an,muq
n

(
an,m

m


k=1

fm +
m


k=1

am,k fk

)q−1
⎞
⎠

1
q−1
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� h

⎡
⎢⎣
⎛
⎝ 


n=m

aq
n,muq

n

(
m


k=1

fk

)q−1
⎞
⎠

1
q−1

+

⎛
⎝ 


n=m

an,muq
n

(
m


k=1

am,k fk

)q−1
⎞
⎠

1
q−1
⎤
⎥⎦

= h

[( 


n=m

aq
n,muq

n

) 1
q−1
(

m


k=1

fk

)
+
( 


n=m

an,muq
n

) 1
q−1
(

m


k=1

am,k fk

)]
.

Therefore (15) and Minkowski’s inequality imply

S � h(q−1)p′



m=1

v−p′
m

[( 


n=m

aq
n,muq

n

) 1
q−1
(

m


k=1

fk

)

+
( 


n=m

an,muq
n

) 1
q−1
(

m


k=1

am,k fk

)](q−1)p′

= h(q−1)p′
[(




m=1

v−p′
m

[( 


n=m

aq
n,muq

n

) 1
q−1
(

k


k=1

fk

)

+
( 


n=m

an,muq
n

) 1
q−1
(

m


k=1

am,k fk

)](q−1)p′) 1
(q−1)p′

](q−1)p′

� h(q−1)p′

⎡
⎢⎣
⎛
⎝ 


m=1

v−p′
m

( 


n=m

aq
n,muq

n

)p′
(

m


k=1

fk

)(q−1)p′
⎞
⎠

1
(q−1)p′

+

⎛
⎝ 


m=1

v−p′
m

( 


n=m

an,muq
n

)p′
(

m


k=1

am,k fk

)(q−1)p′
⎞
⎠

1
(q−1)p′

⎤
⎥⎦

(q−1)p′

= h(q−1)p′
[
S

1
(q−1)p′
1 +S

1
(q−1)p′
2

](q−1)p′

,

i.e.,

S � h(q−1)p′
{

S
1

(q−1)p′
1 +S

1
(q−1)p′
2

}(q−1)p′

, (17)

where

S1 =



m=1

v−p′
m

( 


n=m

aq
n,muq

n

)p′
(

m


k=1

fk

)(q−1)p′

,

S2 =



m=1

v−p′
m

( 


n=m

an,muq
n

)p′
(

m


k=1

am,k fk

)(q−1)p′

.
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From (16) and (17) we have

S
1

q−1 � q
1

q−1 ‖ f‖
1

q−1
lp,v

h

(
S

1
(q−1)p′
1 +S

1
(q−1)p′
2

)
. (18)

Further, we estimate S1 and S2 separately. To estimate S1 , we use discrete Hardy
inequality (2) with the exponents p := p, q := (q−1) p′ and weight sequences uq

m :=
v−p′
m
(


n=m aq
n,muq

n
)p′

, vm := vm, i.e.,

S
1

(q−1)p′
1 =

⎛
⎝ 


m=1

uq
m

(
m


k=1

fk

)q
⎞
⎠

1
q

� Cp,q

(



m=1

vp
m f p

m

) 1
p

, (19)

since the condition (3) is satisfied, i.e.,

A1 : = sup
k∈N

(



m=k

uq
m

) 1
q
(

k


m=1

v−p′
m

) 1
p′

= sup
k∈N

(



m=k

v−p′
m

( 


n=m

aq
n,muq

n

)p′
) 1

(q−1)p′
(

k


m=1

v−p′
m

) 1
p′

= Bq′
1 < .

By (4) we get the upper estimate for the best constant Cp,q in (19)

Cp,q � q
1

p′(q−1)
(
q′
) 1

p′ Bq′
1 .

Therefore,

S
1

(q−1)p′
1 � q

1
p′(q−1)

(
q′
) 1

p′ Bq′
1 ‖ f‖lp,v

. (20)

Now we estimate S2 . Consequently using Fubini’s theorem and Minkowski’s inequality
we obtain

S2 =



k=1

v−p′
k

(



n=k

an,ku
q
n

)p′( k


m=1

ak,m fm

)(q−1)p′

=



k=1

v−p′
k

(



n=k

an,ku
q
n

)p′
⎧⎨
⎩

k


l=1

⎡
⎣( l


m=1

al,m fm

)(q−1)p′

−
(

l−1


m=1

al−1,m fm

)(q−1)p′
⎤
⎦
⎫⎬
⎭

=



l=1

⎡
⎣( l


m=1

al,m fm

)(q−1)p′

−
(

l−1


m=1

al−1,m fm

)(q−1)p′
⎤
⎦
⎛
⎝ 


k=l

v−p′
k

(



n=k

an,ku
q
n

)p′
⎞
⎠

=



l=1

⎡
⎣( l


m=1

al,m fm

)(q−1)p′

−
(

l−1


m=1

al−1,m fm

)(q−1)p′
⎤
⎦( 


k=l

uq
k

) p′
q′

Bp′
2 (l)
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� Bp′
2

⎛
⎜⎜⎜⎝
⎡
⎢⎣ 


l=1

⎡
⎣
(

l


m=1

al,m fm

)(q−1)p′

−
(

l−1


m=1

al−1,m fm

)(q−1)p′
⎤
⎦
(




k=l

uq
k

) p′
q′
⎤
⎥⎦

q′
p′
⎞
⎟⎟⎟⎠

p′
q′

� Bp′
2

⎛
⎜⎜⎝ 


k=1

uq
k

⎡
⎣ k


l=1

⎡
⎣( l


m=1

al,m fm

)(q−1)p′

−
(

l−1


m=1

al−1,m fm

)(q−1)p′
⎤
⎦
⎤
⎦

q′
p′
⎞
⎟⎟⎠

p′
q′

= Bp′
2

[



k=1

uq
k

(
k


m=1

ak,m fm

)q] p′
q′

= Bp′
2 S

p′
q′ .

From this we get

S
1

(q−1)p′
2 � B

1
q−1
2 S

1
q . (21)

Taking into account the above estimates in (18) we get

S
1

q−1 � q
1

q−1 ‖ f‖
1

q−1
lp,v

h

(
q

1
(q−1)p′

(
q′
) 1

p′ Bq′
1 ‖ f‖lp,v

+B
1

q−1
2 S

1
q

)

= hq
p′+1

p′(q−1)
(
q′
) 1

p′ Bq′
1 ‖ f‖q′

lp,v
+h
(
qB2‖ f‖lp,v

) 1
q−1

S
1
q . (22)

Now applying Young’s inequality to the second term on the right hand side of (22) as

h
(
qB2‖ f‖lp,v

) 1
q−1

S
1
q �

hq
(
qB2‖ f‖lp,v

)q′

q
+

S
1

q−1

q′

we obtain that

S
1

q−1 � hq
p′+1

p′(q−1)
(
q′
) 1

p′ Bq′
1 ‖ f‖q′

lp,v
+hqqq′−1Bq′

2 ‖ f‖q′
lp,v

+
S

1
q−1

q′
,

and then

S
1

q−1 � hq
1

p′(q−1) +q′(
q′
) 1

p′ Bq′
1 ‖ f‖q′

lp,v
+hqqq′Bq′

2 ‖ f‖q′
lp,v

,

i.e.,

S
1
q � q

(
hq

1
p′(q−1)

(
q′
) 1

p′ +hq
) 1

q′
B‖ f‖lp,v

,

where B = max{B1,B2} . This means that the conditions B1 <  and B2 <  are
sufficient for the inequality (1) to hold. We also get the upper estimate for the best
constant C

C � q

(
hq

1
p′(q−1)

(
q′
) 1

p′ +hq
) 1

q′
B.
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Using S
1
q � C‖ f‖lp,v

, we rewrite (22) in the form

S
1

q−1 � hq
1

q−1 ‖ f‖q′
lp,v

(
q

1
p′(q−1)

(
q′
) 1

p′ Bq′
1 +B

1
q−1
2 C

)
,

i.e, (
S

1
q

‖ f‖lp,v

)q′

� hq
1

q−1

(
q

1
p′(q−1)

(
q′
) 1

p′ Bq′
1 +B

1
q−1
2 C

)
.

From the arbitrary of f in the last estimate we have

Cq′ � hq
1

q−1

(
q

1
p′(q−1)

(
q′
) 1

p′ Bq′
1 +B

1
q−1
2 C

)
,

i.e.,
Cq′

q
1

q−1

(
q

1
p′(q−1) (q′)

1
p′ Bq′

1 +B
1

q−1
2 C

) � h.

Now we consider the function

f (x) =
xq′

q
p′+1

p′(q−1) (q′)
1
p′ Bq′

1 +(qB2)
1

q−1 x

corresponding to the left-hand side of the estimate. It is easy to see that this function
is monotone increasing and continuous in (0,) , f (0) = 0 and f () =  , which
implies that the equation f (x) = h has exactly one positive solution in (0,) . If X is
a solution of the equation, which means that

Xq′ = h

(
q

p′+1
p′(q−1)

(
q′
) 1

p′ Bq′
1 +(qB2)

1
q−1 X

)
,

then, C � X . This proves the upper estimate (8) in the case q � 2.

Case 2. Let 1 < q � 2. Using (4) we have that




n=k

an,ku
q
n

(
k


m=1

an,m fm

)q−1

� hq−1



n=k

an,ku
q
n

(
an,k

k


m=1

fm +
k


m=1

ak,m fm

)q−1

� hq−1



n=k

an,ku
q
n

⎛
⎝(an,k

k


m=1

fm

)q−1

+

(
k


m=1

ak,m fm

)q−1⎞⎠

= hq−1

⎛
⎝ 


n=k

aq
n,ku

q
n

(
k


m=1

fm

)q−1

+



n=k

an,ku
q
n

(
k


m=1

ak,m fm

)q−1⎞⎠ .
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Putting this expression in (15) and using Minkowski’s inequality we obtain

S =



k=1

v−p′
k

⎛
⎝ 


n=k

an,ku
q
n

(
k


m=1

an,m fm

)q−1
⎞
⎠

p′

� h(q−1)p′

⎛
⎜⎜⎝
⎡
⎢⎣ 


k=1

v−p′
k

⎛
⎝ 


n=k

aq
n,ku

q
n

(
k


m=1

fm

)q−1

+



n=k

an,ku
q
n

(
k


m=1

ak,m fm

)q−1
⎞
⎠

p′
⎤
⎥⎦

1
p′
⎞
⎟⎟⎠

p′

� h(q−1)p′

⎛
⎜⎝
⎡
⎣ 


k=1

v−p′
k

(



n=k

aq
n,ku

q
n

)p′( k


m=1

fm

)(q−1)p′
⎤
⎦

1
p′

+

⎡
⎣ 


k=1

v−p′
k

(



n=k

an,ku
q
n

)p′( k


m=1

ak,m fm

)(q−1)p′
⎤
⎦

1
p′
⎞
⎟⎠

p′

= h(q−1)p′
(

S
1
p′
1 +S

1
p′
2

)p′

,

i.e,

S � h(q−1)p′
(

S
1
p′
1 +S

1
p′
2

)p′

.

From (20) and (21) and we have, respectively, the following

S
1
p′
1 � q

1
p′
(
q′
) q−1

p′ Bq
1‖ f‖q−1

p,v

and

S
1
p′
2 � B2S

1
q′ .

According to (16) we get the following estimate:

S � q‖ f‖lp,v
hq−1

(
q

1
p′
(
q′
) q−1

p′ Bq
1‖ f‖q−1

lp,v
+B2S

1
q′
)

, (23)

i.e.,

S � hq−1q
1
p′ +1(

q′
) q−1

p′ Bq
1‖ f‖q

lp,v
+hq−1qB2‖ f‖lp,v

S
1
q′ .

Applying Young’s inequality to the last term of the above sum, we get the following
estimate

S � hq−1q
p′+1
p′
(
q′
) q−1

p′ Bq
1‖ f‖q

lp,v
+

(
hq−1qB2‖ f‖lp,v

)q

q
+

S
q′

,
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i.e,

S �
(

hq−1q
2p′+1

p′
(
q′
) q−1

p′ +h(q−1)qqq
)

Bq‖ f‖q
lp,v

,

where B = max{B1,B2} . From this we obtain

S
1
q �
(

hq−1q
2p′+1

p′
(
q′
) q−1

p′ +h(q−1)qqq
) 1

q

B‖ f‖lp,v
(24)

and

C �
(

hq−1q
2p′+1

p′
(
q′
) q−1

p′ +h(q−1)qqq
) 1

q

B.

This means that the conditions B1 <  and B2 <  are sufficient for the inequality (1)

to hold. Using S
1
q � C‖ f‖lp,v

we rewrite (23) in the following form

S � q‖ f‖lp,v
hq−1

(
q

1
p′
(
q′
) q−1

p′ Bq
1‖ f‖q−1

lp,v
+B2

(
C‖ f‖lp,v

)q−1
)

,

i.e,
S

‖ f‖q
lp,v

� hq−1
(

q
p′+1
p′
(
q′
) q−1

p′ Bq
1 +qB2C

q−1
)

,

which implies the estimate for the best constant

Cq � hq−1
(

q
p′+1
p′
(
q′
) q−1

p′ Bq
1 +qB2C

q−1
)

.

Consequently, we obtain

Cq

q
p′+1
p′ (q′)

q−1
p′ Bq

1 +qB2Cq−1

� hq−1.

Let us now consider the function

f (x) =
xq

q
p′+1
p′ (q′)

q−1
p′ Bq

1 +qB2xq−1

according to the left side of the estimate. It is to see that this function is monotone
increasing and continuous in (0,) and the equation f (x) = hq−1 has one positive
solution in (0,) . If X is a solution of the equation, which means that

Xq = hq−1
(

q
p′+1
p′
(
q′
) q−1

p′ Bq
1 +qB2X

q−1
)

then C � X . The proof is complete. �
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3.2. Proof of theorem 2

Proof. Necessity and lower estimate. Let the Hardy-type inequality (1) hold and
C be its best constant. Then choosing the test sequence fn,k0 in (1) as

fn,k0 = v−p′
n [1,k0] (n) ,

we get (



n=1

vp
n f p

n,k0

) 1
p

=

(
k0


n=1

vp
n

(
v−p′
n

)p
) 1

p

=

(
k0


n=1

v−p′
n

) 1
p

and

(



n=1

uq
n

(
n


k=1

an,k fk,k0

)q) 1
q

=

(



n=1

uq
n

(
n


k=1

an,kv
−p′
k [1,k0] (k)

)q) 1
q

=

(
k0


n=1

uq
n

(
n


k=1

an,kv
−p′
k

)q

+



n=k0+1

uq
n

(
k0


k=1

an,kv
−p′
k

)q) 1
q

.

Using these in (1) we obtain

[
k0


n=1

uq
n

(
n


k=1

an,kv
−p′
k

)q]( k0


n=1

v−p′
n

)− q
p

+

[



n=k0+1

uq
n

(
k0


k=1

an,kv
−p′
k

)q]( k0


n=1

v−p′
n

)− q
p

� Cq,

i.e.,

Bq
3 (k0)+

[



n=k0+1

uq
n

(
k0


k=1

an,kv
−p′
k

)q]( k0


n=1

v−p′
n

)− q
p

� Cq.

Using the monotonicity of an,k −an,k � an,k0 for k � k0 – we have

Cq � Bq
3 (k0)+

(



n=k0+1

aq
n,k0

uq
n

)(
k0


n=1

v−p′
n

) q
p′

which implies
sup
k0�1

(
Bq

3 (k0)+ Ãq
1 (k0 +1)

)
� Cq .

Necessity of B3 <  and the first part of (10) have been proved.
Now we prove the rest part. By choosing the test sequence fn,k0 in (1) as

fn,k0 = ap′−1
k0,n

v−p′
n [1,k0] (n) ,
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we get (



n=1

vp
n f p

n,k0

) 1
p

=

(
k0


n=1

ap′
k0,n

v−p′
n

) 1
p

(25)

and (



n=1

uq
n

(
n


k=1

an,k fk,k0

)q) 1
q

=

(



n=1

uq
n

(
n


k=1

an,ka
p′−1
k0,k

v−p′
k [1,k0] (k)

)q) 1
q

=

(
k0


n=1

uq
n

(
n


k=1

an,ka
p′−1
k0,k

v−p′
k

)q

+



n=k0+1

uq
n

(
k0


k=1

an,ka
p′−1
k0,k

v−p′
k

)q) 1
q

[using the monotonicity of an,k in the first sum as ak0,k � an,k for k0 � n and in the
second sum as an,k � ak0,k for n > k0 we get]

�
(

k0


n=1

uq
n

(
n


k=1

ap′
n,kv

−p′
k

)q

+

(



n=k0+1

uq
n

)(
k0


k=1

ap′
k0,k

v−p′
k

)q) 1
q

. (26)

Taking into account (25) and (26) in (1) we obtain

k0


n=1

uq
n

(
n


k=1

ap′
n,kv

−p′
k

)q

+

(



n=k0+1

uq
n

)(
k0


k=1

ap′
k0,k

v−p′
k

)q

� Cq

(
k0


n=1

ap′
k0,n

v−p′
n

) q
p

.

Multiplaying both sides of the estimate by
(


n=k0
uq

n

)p′−1
we have

(
k0


n=1

uq
n

(
n


k=1

ap′
n,kv

−p′
k

)q)( 


n=k0

uq
n

)p′−1

+

(



n=k0+1

uq
n

)(



n=k0

uq
n

)p′−1( k0


k=1

ap′
k0,k

v−p′
k

)q

� Cq

(
k0


n=1

ap′
k0,n

v−p′
n

) q
p
(




n=k0

uq
n

)p′−1

,

and then(
k0


n=1

uq
n

(
n


k=1

ap′
n,kv

−p′
k

)q)( 


n=k0

uq
n

)p′−1

+

(



n=k0+1

uq
n

)p′( k0


k=1

ap′
k0,k

v−p′
k

)q

� Cq

(
k0


n=1

ap′
k0,n

v−p′
n

) q
p
(




n=k0

uq
n

)p′−1

,
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i.e.,

Ãp′q
2 (k0 +1)+Bp′q

4 (k0) � CqA
(p′−1)q(k0).

Using the estimate A � C , which was proved in [4] we get

Bp′q
4 (k0)+ Ãp′q

2 (k0 +1) � Cp′q

and then
sup
k0∈N

(
Ãp′q

2 (k0 +1)+Bp′q
4 (k0)

)
� Cp′q,

which proves the second part of (10).

Sufficiency and upper estimate. Let us denote

S =



n=1

v−p′
n

(



k=n

ak,n fk

)p′

,

then consequently using Lagrange’s mean value theorem, Fubini’s theorem and Hölder’s
inequality we get

S =



n=1

v−p′
n

⎛
⎝ 


m=n

⎡
⎣( 


k=m

ak,n fk

)p′

−
(




k=m+1

ak,n fk

)p′
⎤
⎦
⎞
⎠

= p′



n=1

v−p′
n

⎛
⎝ 


m=n

am,n fm

[



k=m+1

ak,n fk + mam,n fm

]p′−1
⎞
⎠

� p′



n=1

v−p′
n

⎛
⎝ 


m=n

am,n fm

[



k=m

ak,n fk

]p′−1
⎞
⎠

= p′



m=1

fm

⎛
⎝ m


n=1

am,nv
−p′
n

[



k=m

ak,n fk

]p′−1
⎞
⎠

= p′



m=1

(
u−1

m fm
)⎛⎝um

m


n=1

am,nv
−p′
n

[



k=m

ak,n fk

]p′−1
⎞
⎠

� p′
[




m=1

u−q′
m f q′

m

] 1
q′
⎡
⎣ 


m=1

uq
m

⎛
⎝ m


n=1

am,nv
−p′
n

(



k=m

ak,n fk

)p′−1
⎞
⎠

q⎤
⎦

1
q

= p′‖ f‖lq′ ,u−1

⎡
⎣ 


m=1

uq
m

⎛
⎝ m


n=1

am,nv
−p′
n

(



k=m

ak,n fk

)p′−1
⎞
⎠

q⎤
⎦

1
q

= p′‖ f‖lq′ ,u−1
S

1
q ,
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where m ∈ (0,1) , k = 1, . . . ,n and

S =



m=1

uq
m

⎛
⎝ m


n=1

am,nv
−p′
n

(



k=m

ak,n fk

)p′−1
⎞
⎠

q

. (27)

So we get the following estimate

S � p′‖ f‖lq′ ,u−1
S

1
q . (28)

Now we estimate S . For this aim we divide proof into two cases.

Case 1. Let p′ � 2. Using Oinarov’s condition (5) and Minkowski’s inequality
we obtain the following estimate for the inner sum of (28)

⎛
⎝ m


n=1

am,nv
−p′
n

(



k=m

ak,n fk

)p′−1
⎞
⎠

1
p′−1

� h

⎛
⎝ m


n=1

am,nv
−p′
n

(
am,n




k=m

fk +



k=m

ak,m f k

)p′−1
⎞
⎠

1
p′−1

� h

⎛
⎜⎝
⎡
⎣ m


n=1

am,nv
−p′
n

(
am,n




k=m

fk

)p′−1
⎤
⎦

1
p′−1

+

⎡
⎣ m


n=1

am,nv
−p′
n

(



k=m

ak,m fk

)p′−1
⎤
⎦

1
p′−1

⎞
⎟⎠

= h

⎛
⎝
(

m


n=1

ap′
m,nv

−p′
n

) 1
p′−1 


k=m

fk +

(
m


n=1

am,nv
−p′
n

) 1
p′−1 


k=m

ak,m f k

⎞
⎠ .

Using these in (27) and then Minkowski’s inequality we have

S � hq(p′−1)



m=1

uq
m

⎡
⎣
(

m


n=1

ap′
m,nv

−p′
n

) 1
p′−1 


k=m

fk +

(
m


n=1

am,nv
−p′
n

) 1
p′−1 


k=m

ak,m f k

⎤
⎦

q(p′−1)

= hq(p′−1)
{(




m=1

uq
m

[(
m


n=1

ap′
m,nv

−p′
n

) 1
p′−1 


k=m

fk

+

(
m


n=1

am,nv
−p′
n

) 1
p′−1 


k=m

ak,m f k

]q(p′−1)) 1
q(p′−1)

}q(p′−1)
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� hq(p′−1)
{[




m=1

uq
m

(
m


n=1

ap′
m,nv

−p′
n

)q( 


k=m

fk

)q(p′−1)] 1
q(p′−1)

+

[



m=1

uq
m

(
m


n=1

am,nv
−p′
n

)q( 


k=m

ak,m f k

)q(p′−1)] 1
q(p′−1)

}q(p′−1)

= hq(p′−1)
{

S
1

q(p′−1)
1 +S

1
q(p′−1)
2

}q(p′−1)
,

i.e.,

S � hq(p′−1)
{

S
1

q(p′−1)
1 +S

1
q(p′−1)
2

}q(p′−1)
, (29)

where

S1 =



m=1

uq
m

(
m


n=1

ap′
m,nv

−p′
n

)q( 


k=m

fk

)q(p′−1)
,

S2 =



m=1

uq
m

(
m


n=1

am,nv
−p′
n

)q( 


k=m

ak,m f k

)q(p′−1)
.

From (27) and (29) we have

S � p′‖ f‖lq′ ,u−1
S

1
q � p′‖ f‖lq′ ,u−1

hp′−1

(
S

1
q(p′−1)
1 +S

1
q(p′−1)
2

)p′−1

. (30)

Further, we estimate S1 and S2 separately. To estimate S1 , we used discrete
Hardy inequality (2) of the exponents p := q′, q := q(p′ −1) and weights uq

m :=

uq
m

(
m

n=1 ap′
m,nv

−p′
n

)q
, vm := u−1

m , i.e,

S
1

q(p′−1)
1 =

⎡
⎣ 


m=1

uq
m

(



k=m

fk

)q
⎤
⎦

1
q

� Cp,q

(



m=1

vp
m f p

m

) 1
p

, (31)

since the equivalent condition (3) is satisfied, i.e.,

A1 = sup
m∈N

(
m


k=1

uq
k

(
k


n=1

ap′
k,nv

−p′
n

)q) 1
q(p′−1)

(



k=m

u−q
k

) 1
q

= Bp
4 < .

Moreover, using (4) we get the following upper estimate for the best constant Cp,q in
(31):

Cp,q �
(
p′
) 1

q(p′−1) p
1
q Bp

4 .
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Therefore,

S
1

q(p′−1)
1 �

(
p′
) 1

q(p′−1) p
1
q Bp

4‖ f‖lq′ ,u−1
. (32)

Now we estimate S2 . Using consequently Fubini’s theorem and Minkowski’s inequal-
ity, we obtain

S2 =



m=1

uq
m

(
m


n=1

am,nv
−p′
n

)q 


s=m

⎡
⎣
(




k=s

ak,s fk

)q(p′−1)
−
(




k=s+1

ak,s+1 fk

)q(p′−1)
⎤
⎦

=



s=1

⎡
⎣
(




k=s

ak,s fk

)q(p′−1)
−
(




k=s+1

ak,s+1 fk

)q(p′−1)
⎤
⎦
(

s


m=1

uq
m

(
m


n=1

am,nv
−p′
n

)q)

=



s=1

⎡
⎣
(




k=s

ak,s fk

)q(p′−1)
−
(




k=s+1

ak,s+1 fk

)q(p′−1)⎤⎦
(

s


m=1

v−p′
m

) q
p

Bq
3(s)

� Bq
3

⎛
⎜⎝
⎡
⎣ 


s=1

⎡
⎣
(




k=s

ak,s fk

)q(p′−1)
−
(




k=s+1

ak,s+1 fk

)q(p′−1)
⎤
⎦
(

s


m=1

v−p′
m

) q
p
⎤
⎦

p
q
⎞
⎟⎠

q
p

� Bq
3

⎛
⎜⎝ 


m=1

v−p′
m

⎛
⎝ 


s=m

⎡
⎣( 


k=s

ak,s fk

)q(p′−1)
−
(




k=s+1

ak,s+1 fk

)q(p′−1)⎤⎦
⎞
⎠

p
q
⎞
⎟⎠

q
p

= Bq
3

⎛
⎝ 


m=1

v−p′
m

(



k=m

ak,m f k

)p′
⎞
⎠

q
p

= Bq
3S

q
p .

From this we have

S
1

q(p′−1 )
2 � B

1
p′−1
3 S

1
p′ . (33)

Taking into account (32) and (33) in (30) we get

S
1

p′−1 �
(
p′
) 1

p′−1 ‖ f‖
1

p′−1
lq′ ,u−1

h

((
p′
) 1

q(p′−1) p
1
q Bp

4‖ f‖lq′ ,u−1
+B

1
p′−1
3 S

1
p′
)

,

i.e,

S
1

p′−1 � h
(
p′
) q+1

q(p′−1) p
1
q Bp

4‖ f‖p
lq′ ,u−1

+h
(
p′
) 1

p′−1 ‖ f‖
1

p′−1
lq′ ,u−1

B
1

p′−1
3 S

1
p′ . (34)

Applying Young’s inequality to the second term on the right side as

h
(
p′
) 1

p′−1 ‖ f‖
1

p′−1
lq′ ,u−1

B

1
p′−1

3
S

1
p′ �

(
h(p′)

1
p′−1 ‖ f‖

1
p′−1
lq′,u−1

B
1

p′−1
3

)p′

p′
+

S
p
p′

p
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we obtain from (34) the following estimate

S
1

p′−1 � h
(
p′
) 1

q(p′−1)+p
p

1
q Bp

4‖ f‖p
lq′ ,u−1

+hp′(p′)pBp
3‖ f‖p

lq′ ,u−1
,

and then

S
1
p′ �

(
h
(
p′
) 1

q(p′−1)+p
p

1
q +hp′(p′)p) 1

p

B‖ f‖lq′ ,u−1
,

where B = max{B3,B4} .
This means that the conditions B3 < and B4 < are sufficient for the inequality

(1) to hold. We also get upper estimate for the best constant

C �
(

h
(
p′
) 1

q(p′−1)+p
p

1
q +hp′(p′)p) 1

p

B.

Using S
1
p′ � C‖ f‖lq′ ,u−1

, we rewrite (34) in the following form

S
1

p′−1 � h
(
p′
) 1

p′−1 ‖ f‖p
lq′ ,u−1

((
p′
) 1

q(p′−1) p
1
q Bp

4 +B
1

p′−1
3 C

)
,

i.e, ⎛
⎝ S

1
p′

‖ f‖lq′ ,u−1

⎞
⎠

p

� h
(
p′
) 1

p′−1

((
p′
) 1

q(p′−1) p
1
q Bp

4 +B
1

p′−1
3 C

)
.

Then from the arbitrary of f we have

Cp � h
(
p′
) 1

p′−1

((
p′
) 1

q(p′−1) p
1
q Bp

4 +B
1

p′−1
3 C

)
,

i.e.,
Cp

(p′)
1

p′−1

(
(p′)

1
q(p′−1) p

1
q Bp

4 +B
1

p′−1
3 C

) � h.

Let us consider the function

f (x) =
xp

(p′)
1

p′−1

(
(p′)

1
q(p′−1) p

1
q Bp

4 +B
1

p′−1
3 x

)

corresponding to the left-hand side of the estimate. It is easy to see that this function
is monotone increasing and continuous in (0,) , f (0) = 0 and f () =  , which
implies that the equation f (x) = h has exactly one positive solution in (0,) . If X is
a solution of the equation, i.e.,

X p = h
(
p′
)p−1

((
p′
) 1

q(p′−1) p
1
q Bp

4 +Bp−1
3 X

)
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then C � X .

Case 2. Let 1 < p′ < 2. Using Oinarov’s condition (5) and the inequality (X +
Y ) � X +Y , for 0 <  < 1 we estimate the inner sum of (27) as

m


n=1

am,nv
−p′
n

(



k=m

ak,n fk

)p′−1

� hp′−1
m


n=1

am,nv
−p′
n

(
am,n




k=m

fk +



k=m

ak,m f k

)p′−1

� hp′−1

⎛
⎝ m


n=1

ap′
m,nv

−p′
n

(



k=m

fk

)p′−1

+
m


n=1

am,nv
−p′
n

(



k=m

ak,m f k

)p′−1
⎞
⎠ .

Using this estimate in (27), and then applying Minkowski’s inequality we get

S =



m=1

uq
m

⎛
⎝ m


n=1

am,nv
−p′
n

(



k=m

ak,an fk

)p′−1
⎞
⎠

q

� hq(p′−1)



m=1

uq
m

((
m


n=1

ap′
m,nv

−p′
n

)(



k=m

fk

)p′−1

+

(
m


n=1

am,nv
−p′
n

)(



k=m

ak,m f k

)p′−1)q

= hq(p′−1)

{[



m=1

uq
m

(
m


n=1

ap′
m,nv

−p′
n

(



k=m

fk

)p′−1

+
m


n=1

am,nv
−p′
n

(



k=m

ak,m f k

)p′−1)q] 1
q
}q

= hq(p′−1)

⎧⎪⎨
⎪⎩
⎡
⎣ 


m=1

uq
m

(
m


n=1

ap′
m,nv

−p′
n

)q( 


k=m

fk

)q(p′−1)⎤⎦
1
q

+

⎡
⎣ 


m=1

uq
m

(
m


n=1

am,nv
−p′
n

)q( 


k=m

ak,m f k

)q(p′−1)⎤⎦
1
q
⎫⎪⎬
⎪⎭

q

= hq(p′−1)
{

S
1
q
1 +S

1
q
2

}q

,

i.e,

S � hq(p′−1)
{

S
1
q
1 +S

1
q
2

}q

. (35)
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From (32) and (33) we obtain

S
1
q
1 �

(
p′
) 1

q p
p′−1

q Bp′
4 ‖ f‖p′−1

lq′ ,u−1

and

S
1
q
2 � B3S

1
p .

According to (28) and (35) we get the following estimate:

S � p′‖ f‖lq′,u−1
hp′−1

((
p′
) 1

q p
p′−1

q Bp′
4 ‖ f‖p′−1

q,u +B3S
1
p

)
, (36)

i.e.,

S � hp′−1(p′) 1
q +1

p
p′−1

q Bp′
4 ‖ f‖p′

lq′ ,u−1
+hp′−1p′B3‖ f‖lq′ ,u−1

S
1
p .

Applying Young’s inequality to the second term of the right hand side, we get

S � hp′−1(p′) 1
q +1

p
p′−1

q Bp′
4 ‖ f‖p′

lq′ ,u−1
+

(
hp′−1p′B3‖ f‖lq′ ,u−1

)p′

p′
+

S
p

and then

S �
(

hp′−1(p′) 1
q +2

p
p′−1

q +hp′(p′−1)(p′)p′)Bp′‖ f‖p′
lq′ ,u−1

,

where B = max{B3, B4} . From this we have

S
1
p′ �

(
hp′−1(p′) 1

q +2
p

p′−1
q +hp′(p′−1)(p′)p′) 1

p′
B‖ f‖lq′ ,u−1

,

which implies the following estimate for the best constant

C �
(

hp′−1(p′) 1
q +2

p
p′−1

q +hp′(p′−1)(p′)p′) 1
p′

B.

This means that the conditions B3 <  and B4 <  are sufficient for the inequality (1)

to hold. Now using S
1
p′ � C‖ f‖lq′ ,u−1

we obtain from (36) the following estimate

S � p′‖ f‖lq′ ,u−1
hp′−1

((
p′
) 1

q p
p′−1

q Bp′
4 ‖ f‖p′−1

lq′ ,u−1
+B3C

p′−1 ‖ f‖p′−1
lq′ ,u−1

)
,

i.e,
S

‖ f‖p′
lq′ ,u−1

� hp′−1
((

p′
) q+1

q p
p′−1

q Bp′
4 + p′B3C

p′−1
)

.

From the arbitrary of f we have

Cp′ � hp′−1
((

p′
) q+1

q p
p′−1

q Bp′
4 + p′B3C

p′−1
)

,
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which implies
Cp′

(p′)
q+1
q p

p′−1
q Bp′

4 + p′B3Cp′−1
� hp′−1.

Let us consider the function

f (x) =
xp′

(p′)
q+1
q p

p′−1
q Bp′

4 + p′B3xp′−1
.

It is easy to see that this function is monotone increasing and continuous in (0,) and
the equation f (x) = hp′−1 has one positive solution in (0,) . If X is a solution of the
equation, i.e.,

X p′ = hp′−1
((

p′
) q+1

q p
p′−1

q Bp′
4 + p′B3X

p′−1
)

then C � X . The proof is complete. �
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