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Abstract. In this paper, we show some sufficient conditions on a Banach space X concerning

the generalized von Neumann-Jordan type constant C(p)
−∞(a,X) , the coefficient R(1,X) and the

coefficient of weak orthogonality, which imply the existence of fixed points for multivalued
nonexpansive mappings.

1. Introduction

In 1969, Nadler [17] established the multivalued version of Banach contraction
principle. A key technology to get fixed point property for multivalued nonexpansive
mapping is Edelstein’s method of asymptotic centers. For instance, using it T. C. Lim
[16] proved that every multivalued nonexpansive self-mapping T : E → K(E) has a
fixed point where E is a nonempty bounded closed convex subset of a uniformly convex
Banach space X . W. A. Kirk and S. Massa [15] proved that if a nonempty bounded
closed convex subset E of a Banach space X has a property that the asymptotic center
in E of each bounded sequence of X is nonempty and compact, then every multivalued
nonexpansive self-mapping T : E → KC(E) has a fixed point. In 2004, Domı́nguez
and Lorenzo [4] proved that every multivalued nonexpansive mapping T : E → KC(E)
has a fixed point where E is a nonempty bounded closed convex subset of a nearly
uniformly convex Banach space X .

In 2006, S. Dhompongsa et al. [8, 9] introduced the Domı́nguez-Lorenzocondition
and property (D) which imply the fixed point property for multivalued nonexpansive
mappings. In 2007, T. D. Benavides and Gavira [2] had established the fixed point
property for multivalued nonexpansivemappings in terms of the modulus of squareness,
universal infinite-dimensional modulus, and Opial modulus. A. Kaewkhao [13] has
established the fixed point property for multivalued nonexpansive mappings in terms of
the James constant, the Jordan-von Neumann constant, weak orthogonality. In 2010,
T. D. Benavides and Gavira [3] had given a survey of this subject and presented the
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main known results and current research directions. For more details about recent work
on fixed point property for multivalued nonexpansive mapping, one can refer to [21, 22,
23, 25].

Let X be a Banach space with unit ball BX = {x ∈ X : ‖x‖ � 1} . The following
constant of a Banach space

CNJ(X) = sup

{
‖ x+ y ‖2 + ‖ x− y ‖2

2(‖ x ‖2 + ‖ y ‖2)
: x,y ∈ X ,(x,y) �= (0,0)

}
,

is called the von Neumann-Jordan constant [5], which is widely studied by many au-
thors [2, 3, 8, 17].

In order to promote the results of CNJ(X) , Dhompangsa in [7] introduced the
constant CNJ(a,X) , for a � 0.

CNJ(a,X) = sup

{
‖ x+ y ‖2 + ‖ x− z ‖2

2 ‖ x ‖2 + ‖ y ‖2 +‖z‖2 : x,y,z ∈ X

}
,

where (x,y,z) �= (0,0,0) , and ‖y− z‖� a‖x‖ . It is clear that CNJ(0,X) = CNJ(X) .
Cui [6] and Dinarvand [10] introduced the constant C(p)

NJ (X) and C(p)
NJ (a,X) , re-

spectively, and gave some sufficient conditions for the normal structure, where a � 0,
1 � p < ∞ .

C(p)
NJ (X) = sup

{
‖ x+ y ‖p + ‖ x− y ‖p

2p−1(‖ x ‖p + ‖ y ‖p)
: x,y ∈ X ,(x,y) �= (0,0)

}
.

C(p)
NJ (a,X) = sup

{
‖ x+ y ‖p + ‖ x− z ‖p

2p−2 ‖ x ‖p +2p−3(‖ y ‖p +‖z‖p)
: x,y,z ∈ X

}
,

where (x,y,z) �= (0,0,0) , and ‖y− z‖ � a‖x‖ . It was proved that the generalized von

Neumann-Jordan constant satisfies the inequality C(p)
NJ (X) � 2, and that Banach space

X is uniformly non-square if and only if C(p)
NJ (X) < 2 (see [6]). If C(p)

NJ (X) < 1+ 1
μ(X)p ,

then the Banach space X has normal structure (see [20]).
To further describe the geometric properties of Banach space, such as uniform

non-square and normal structure, the constants C−∞(X),C(p)
−∞(X) and C−∞(a,X) were

introduced, respectively in [18, 24, 25], where a � 0, 1 � p < ∞ .

C−∞(X) = sup

{
min

{
‖ x+ y ‖2,‖ x− y ‖2

}
2(‖ x ‖2 + ‖ y ‖2)

: x,y ∈ X ,(x,y) �= (0,0)

}
.

C(p)
−∞(X) = sup

{
min

{
‖ x+ y ‖p,‖ x− y ‖p

}
2p−1(‖ x ‖p + ‖ y ‖p)

: x,y ∈ X ,(x,y) �= (0,0)

}
.

C−∞(a,X) = sup

{
min

{
‖ x,y ‖2,‖ x− z ‖2

}
2 ‖ x ‖2 + ‖ y ‖2 +‖z‖2 : x,y,z ∈ X

}
,
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where (x,y,z) �= (0,0,0) , and ‖y− z‖� a‖x‖ .
Inspired by the above results, in 2024, Tang et al. [19] introduced a new general-

ized Jordan-von Neumann type constant C(p)
−∞(a,X) ,

C(p)
−∞(a,X) = sup

{
min

{
‖ x+ y ‖p,‖ x− z ‖p

}
2p−2 ‖ x ‖p +2p−3(‖ y ‖p +‖z‖p)

: x,y,z ∈ X

}
,

where (x,y,z) �= (0,0,0) , and ‖y− z‖ � a‖x‖ . It is clear this definition is equivalent to

C(p)
−∞(a,X) = sup

{
min

{
‖ x+ y ‖p,‖ x− z ‖p

}
2p−2 ‖ x ‖p +2p−3(‖ y ‖p +‖z‖p)

: x,y,z ∈ BX

}
,

where (x,y,z) �= (0,0,0) , and ‖y− z‖ � a‖x‖ . They analyzed some properties of this
constant, and gave some sufficient conditions for normal structure.

2. Preliminaries

The following coefficient is defined by T. D. Benavides [1] as

R(1,X) = sup{liminf
n→∞

‖ xn + x ‖},

where the supremum is taken over all x∈X with ‖ x ‖� 1 and all weakly null sequences
(xn) in the unit ball BX such that

D[(xn)] := limsup
n→∞

(limsup
m→∞

‖ xn − xm ‖) � 1.

It is clear that 1 � R(1,X) � 2. Some geometric condition sufficient for normal struc-
ture in term of this coefficient have been studied in [11, 20].

The coefficient of weak orthogonality μ(X) , defined by the infimum of the set of
real numbers λ > 0 such that

limsup
n→∞

‖ x+ xn ‖� λ limsup
n→∞

‖ x− xn ‖

for all x ∈ X and all weakly null sequences (xn) in X [12].
Let C be a nonempty subset of a Banach space X . We shall denote by CB(X) the

family of all nonempty closed bounded subsets of X and by KC(X) the family of all
nonempty compact convex subsets of X . A multivalued mapping T : C → CB(X) is
said to be nonexpansive if

H(Tx,Ty) �‖ x− y ‖,
for all x,y ∈C , where H(., .) denotes the Hausdorff metric on CB(X) defined by

H(A, B) := max{sup
x∈A

inf
y∈B

‖ x− y ‖,sup
y∈B

inf
x∈A

‖ x− y ‖}, A, B ∈CB(X).
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Let {xn} be a bounded sequence in X . The asymptotic radius r(C,{xn}) and the
asymptotic center A(C,{xn}) of {xn} in C are defined by

r(C,{xn}) = inf{limsup
n

‖ xn− x ‖ x ∈C},

and
A(C,{xn}) = {x ∈C : limsup

n
‖ xn− x ‖= r(C,{xn})},

respectively. It is known that A(C,{xn}) is a nonempty weakly compact convex set
whenever C is. The sequence {xn} is called regular with respect to C if r(C,{xn}) =
r(C,{xni}) for all subsequences {xni} of {xn} , and {xn} is called asymptotically uni-
form with respect to C if A(C,{xn}) = A(C,{xni}) for all subsequences {xni} of {xn} .
If D is a bounded subset of X , the Chebyshev radius of D relative to C is defined by

rC(D) = inf
x∈C

sup
y∈D

‖ x− y ‖ .

S. Dhompongsa et al. [9] introduced the property (D) if there exists λ ∈ [0,1)
such that for any nonempty weakly compact convex subset C of X , any sequence
{xn} ⊂ C which is regular asymptotically uniform relative to C , and any sequence
{yn} ⊂ A(C,{xn}) which is regular asymptotically uniform relative to X we have

r(C,{yn}) � λ r(C,{xn}).

The Domı́nguez-Lorenzo condition ((DL)-condition,in short) introduced in [8] is
defined as follows: if there exists λ ∈ [0,1) such that for every weakly compact convex
subset C of X and for every bounded sequence {xn} in C which is regular with respect
to C ,

rC(A(C,{xn})) � λ r(C,{xn}).
It is clear from the definition that property (D) is weaker than the (DL)-condition.

The next results shows that property (D) is stronger than weak normal structure and also
implies the existence of fixed points for multivalued nonexpansive mappings [9]: Let X
be a Banach space satisfying ((DL)-condition) property (D), then X has weak normal
structure; Let C be a nonempty weakly compact convex subset of a Banach space X
which satisfies ((DL)-condition) the property (D). Let T :C →KC(C) be a multivalued
nonexpansive mapping, then T has a fixed point.

3. The generalized Jordan-von Neumann type constant and
the coefficient R(1,X)

In this section, we show a sufficient condition concerning the generalized von
Neumann-Jordan constant, and the coefficient R(1,X) , which implies the existence of
fixed points for multivalued nonexpansive mappings.

First recall some basic facts about ultrapowers. Let F be a filter on N . A se-
quence {xn} in X converges to x with respect to F , denoted by limF xn = x if for
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each neighborhood U of x , {n∈ N} ∈F . A filter U on N is called to be an ultrafilter
if it is maximal with respect to set inclusion. An ultrafilter is called trivial if it is of the
form A : A ∈ N , n0 ∈ A for some fixed n0 ∈ N , otherwise, it is called nontrivial. Let
l∞(X) denotes that the subspace of the product space Πn∈NX equipped with the norm
‖ (xn) ‖:= supn∈N ‖ xn ‖< ∞ . Let U be an ultrafilter on N and let

NU = {(xn) ∈ l∞(X) : lim
U

‖ xn ‖= 0}.

The ultrapower of X , denoted by X̃ , is the quotient space l∞(X)/NU equipped
with the quotient norm, and (xn)U denotes the elements of the ultrapower. Note that if
U is non-trivial, then X can be embedded into X̃ isometrically. It was shown that if
the space X is super-reflexive, then X has uniformly structure if and if X̃ has normal
structure (see [14]).

THEOREM 1. (Main) Let C be a weakly compact convex subset of a Banach
space X and {xn} is a bounded sequence in C regular with respect to C. Then for
every a ∈ [0,2] , we have

rC(A(C,{xn})) � 2
p−1
p R(1,X)(C(p)

−∞(a,X))
1
p

R(1,X)+1
r(C,{xn}).

Proof. Denote r(C,{xn}) as r and A(C,{xn}) as A . We should assume that r > 0,
by passing to a subsequence if necessary, we can also assume that {xn} is weakly con-
vergent to a point x ∈C and d = limn �=m ‖ xn− xm ‖ exists. Since {xn} is regular with
respect to C , passing through a subsequence does not have any effect to the asymptotic
radius of the whole sequence {xn} . Observe that the norm is weakly lower semicontin-
uous, we have

liminf
n

‖ xn− x ‖� liminf
n

liminf
m

‖ xn − xm ‖= lim
n �=m

‖ xn− xm ‖= d.

Let ε > 0, taking a subsequence if necessary, we can assume that ‖ xn−x ‖< d +ε for
all n . Let z∈ A , then we have limsupn ‖ xn−z ‖= r and ‖ x−z ‖� liminfn ‖ xn−z ‖�
r . Denote R = R(1,X) , then by definition we have

R � liminf
n

∥∥∥xn− x
d + ε

+
z− x

r

∥∥∥ = liminf
n

∥∥∥xn− x
d + ε

− z− x
r

∥∥∥.

By the convexity of C , we have R−1
R+1x+ 2

R+1z ∈C , since the norm is weakly lower
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semicontinuous, we get

liminf
n

∥∥∥xn − z
r

+
1
R

(xn− x
d + ε

− x− z
r

)∥∥∥
= liminf

n

∥∥∥(1
r

+
1

R(d + ε)

)
(xn− x)+

(1
r
− 1

Rr

)
x−

(1
r
− 1

Rr

)
z
∥∥∥

�
∥∥∥R−1

Rr
x+

2
Rr

z− R+1
Rr

z
∥∥∥

=
R+1
Rr

∥∥∥R−1
R+1

x+
2

R+1
z− z

∥∥∥
�

(
1+

1
R

)rC(A)
r

,

and

liminf
n

∥∥∥xn− z
r

− 1−a
R

(xn− x
d + ε

− x− z
r

)∥∥∥
�

∥∥∥(1
r
− 1−a

R(d + ε)

)
(xn− x)+

(
1+

1−a
R

)x− z
r

∥∥∥
�

(
1+

1−a
R

)rC(A)
r

.

For every ε > 0, there exists N ∈ N such that

1. ‖ xN − z ‖� r+ ε ;

2. ‖ (xN−x)
d+ε − x−z

r ‖� R
(

r+ε
r

)
;

3. ‖ R(xN − z)+ r(xN−x)
d+ε − (x− z) ‖� (R+1)rC(A)( r−ε

r ) ;

4.
∥∥∥R(xN − z)− (1−a)

(
r(xN−x)

d+ε − (x− z)
)∥∥∥ � (R+1−a)rC(A)( r−ε

r ) .

Now, let ũ = ( xN−z
r+ε )U , ṽ = 1

R(r+ε) (
r(xN−x)

d+ε − (x− z))U and w̃ = 1−a
R(r+ε) (

r(xN−x)
d+ε − (x−

z))U . Using the above estimates, we obtain that all of ũ, ṽ and w̃ belong to BX , and
‖ṽ− w̃‖ � a‖ũ‖ . Then,

‖ ũ+ ṽ ‖ =
1

R(r+ ε)

∥∥∥R(xN − z)+
r(xN − x)

d + ε
− (x− z)

∥∥∥
�

(
1+

1
R

)rC(A)
r

( r− ε
r+ ε

)
,

‖ ũ− w̃ ‖ =
1

R(r+ ε)

∥∥∥R(xN − z)− (1−a)
(r(xN − x)

d + ε
− (x− z)

)∥∥∥
�

(
1+

1−a
R

)rC(A)
r

( r− ε
r+ ε

)
.
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Notice that a ∈ [0,2] and 1 � R � 2, then
(
1 + 1−a

R

)
� 1 + 1

R . By the definition of

C(p)
−∞(a, X̃) , we have

C(p)
−∞(a, X̃) � ‖ ũ+ ṽ ‖p ∧ ‖ ũ− ṽ ‖p

2p−2 ‖ ũ ‖p +2p−3(‖ ṽ ‖p + ‖ w̃ ‖p)

�
( 1

2p−1

(rC(A)
r

)p( r− ε
r+ ε

)p)(
1+

1−a
R

)p
.

Since the above inequality is true for every ε > 0 and C(p)
−∞(a,X) = C(p)

−∞(a, X̃) (see
Lemma 2 in [19]), we obtain that

rC(A(C,{xn})) � 2
p−1
p R(1,X)(C(p)

−∞(a,X))
1
p

(R(1,X)+1−a)
r(C,{xn}). �

COROLLARY 1. Let C be a nonempty bounded closed convex subset of a Banach

space X such that C(p)
−∞(a,X) < 1

2p−1

(
1+ 1−a

R(1,X)

)p
and T : C → KC(C) be a multival-

ued nonexpansive mapping, then T has a fixed point.

Proof. If C(p)
−∞(a,X) < 1

2p−1

(
1+ 1−a

R(1,X)

)p
, then X satisfy the (DL)-condition by

Theorem 1, so T has a fixed point. �

COROLLARY 2. Let X be a Banach space such that C(p)
−∞(a,X)< 1

2p−1

(
1+ 1−a

R(1,X)

)p
.

Then X has normal structure.

Proof. By Theorem 1, it is easy to prove that X has weak normal structure. Since

1 � R(1,X) � 2, we obtain C(p)
−∞(a,X) < 1

2p−1

(
1+ 1−a

R(1,X)

)p
< 2. This implies that X

is uniformly nonsquare, then X is reflexive, therefore weakly normal structure coincide
with normal structure. �

4. The generalized Jordan-von Neumann type constant and the
coefficient of weak orthogonality

In this section, we show a sufficient condition concerning the generalized von
Neumann-Jordan constant, and the coefficient of weak orthogonality, which implies
the existence of fixed points for multivalued nonexpansive mappings.

THEOREM 2. Let C be a weakly compact convex subset of a Banach space X and
{xn} is a bounded sequence in C regular with respect to C. Then for every a ∈ [0,2] ,
we have

rC(A(C,{xn})) � 2
p−3
p μ [C(p)

−∞(a,X)(2μ p +1+ |1−a|p)] 1
p

μ2 +1
r(C,{xn}).
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Proof. Denote r(C,{xn}) as r , A(C,{xn}) as A and μ(X) as μ , respectively. We
can assume that r > 0, by passing to a subsequence if necessary, we can also assume
that {xn} is weakly convergent to a point x ∈C . Let z ∈ A , then,

limsup
n

‖ xn− z ‖= r, ‖x− z‖� r.

By the definition of r , we have

limsup
n

‖xn−2x+ z‖= limsup
n

‖(xn− x)+ (z− x)‖
� limsup

n
‖(xn− x)− (z− x)‖

= μr.

Convexity of C implies that 2
μ2+1

x+ μ2−1
μ2+1

z ∈C , and by the definition of r , we obtain
that

limsup
n

∥∥∥xn−
( 2

μ2 +1
x+

μ2−1
μ2 +1

z
)∥∥∥ � r.

On the other hand, by the weakly lower semicontinuity of the norm, we get

liminf
n

‖ (μ2 −1+a)(xn− x)− (μ2 +1−a)(z− x) ‖� |μ2 +1−a| ‖ z− x ‖ .

For every ε > 0, there exists N ∈ N such that

1. ‖ xN − z ‖� r+ ε ;

2. ‖ xN −2x+ z ‖� μ(r+ ε) ;

3.
∥∥∥xN −

(
2

μ2+1
x+ μ2−1

μ2+1
z
)∥∥∥ � r− ε ;

4. ‖ (μ2−1+a)(xN − x)− (μ2 +1−a)(z− x) ‖� (μ2 +1) ‖ z− x ‖ ( r−ε
r ) .

Now, let u = μ2(xN − z) , v = (xN −2x+ z) and w = (1−a)(xN −2x+ z) , respectively,
using the above estimates, we obtain that ‖ u ‖� μ2(r + ε) , ‖ v ‖� μ(r + ε) , ‖ v ‖�
μ(1−a)(r+ ε) and ‖v−w‖� a‖u‖ . Thus,

‖ u+ v ‖ =‖ μ2((xN − x)− (z− x))+ (xN − x)+ (z− x) ‖

= (μ2 +1)
∥∥∥(xN − x)− μ2−1

μ2 +1
(z− x)

∥∥∥
� (μ2 +1)

∥∥∥xN −
( 2

μ2 +1
x+

μ2−1
μ2 +1

z
)∥∥∥

� (μ2 +1)(r− ε),

‖ u− v ‖ =
∥∥∥μ2((xN − x)− (z− x))− (1−a)

(
(xN − x)+ (z− x)

)∥∥∥
=‖ (μ2 −1+a)(xN − x)− (μ2 +1−a)(z− x) ‖
� (μ2 +1) ‖ z− x ‖

(r− ε
r

)
.
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Since ‖z−x‖� r , we have (μ2+1) ‖ z−x ‖
(

r−ε
r

)
� (μ2+1)(r−ε) . By the definition

of C(p)
−∞(a,X) , we get

C(p)
−∞(a,X) � min{‖ u+ v ‖p,‖ u− v ‖p}

2p−2 ‖ u ‖p +2p−3(‖ v ‖p +‖w‖p)

�
(r− ε

r+ ε

)p(‖z− x‖
r

)p (μ2 +1)p

2p−3μ p(2μ p +1+ |1−a|p) .

Let ε → 0+ , we obtain

‖ z− x ‖� 2
p−3
p μ [C(p)

−∞(a,X)(2μ p +1+ |1−a|p)] 1
p

μ2 +1
r.

Since this inequality holds for arbitrary z ∈ A , we obtain that

rC(A) � 2
p−3
p μ [C(p)

−∞(a,X)(2μ p +1+ |1−a|p)] 1
p

μ2 +1
r. �

COROLLARY 3. Let C be a nonempty bounded closed convex subset of a Banach

space X such that C(p)
−∞(a,X) < (μ2+1)p

2p−3μ p(2μ p+1+|1−a|p) and let T : C → KC(C) be a

multivalued nonexpansive mapping. Then T has a fixed point.

Proof. If C(p)
−∞(a,X) <

(μ2+1)p

2p−3μ p(2μ p+1+|1−a|p) , then by Theorem 2, X satisfies the
(DL)-condition, then T has a fixed point. �
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