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Abstract. The celebrated Bernstein-Doetsch Theorem was under consideration of many researchers
for last ten decades. In the present paper we give this Theorem in the geometric convexity. The
characterization of the geometric convexity is given as well. Finally, we show that the Jensen
geometric convex function can be extended to geometric convex.

1. Introduction

The celebrated Bernstein–Doetsch [1] Theorem is very useful to characterize the
continuity of Jensen-convex functions. It states that if a Jensen-convex function is
bounded at a point then it is continuous. This characterization of continuity is very
strong because boundedness at a single point implies the continuity. Many authors gen-
eralized this Theorem to many notions of convexity (see c.f. [2–5, 8, 10, 11]). For more
details bout the convexity and their application (see [12], [14] and [15]) In the present
paper our first result we employ the locally boundedness of G-Jensen convex function
to prove the Bernstein–Doetsch Theorem in the context of G-convexity in Section 2.
In Section 3 firstly, we show that the G-Jensen convexity and G-convexity are equiv-
alent when t ∈ [0,1]∩Q . Secondly we give two characterizations of G-convexity. In
Section 4 extended the G-Jensen convexity to G-convexity.

Throughout the present paper R+ and I denote the set of positive real numbers
and an open subinterval of R+ , respectively.

Montel (see Niculescu [9]) gave the definition of the notion of geometric convex-
ity. This notion of convexity has many applications in branches of Mathematics, for
instance, functional equations, inequalities, statistics and optimization. Recall that a
function f : I → R+ is geometrically convex, shortly G-convex, if the inequality

f (x1−t yt) � f (x)1−t f (y)t (t ∈ [0,1]) (1)

holds for x,y ∈ I .
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A function f : I →R+ is said to be geometrically Jensen convex, shortly G-Jensen
convex if the inequality

f (
√

xy) �
√

f (x) f (y) (x,y ∈ I) (2)

holds. Let Ia and Ib be two subintervals of R+ , we define the interval

Ia · Ib := {a ·b : a ∈ Ia,b ∈ Ib}.

2. Bernstein-Doetsch Theorem

In this section we prove a counterpart of the celebrated Bernstein–Doetsch Theo-
rem [1] in the setting of geometric convexity. The next theorem is the our first result that
shows a function is a continuous G-convex if and only if it is a continuous G-Jensen
convex.

The next theorem shows that if G-Jensen convex is locally bounded above at a
point in the domain then it is locally bounded in all the domain. This Theorem is a
counterpart of [6, Theorem 6.2.1]

THEOREM 2.1. Let a function f : I →R+ be a G-Jensen convex. If f is a locally
bounded from above at an arbitrary point of I then it is locally bounded on I .

Proof. Assume that f is locally bounded from above at a point call it p ∈ I . First,
we show that f is locally bounded from above on I .

Define a sequence of intervals In by

I0 := {p}, In+1 :=
√

In · I.

For n = 0 we have that
I1 =

√
I0 · I.

For n = 1 we have that

I2 =
√

I1 · I =
√√

I0II.

For n = 2 we have that

I3 =
√

I2 · I =

√√√
I0III = (I0I)

1
8 I

1
4 I

1
2 .

It follows by induction that

In = I
1
2n
0 I

n


i=1

1
2i = I

1
2n
0 I

1
2

1−( 1
2 )n

1− 1
2 = p

1
2n I1− 1

2n .

By induction we prove that f is locally bounded from above at each point of In . By
assumption we have that f is locally bounded from above at p . Assume that f is
locally bounded from above at each point of In . For x ∈ In+1 and x0 ∈ In , there exists
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y0 ∈ I such that x =
√

x0y0 . By induction we have that there exists a constant M0 � 0
such that f (x0) � M0 . In front of the inequality (2) we have that

f (x) = f (
√

x0y0) �
√

f (x0) f (y0) �
√

M0 f (y0) := M (x ∈ In+1).

Therefore f is locally bounded from above on In+1 . Now we show that

I =
⋃

n=1

In. (3)

Assume that x ∈ I is an arbitrary point, define the sequence xn by

xn = p
−1
2n x

2n
2n−1 .

Note that limn→ xn = x .
The interval I is open, therefore xn ∈ I for some n . Hence

x = p
1
2n x

1− 1
2n

n ∈ p
1
2n I1− 1

2n = In.

This proves (3). This shows that f is bounded from above on I .
Now we show that f is locally bounded from below. Let q ∈ I be arbitrary. For

x ∈ I assume that y := q2
x , this implies that q =

√
xy . Now apply inequality (2) for the

point q we have that
f (q) �

√
f (x) f (y).

Since f is locally bounded above therefore there exists K > 0 such that f (y) � K .
Hence the above inequality yields that

f (x) � f (q)2

f (y)
� f (q)2

K
=: M.

Thus f is locally bounded below at any point of I . �
Next result is a counterpart of the celebrated Theorem of Bernstein–Doetsch [1] in

the G-convexity setting.

THEOREM 2.2. Let a function f : I →R+ be a G-Jensen convex. If f is a locally
bounded above at an arbitrary point of I then it is continuous on I .

Proof. Regarding to Theorem 2.1 If f is locally bounded from above at a point on
I then it is locally bounded on I . Let Mf and mf be defined by

mf (x) = lim
r+→0

inf
U(x,r)

f (x)

and
Mf (x) = lim

r+→0
sup

U(x,r)
f (x),
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where U(x,r) is an open ball of x with radius r .
Clearly, we have that

mf (x) � f (x) � Mf (x) (x ∈ I). (4)

Regarding to locally boundedness of f on I , mf and Mf take finite numbers for every
x ∈ I .

Take an arbitrary point x ∈ I . There exists a nonzero sequence of points xn in I
for all n ∈ N such that

lim
n→

xn = x and lim
n→

f (xn) = mf (x), (5)

and a sequence zn in I such that

lim
n→

zn = x and lim
n→

f (zn) = Mf (x), (6)

Put

yn =
z2
n

xn

Since xn �= 0 for all n ∈ N , therefore also x �= 0. Using (5) and (6) we have that

lim
n→

yn =
limn→ z2

n

limn→ xn
=

x2

x
= x.

Furthermore, apply the inequality (2) for the points of sequence

zn =
√

xnyn (7)

we have that
f (zn)2 � f (xn) f (yn)

Take limsup to this inequality. In view of the positivity of mf (x) and Mf (x) we can
apply the second inequality in (4) therefore we have that

M2
f (x) � mf (x) limsup

n→
f (yn) � mf (x)Mf (x)

This inequality implies that

Mf (x) � mf (x) (x ∈ I).

Regarding to the two inequalities in (4), we have that

Mf (x) = mf (x) (x ∈ I).

This equality is sufficient and necessary condition for continuity of f for all x ∈ I .
If xn = 0 for some n ∈ N then the equality (7) shows that zn = 0. Thus the equa-

tions in (5) and (6) yield that x = 0 and M(0) = m(0) , this proves that f is continuous
at 0 . �

It is important to mention that Theorem 2.1 is a consequence of the remark given
by Niculescu [9, p. 156] and also combining this remark with the standard Bernstein-
Doetsch theorem implies Theorem 2.2.
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3. Characterization of G-convexity

In this section we characterize a G-convex function by some inequalities. We need
the next lemma in the sequel.

LEMMA 3.1. If a function f : R+ → R+ is a G-Jensen convex then for n ∈ N

and x1, . . . ,xn ∈ R+ one has

f
(
(x1 . . .xn)

1
n
)

�
(
f (x1) . . . f (xn)

) 1
n . (8)

Proof. By induction in p ∈ N the inequality (2) implies that

f ((x1 . . .x2p)
1

2p ) � ( f (x1) . . . f (x2p))
1

2p . (9)

Indeed, this inequality is valid for p = 1, assume that it is also valid for p . Now we
prove it is valid for p+1.

f ((x1 . . .x2p+1)
1

2p+1 ) = f ((x1 . . .x2p · x2p+1 . . .x2p+1)
1

2p+1 )

� f ((x1 . . .x2p)
1
2p )

1
2 · f ((x2p+1 . . .x2p+1)

1
2p )

1
2

� ( f (x1)
1
2p . . . f (x2p)

1
2p )

1
2 · ( f (x2p+1)

1
2p . . . f (x2p+1)

1
2p )

1
2

= f (x1)
1

2p+1 . . . f (x2p)
1

2p+1 · f (x2p+1)
1

2p+1 . . . f (x2p+1)
1

2p+1

= f (x1)
1

2p+1 . . . f (x2p+1)
1

2p+1

Let n ∈ N and choose p such that n < 2p . Pick points x1, . . . ,xn from R+ and put

xk = (x1 . . .xn)
1
n (k = n+1, . . . ,2p). (10)

We claim that

(x1 . . .x2p)
1

2p = (x1 . . .xn)
1
n . (11)

Indeed, using (10), it follows that

(x1 . . .x2p)
1

2p = (x1 . . .xn · xn+1 . . .x2p)
1
2p

= (x1 . . .xn · x2p−n
k )

1
2p

= (x1 . . .xn · (x1 . . .xn)
2p−n

n )
1

2p

= (x1 . . .xn)
1

2p · (x1 . . .xn)
1
n− 1

2p

= (x1 . . .xn)
1
n .
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Now applying (11) and (9), yields that

f
(
(x1 . . .xn)

1
n

)
= f

(
(x1 . . .x2p)

1
2p

)

�
(
f (x1) . . . f (x2p)

) 1
2p

=
(
f (x1) . . . f (xn) f (xn+1) . . . f (x2p)

) 1
2p

=
(
f (x1) . . . f (xn) f ((x1 . . .xn)

1
n ) . . . f ((x1 . . .xn)

1
n )

) 1
2p

=
(
f (x1) . . . f (xn) f ((x1 . . .xn)

1
n )2p−n)

) 1
2p

This inequality implies that

f
(
(x1 . . .xn)

1
n

)2p

� f (x1) . . . f (xn) f
(
(x1 . . .xn)

1
n
)2p−n

.

This inequality follows that

1 � f (x1) . . . f (xn) f
(
(x1 . . .xn)

1
n
)−n

.

This shows that
f
(
(x1 . . .xn)

1
n
)n � f (x1) . . . f (xn).

This proves (8). �
The next theorem shows that a G-Jensen convex function satisfies the inequality

(1) in the rational t . This result is a counterpart of the result given by Kuczma [6,
Theorem 5.3.5].

THEOREM 3.2. If a function f : R+ →R+ is G-Jensen convex then for x,y∈R+
one has

f (x1−t yt) � f (x)1−t f (y)t (t ∈ [0,1]∩Q). (12)

Proof. Since f is G-Jensen convex therefore Lemma 3.1 implies that the inequal-
ity

f
(
(x1 . . .xn)

1
n
)

�
(
f (x1) . . . f (xn)

) 1
n .

Let t = k
n , where k ∈ N and n∈ N with k < n . Put x1 = . . . = xk = y and xk+1 = . . . =

xn = x in the above inequality one has

f
(
(xn−kyk)

1
n
)

�
(
f (x)n−k f (y)k) 1

n .

which shows that the inequality (12) is valid. �
Now we give the characterization theorem of G-convexity. This theorem is a

counterpart of the result given by Makó and Páles [7].

THEOREM 3.3. Let f : R+ → R+ be an arbitrary function. Then the following
assertions are equivalent:
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(i) f is a G-convex,

(ii) for x,y,u ∈ R+ with x < u < y the inequality

(
f (u)
f (x)

) 1
log(u)−log(x)

�
(

f (y)
f (u)

) 1
log(y)−log(u)

(13)

holds.

(iii) There exists a function a : R+ → R such that

f (x)
f (u)

� a(u)log(x)−log(u) (x,u ∈ I). (14)

Proof. (i) =⇒ (ii) Let f is G-convex and x < u < y be arbitrary in R+ . Choose
t ∈ [0,1] such that u := xty1−t therefore we have that

log(u) = t log(x)+ (1− t) log(y).

Let

t :=
log(y)− log(u)
log(y)− log(x)

, this yields that 1− t =
log(u)− log(x)
log(y)− log(x)

.

Since f is G-convex therefore applying the inequality (1), we have that

f (u) � f (x)t f (y)1−t = f (x)
log(y)−log(u)
log(y)−log(x) f (y)

log(u)−log(x)
log(y)−log(x) .

This inequality implies that

f (u)log(y)−log(x) f (u)− log(u)

f (u)− log(u)
� f (x)log(y)−log(u) f (y)log(u)−log(x)

After some calculations for this inequality, we get

(
f (u)
f (x)

)log(y)−log(u)

�
(

f (y)
f (u)

)log(u)−log(x)

.

Raise this inequality to power 1
(log(y)−log(u))(log(u)−log(x)) we arrive at the inequality (13).

(ii) =⇒ (iii) For u ∈ R+ define

a(u) := inf
y∈I,u<y

(
f (y)
f (u)

) 1
log(y)−log(u)

.

Therefore by (13), we obtain that

(
f (u)
f (x)

) 1
log(u)−log(x)

� a(u) �
(

f (y)
f (u)

) 1
log(y)−log(u)

(15)
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for all x < u < y . Clearly, for x = u the inequality (14) is valid. For x < u raise the left
hand side of this inequality to power log(u)− log(x) implies that

f (u)
f (x)

� a(u)log(u)−log(x).

This inequality yields that

f (x)
f (u)

� a(u)log(x)−log(u).

This proves (14) for x < u . For u < x raise the right hand of the inequality (15) to
power log(y)− log(u) and put y = x we get (14).

(iii) =⇒ (i) Let xy ∈ I and t ∈ [0,1] . The inequality (14) with x = y yields that

f (y)
f (u)

� a(u)log(y)−log(u) (y,u ∈ I). (16)

Raise (14) to power t and (16) to power 1− t and multiply side by side the results so
obtained we conclude that(

f (y)
f (u)

)1−t( f (x)
f (u)

)t

� a(u)(1−t)(log(y)−log(u))a(u)t(log(x)−log(u)) (y,u ∈ I).

This inequality is equivalent to

f (y)
f (u)

(
f (u)
f (y)

)t( f (x)
f (u)

)t

� a(u)(1−t)(log(y)−log(u))a(u)t(log(x)−log(u)) (y,u ∈ I).

Put u := xty1−t in this inequality, we obtain that

f (x)t f (y)1−t

f (xty1−t)
� a(xty1−t)(1−t)(log(y)−log(xty1−t))a(xty1−t)t(log(x)−log(xty1−t))

= a(xty1−t)−t(1−t)(log(x)−log(y))a(xty1−t)t(1−t)(log(x)−log(y)) = 1.

Therefore (1) holds, hence f is G-convex. �

4. Extended G-Jensen convexity to G-convexity

In this section we prove that a G-Jensen convex function can be admit G-convex
function in its domain. This result is a counterpart of the result given by Páles [13]. To
prove the mention result we need the next lemma.

LEMMA 4.1. Let D be a dense subset of I and f : D → R+ be an arbitrary
function. Then for any [a,b]⊂ I , there exists L > 0 such that

f (x)
f (y)

� Llog
(

x
y

)
(x,y ∈ [a,b]∩D). (17)

Then f admits an extension g : I → R+ such that g locally satisfies (17).
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Proof. Choose an arbitrary point x∈ I and let {xn}⊂D be a sequence converging
to x . Then there exists a compact subinterval [a,b] of I contains all points of {xn} .
We choose a monotone subsequence {xnk} of {xn} . Now applying (17) for {xnk} , we
have that

f (xnk )
f (xmk )

� L
log

( xnk
ymk

)
(n,m ∈ N).

Upon taking limk→ we obtain that the sequence { f (xnk)} is bounded, since it is mono-
tone, therefore it converges to some function say it is g : I → R+ . The limit g does not
depend on {xn} and it is easy one can see that f (x) = g(x) (because we can choose
xn = x ).

Now we show that g satisfies (17). Let x,y ∈ [a,b] be arbitrary and let {xn} and
{yn} be convergent sequences in [a,b]∩D such that xn → x and yn → y . Apply (17)
we get that

f (xn)
f (yn)

� Llog
(

x
y

)
.

Let n goes to infinity we get that

g(x)
g(y)

� Llog
(

x
y

)
.

This proves that g satisfies (17) locally on I . �
Now we give the main result of this section.

THEOREM 4.2. If f : R+ ∩Q → R+ is a G-Jensen convex then there exists a
G-convex g : R+ → R+ such that g|R+∩Q = f .

Proof. Since f is G-Jensen convex, therefore in view of Theorem 3.2, it follows
that

f (xty1−t) � f (x)t f (y)1−t (x,y ∈ R+ ∩Q,t ∈ [0,1]∩Q). (18)

Apply (13), we get that

(
f (u)
f (x)

) 1
log(u)−log(x)

�
(

f (y)
f (u)

) 1
log(y)−log(u)

(x,u,y ∈ R+ ∩Q,x < u < y). (19)

Let [a,b] ⊂ R+ be arbitrary and choose b′,b′′ ∈ R+ ∩Q such that a < b < b′ < b′′ .
Now using the inequality (19) several times for x,y ∈ [a,b]∩Q with x < y we obtain
that

(
f (y)
f (x)

) 1
log(y)−log(x)

�
(

f (b′)
f (y)

) 1
log(b′)−log(y)

�
(

f (b′′)
f (b′)

) 1
log(b′′)−log(b′)

:= .

This implies that
f (y)
f (x)

�  log(y)−log(x) =  log( y
x ).
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Now apply Lemma 4.1 with D = R+ ∩Q and L =  we get that there exists a con-
tinuous extension g : R+ → R+ such that g = f |R+∩Q . Using the density of R+ ∩Q

in R+ , [0,1]∩Q in [0,1] and continuity of g , it follows that g satisfies the inequality
(18) for all x,y ∈ R+ and t ∈ [0,1] . Therefore f is G-convex. �
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