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ON A STEVIĆ–SHARMA TYPE OPERATOR FROM

DIRICHLET–ZYGMUND–TYPE SPACE TO BLOCH–TYPE SPACE

LINLIN LIU, ZHITAO GUO ∗ AND NING ZHANG

(Communicated by M. Krnić)

Abstract. The boundedness, essential norm and compactness of a Stević-Sharma-type operator
from Dirichlet-Zygmund-type space into Bloch-type space are investigated in this paper.

1. Introduction

Let D be the open unit disk in the complex plane C . The class H(D) denotes the
set of all analytic functions on D , while S(D) is the family of all analytic self-maps of
D . Denote by N the set of positive integers and N0 = N∪{0} .

Suppose that 0 < p <  and  > −1. The Dirichlet-type space D p
 is defined as

the set of all f ∈ H(D) satisfying

‖ f‖p
D p


= | f (0)|p +
∫

D

| f ′(z)|p(1−|z|2)dA(z) < ,

where dA(z) = 1
 dxdy is the normalized Lebesgue area measure. For p � 1, D p

 is
a Banach space under the norm ‖ · ‖D p


. When  > p− 1, D p

 coincides with the
weighted Bergman space A p

−p . For  = p− 2 and p > 1, D p
p−2 is known as the

Besov space.
The Dirichlet-Zygmund-type space Z p

 , which was introduced in [42], consists
of all f ∈ H(D) such that

‖ f‖p
Z p


= | f (0)|p + | f ′(0)|p +
∫

D

| f ′′(z)|p(1−|z|2)dA(z) < .

If  > p− 1, Z p
 reduces to D p

−p . For  = p− 2, Z p
p−2 is called the Besov-

Zygmund-type space (studied in [7,45]). Note that Z 1
0 is the minimal Möbius invariant
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space B1 , which includes functions of the form f (z) = 
n=1 bnn(z) ∈ H(D) , where

{bn} ∈ l1 , n ∈ D and a(z) = a−z
1−az . The norm is given by

‖ f‖B1 = inf

{



n=1

|bn| : f (z) =



n=1

bnn(z)

}
.

See [5] for more results on the minimal Möbius invariant space. We primarily focus on
the case p−2 <  � p−1.

Let  be a radial weight, i.e., a strictly positive continuous function on D that is
radial (meaning (z) = (|z|) for all z ∈ D). The Bloch-type space B is defined as
the set of all f ∈ H(D) satisfying supz∈D (z)| f ′(z)| <  . Equipped with the norm

‖ f‖B = | f (0)|+ sup
z∈D

(z)| f ′(z)|,

B becomes a Banach space. When (z) = (1− |z|2) where  > 0, the induced
space B becomes the  -Bloch space, which in the case  = 1 reduces to the classical
Bloch space. For further investigations on the classical Bloch space, the  -Bloch space
and Bloch-type spaces, as well as some concrete operators on them, see for instance
[6, 13, 14, 16, 21, 22,26, 41,43].

Let  ∈ H(D) and  ∈ S(D) . The multiplication and composition operators are
defined respectively by M f =  · f and C f = f ◦ for f ∈ H(D) . Their product
forms the weighted composition operator W, f =  · f ◦ , which has been exten-
sively studied. Additionally, the differentiation operator D , defined by Df (z) = f ′(z)
for f ∈H(D) , holds significant importance in operator theory and numerous other areas
of mathematics.

The first papers on product-type operators including the differentiation operator
dealt with the operators DC and CD , (see, for example, [12, 15, 16, 20, 23–25]).
In [32, 33], Stević et al. introduced the following so-called Stević-Sharma operator

Tu,v, f (z) = u(z) f ((z))+ v(z) f ′((z)), f ∈ H(D),

where u,v ∈ H(D) and  ∈ S(D) . By taking some specific choices of the involving
symbols, we can obtain the general product-type operators:

MuC = Tu,0, , CMu = Tu◦,0, , MuD = T0,u,id , DMu = Tu′,u,id , CD = T0,1, ,

DC = T0, ′, , MuCD = T0,u, , MuDC = T0,u ′, , CMuD = T0,u◦, ,

DMuC = Tu′,u ′, , CDMu = Tu′◦,u◦, , DCMu = T ′(u′◦), ′(u◦), .

Consequently, the Stević-Sharma operator holds particular significance and has
aroused great interest of experts (see, for instance, [4, 19, 37, 38, 40, 43] and the refer-
ences therein).

In [34], Stević et al. introduced the following product-type operator

Tn
u,v, f (z) = u(z) f (n)((z))+ v(z) f (n+1)((z)), n ∈ N0, (1)
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and investigated its boundedness and compactness from a general space to Bloch-type
space. Subsequently, Abbasi in [1] studied the boundedness, compactness and essential
norm of Tn

u,v, from Hardy space to n th weighted-type space. Abbasi and Zhu et al.
in [3,44] characterized the boundedness, compactness and essential norm of Tn

u,v, from
or to Zygmund-type space. The second author et al. investigated the boundedness and
compactness of Tn

u,v, from Hardy space [9] and Qk(p,q) space [11] to Zygmund-type
space or Bloch-type space. Since the publication of [34] have also appeared several
extensions of operator (1) on the unit disc, as well as on the unit ball (see, for example,
[2, 10, 27–31, 35, 36]).

In [10], we investigated the generalized Stević-Sharma type operator defined as:

Tm,n
u,v, f (z) = u(z) f (m)((z))+ v(z) f (n)((z)), m ∈ N0, n ∈ N. (2)

Without loss of generality, we assume m < n . Note that when m = 0 and n = 1, this
operator reduces to the classical Stević-Sharma operator. The boundedness, essential
norm and compactness of Tm,n

u,v, acting from the derivative Hardy spaces into Zygmund-
type spaces were investigated in [10]. Furthermore, [39] characterized the boundedness
and compactness of Tm,n

u,v, from H space into Bloch-type spaces.
In this study, we focus on analyzing the boundedness, essential norm, and com-

pactness of the Stević-Sharma type operator Tm,n
u,v, when mapping from Dirichlet-Zyg-

mund-type spaces Z p
 to Bloch-type spaces B .

Recall that the essential norm of a bounded linear operator T : X → Y is the dis-
tance from T to the compact operators K : X → Y , that is,

‖T‖e,X→Y = inf
{
‖T −K‖X→Y : K is compact

}
.

Here X and Y are Banach spaces.
Throughout this paper, for nonnegative quantities X and Y , we use the abbrevia-

tion X �Y or Y � X if there exists a positive constant C independent of X and Y such
that X � CY . Moreover, we write X ≈ Y if X � Y � X .

2. Preliminary results

In this section, we present several lemmas that will be utilized in the proofs of the
main results. The first lemma is established in [42].

LEMMA 1. Suppose that 1 � p <  and p− 2 <  � p− 1 . Then for any f ∈
Z p

 , ‖ f‖ � ‖ f‖Z
p


and

| f (i)(z)| � ‖ f‖Z
p


(1−|z|2) +2
p +i−2

, i ∈ N.

For any w ∈ D and j ∈ N , set

f j,w(z) =
(1−|w|2) j

(1−wz)
+2

p + j−2
, z ∈ D. (3)
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By [42, Lemma 2.2], we have f j,w ∈ Z p
 and supw∈D ‖ f j,w‖Z

p


� 1 for every j ∈ N ,
where 1 � p < and p−2 <  � p−1. Moreover, we easily see that f j,w converges
to zero uniformly on compact subsets of D as |w| → 1.

LEMMA 2. Let 1 � p <  , p−2 <  � p−1 , m ∈ N0 , n ∈ N and m+1 < n.
For any w ∈ D \ {0} and i,k ∈ {m,m+ 1,n,n+ 1} , there exists a function gi,w ∈ Z p


such that

g(k)
i,w(w) =

wkik

(1−|w|2) +2
p +k−2

,

where ik is the Kronecker delta.

Proof. For any w ∈ D\ {0} and constants c1,c2,c3,c4 , let

gw(z) =
4


j=1

c j f j,w(z),

where f j,w is defined in (3). For each i ∈ {m,m + 1,n,n + 1} , the system of linear
equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(m)
w (w) = wm

(1−|w|2) +2
p +m−2

4

j=1

c j

m−1

k=0

(+2
p + j−2+ k) = wmim

(1−|w|2) +2
p +m−2

g(m+1)
w (w) = wm+1

(1−|w|2) +2
p +m−1

4

j=1

c j

m

k=0

(+2
p + j−2+ k) =

wm+1i(m+1)

(1−|w|2) +2
p +m−1

g(n)
w (w) = wn

(1−|w|2)
+2

p +n−2

4

j=1

c j

n−1

k=0

(+2
p + j−2+ k) = wnin

(1−|w|2)
+2

p +n−2

g(n+1)
w (w) = wn+1

(1−|w|2)
+2

p +n−1

4

j=1

c j

n

k=0

(+2
p + j−2+ k) =

wn+1i(n+1)

(1−|w|2)
+2

p +n−1

has a unique solution ci, j, j ∈ {1,2,3,4} that is independent of w , where m−1
k=0 (+2

p +
j−2+ k) = 1 if m = 0. Since the determinant of coefficient matrix M equals(+2

p
−1
)( +2

p

)2( +2
p

+1
)3( +2

p
+2
)4 · · ·

( +2
p

+m−2
)4

·
( +2

p
+m−1

)3(+2
p

+m
)2 · · ·

(+2
p

+n−2
)2( +2

p
+n−1

)
· (n−m)2(n−m−1)2 
= 0.

Meanwhile, M equals( +2
p

+1
)( +2

p
+2
)2 · · ·

( +2
p

+n−2
)2( +2

p
+n−1

)
n2(n2−1) 
= 0,

if m = 0.
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For such chosen numbers ci, j, j ∈ {1,2,3,4} the function

gi,w(z) :=
4


j=1

ci, j f j,w(z)

satisfies the desired conditions. �

Similar to [42, Lemma 2.7], we obtain the result below. One can consult [18] for
more research.

LEMMA 3. Let u,v ∈ H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 , m ∈ N0 ,
n ∈ N and  be a radial weight such that the operator Tm,n

u,v, : Z p
 → B is bounded.

Then Tm,n
u,v, : Z p

 →B is compact if and only if ‖Tm,n
u,v, fk‖B → 0 as k → for each

sequence { fk}k∈N in Z p
 bounded in norm which converges to zero uniformly in D as

k →  .

3. Main results

In this section, we first present necessary and sufficient conditions for the bound-
edness of the Stević-Sharma type operator Tm,n

u,v, : Z p
 → B under different cases

involving the parameters m and n . To simplify the notation, we adopt the following
conventions:

Em(z) = |u′(z)|,
Em+1(z) = |u(z) ′(z)|,

En(z) = |v′(z)|,
En+1(z) = |v(z) ′(z)|.

THEOREM 1. Let u,v ∈H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 , m,n ∈
N , m+1 < n,  be a radial weight and I denote the set {m,m+1,n,n+1} . Then the
following statements are equivalent.

(i) The operator Tm,n
u,v, : Z p

 → B is bounded.
(ii)

4


j=1

sup
w∈D

‖Tm,n
u,v, f j,w‖B <  and 

i∈I
sup
z∈D

(z)Ei(z) < ,

where f j,w are defined in (3).
(iii)


i∈I

sup
z∈D

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

< .
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Proof. (i)⇒(ii). Assume that Tm,n
u,v, : Z p

 → B is bounded. Since for each
w ∈ D and j ∈ {1,2,3,4} , ‖ f j,w‖ � 1, we have supw∈D ‖Tm,n

u,v, f j,w‖B <  , and
consequently

4


j=1

sup
w∈D

‖Tm,n
u,v, f j,w‖B < .

Taking fm(z) = zm ∈ Z p
 , from the boundedness of Tm,n

u,v, : Z p
 → B , we get

 > ‖Tm,n
u,v, fm‖B � sup

z∈D

(z)|(Tm,n
u,v, fm)′(z)| = sup

z∈D

(z)Em(z)m!,

which yields

sup
z∈D

(z)Em(z) < . (4)

Applying the operator Tm,n
u,v, to fm+1(z) = zm+1 ∈ Z p

 we have

> ‖Tm,n
u,v, fm+1‖B � sup

z∈D

(z)|(Tm,n
u,v, fm+1)′(z)|

= sup
z∈D

(z)|Em(z)(z)(m+1)!+Em+1(z)(m+1)!|

� sup
z∈D

(z)Em+1(z)(m+1)!− sup
z∈D

(z)Em(z)(z)(m+1)!,

from which along with (4) and the fact that |(z)| < 1 it follows that

sup
z∈D

(z)Em+1(z) < . (5)

By using the function fn(z) = zn ∈ Z p
 , we obtain

 >‖Tm,n
u,v, fn‖B � sup

z∈D

(z)|(Tm,n
u,v, fn)′(z)|

=sup
z∈D

(z)

∣∣∣∣∣Em(z)(z)n−m n!
(n−m)!

+Em+1(z)(z)n−m−1 n!
(n−m−1)!

+En(z)n!

∣∣∣∣∣,
from which along with (4), (5), the triangle inequality and the fact that |(z)|< 1 gives

sup
z∈D

(z)En(z) < . (6)

Taking fn+1(z) = zn+1 ∈ Z p
 , similarly we have

 >‖Tm,n
u,v, fn+1‖B � sup

z∈D

(z)|(Tm,n
u,v, fn+1)′(z)|

=sup
z∈D

(z)

∣∣∣∣∣Em(z)(z)n−m+1 (n+1)!
(n−m+1)!

+Em+1(z)(z)n−m (n+1)!
(n−m)!

+En(z)(z)(n+1)!+En+1(z)(n+1)!

∣∣∣∣∣,
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from which along with (4), (5), (6), the triangle inequality and the fact that |(z)| < 1
it follows that

sup
z∈D

(z)En+1(z) < . (7)

Combining (4)–(7) we can see that


i∈I

sup
z∈D

(z)Ei(z) < .

(ii)⇒(iii). Suppose that (ii) holds. For each i ∈ I and (w) 
= 0, Lemma 2 says
that there exist constants ci, j, j ∈ {1,2,3,4} such that

gi,(w)(z) =
4


j=1

ci, j f j,(w)(z) ∈ Z p
 , (8)

and

g(k)
i,(w)(z) =

(w)
k
ik

(1−|(w)|2) +2
p +k−2

,

where f j,(w) are defined in (3) and k ∈ I . Then we have

 >
4


j=1

sup
w∈D

‖Tm,n
u,v, f j,(w)‖B � sup

w∈D

‖Tm,n
u,v,gi,(w)‖B

� (w)
∣∣∣(Tm,n

u,v,gi,(w))
′(w)

∣∣∣= (w)Ei(w)|(w)|i
(1−|(w)|2) +2

p +i−2
. (9)

From (9) it follows that for each i ∈ I ,

sup
w∈D

(w)Ei(w)

(1−|(w)|2) +2
p +i−2

� sup
|(w)|> 1

2

(w)Ei(w)

(1−|(w)|2) +2
p +i−2

+ sup
|(w)|� 1

2

(w)Ei(w)

(1−|(w)|2) +2
p +i−2

� 2i sup
|(w)|> 1

2

(w)Ei(w)|(w)|i
(1−|(w)|2) +2

p +i−2
+
(4

3

)i
sup

|(w)|� 1
2

(w)Ei(w)

< .

Thus,


i∈I

sup
z∈D

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

< .
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(iii)⇒(i). Assume that (iii) holds. For any f ∈ Z p
 , using Lemma 1 we have

(z)|(T m,n
u,v, f )′(z)| �

i∈I
(z)Ei(z)| f (i)((z))| � ‖ f‖Z p

 
i∈I

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

.

(10)

In addition,

|(Tm,n
u,v, f )(0)| �|u(0) f (m)((0))|+ |v(0) f (n)((0))|

�
(

|u(0)|
(1−|(0)|2) +2

p +m−2
+

|v(0)|
(1−|(0)|2) +2

p +n−2

)
‖ f‖Z p


.

Hence Tm,n
u,v, : Z p

 → B is bounded. The proof is completed. �
When m+1 = n , as demonstrated in the proof of Lemma 2, we similarly conclude

that for any w ∈ D \ {0} and i,k ∈ {m,n,n + 1} , there exist constants di, j (where
j ∈ {1,2,3} ) such that the function hi,w = 3

j=1 di, j f j,w(z) ∈ Z p
 satisfies

h(k)
i,w(w) =

wkik

(1−|w|2)k .

By this and a slight modification of the proof of Theorem 1, we obtain the following
result.

THEOREM 2. Let u,v ∈H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 , m,n ∈
N , m+1 = n,  be a radial weight and J denote the set {m,n+1} . Then the following
statements are equivalent.

(i) The operator Tm,n
u,v, : Z p

 → B is bounded.
(ii)

3


j=1

sup
w∈D

‖Tm,n
u,v, f j,w‖B < ,

and


i∈J

sup
z∈D

(z)Ei(z)+ sup
z∈D

(z)|u(z) ′(z)+ v′(z)| < ,

where f j,w are defined in (3).
(iii)


i∈J

sup
z∈D

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

+ sup
z∈D

(z)|u(z) ′(z)+ v′(z)|
(1−|(z)|2) +2

p +n−2
< .

When m = 0, we consider two separate cases: n = 1 and n > 1. In the same
manner as before we have the following theorems.



ON A STEVIĆ-SHARMA TYPE OPERATOR 1163

THEOREM 3. Let u,v ∈ H(D) ,  ∈ S(D) , 1 � p <  , p−2 <  � p−1 and 
be a radial weight. Then the following statements are equivalent.

(i) The operator Tu,v, : Z p
 → B is bounded.

(ii) u ∈ B ,

3


j=1

sup
w∈D

‖Tu,v, f j,w‖B < ,

and

sup
z∈D

(z)|u(z) ′(z)+ v′(z)|+ sup
z∈D

(z)|v(z) ′(z)| < ,

where f j,w are defined in (3).
(iii) u ∈ B ,

sup
z∈D

(z)|u(z) ′(z)+ v′(z)|
(1−|(z)|2) +2

p −1
+ sup

z∈D

(z)|v(z) ′(z)|
(1−|(z)|2) +2

p

< .

THEOREM 4. Let u,v∈H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 , n∈ N ,
n > 1 ,  be a radial weight, L denote the set {1,n,n+ 1} and E1(z) = |u(z) ′(z)| .
Then the following statements are equivalent.

(i) The operator T 0,n
u,v, : Z p

 → B is bounded.
(ii) u ∈ B ,

4


j=1

sup
w∈D

‖T 0,n
u,v, f j,w‖B <  and 

i∈L
sup
z∈D

(z)Ei(z) < ,

where f j,w are defined in (3).
(iii) u ∈ B ,


i∈L

sup
z∈D

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

< .

Now we estimate the essential norm of the operator Tm,n
u,v, : Z p

 → B . Further-
more, we establish several equivalent conditions for the compactness of Tm,n

u,v, .

THEOREM 5. Let u,v ∈H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 , m,n ∈
N , m+1 < n,  be a radial weight and I denote the set {m,m+1,n,n+1} . Suppose
that Tm,n

u,v, : Z p
 → B is bounded. Then

‖Tm,n
u,v,‖e,Z p

 →B
≈

4


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B ≈

i∈I
limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

,

where f j,w are defined in (3).
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Proof. For each j ∈ {1,2,3,4} and w ∈ D , we have ‖ f j,w‖Z
p


� 1. Moreover,
f j,w converge to zero uniformly on the compact subsets of D . For any compact operator
K from Z p

 into B , by using some standard arguments (see, e.g., [8, 17]) we obtain

lim
|w|→1

‖K f j,w‖B = 0.

It follows that

‖Tm,n
u,v, −K‖Z p

 →B
� limsup

|w|→1
‖(Tm,n

u,v, −K) f j,w‖B

� limsup
|w|→1

‖Tm,n
u,v, f j,w‖B − limsup

|w|→1
‖K f j,w‖B

= limsup
|w|→1

‖Tm,n
u,v, f j,w‖B .

Thus,

‖Tm,n
u,v,‖e,Z p

 →B
= inf

K
‖Tm,n

u,v, −K‖Z p
 →B

�
4


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B . (11)

Next, we prove that

‖Tm,n
u,v,‖e,Z p

 →B
�

i∈I
limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

. (12)

Let {z j} be a sequence in D such that |(z j)| → 1 as j → . Since Tm,n
u,v, : Z p

 →B
is bounded, for any compact operator K : Z p

 →B and i ∈ I , applying Lemma 3 and
(9), we obtain

‖Tm,n
u,v, −K‖Z p

 →B
� limsup

j→
‖Tm,n

u,v,gi,(z j)‖B − limsup
j→

‖Kgi,(z j)‖B

� limsup
j→

(z j)Ei(z j)|(z j)|i
(1−|(z j)|2)

+2
p +i−2

,

where the functions gi,(z j) are defined in (8). Consequently,

‖Tm,n
u,v,‖e,Z p

 →B
� limsup

j→

(z j)Ei(z j)|(z j)|i
(1−|(z j)|2)

+2
p +i−2

= limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

.

This establishes the validity of inequality (12).
Now, we show that

‖Tm,n
u,v,‖e,Z p

 →B
� min

{
4


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B ,

i∈I
limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

}
.

For r ∈ [0,1) , let Kr f (z) = fr(z) = f (rz) . Then Kr is compact on Z p
 with ‖Kr‖ �

1. It is easy to see that fr → f uniformly on the compact subsets of D as r → 1.



ON A STEVIĆ-SHARMA TYPE OPERATOR 1165

Let {r j} ⊂ (0,1) be a sequence such that r j → 1 as j →  . Then for each j ∈ N ,
Tm,n
u,v,Krj : Z p

 → B is compact, and so

‖Tm,n
u,v,‖e,Z p

 →B
� limsup

j→
‖Tm,n

u,v, −Tm,n
u,v,Krj‖Z p

 →B
.

Therefore, it is sufficient to show that

limsup
j→

‖Tm,n
u,v, −Tm,n

u,v,Krj‖Z
p
 →B

�min

{
4


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B ,

i∈I
limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

}
. (13)

For every f ∈ Z p
 such that ‖ f‖Z p


� 1, we have

‖(Tm,n
u,v, −Tm,n

u,v,Krj ) f‖B

=|Tm,n
u,v, f (0)−Tm,n

u,v, fr j (0)|+ sup
z∈D

(z)|(T m,n
u,v, f −Tm,n

u,v, fr j )
′(z)|

� |u(0)( f − fr j )
(m)((0))|+ |v(0)( f − fr j )

(n)((0))|︸ ︷︷ ︸
0

+ sup
|(z)|�rN

(z)
i∈I

|( f − fr j )
(i)((z))|Ei(z)︸ ︷︷ ︸

1

+ sup
|(z)|>rN

(z)
i∈I

|( f − fr j )
(i)((z))|Ei(z)︸ ︷︷ ︸

2

, (14)

where N ∈ N such that r j � 2
3 for all j � N . Furthermore, we have ( f − fr j )

(t) → 0
uniformly on compact subsets of D as j →  for any t ∈ N0 . Now Theorem 1 implies

limsup
j→

0 = limsup
j→

1 = 0. (15)

Obviously,

2 �
i∈I

sup
|(z)|>rN

(z)| f (i)((z))|Ei(z)︸ ︷︷ ︸
i

+
i∈I

sup
|(z)|>rN

(z)ri
j| f (i)(r j(z))|Ei(z)︸ ︷︷ ︸
i

(16)

For each i ∈ I , using Lemma 1, (8) and (9) we obtain

i = sup
|(z)|>rN

(1−|(z)|2) +2
p +i−2| f (i)((z))|

|(z)|i
(z)Ei(z)|(z)|i

(1−|(z)|2) +2
p +i−2

� ‖ f‖Z p


sup
|(z)|>rN

‖Tm,n
u,v,gi,(z)‖B

�
4


j=1

sup
|w|>rN

‖Tm,n
u,v, f j,w‖B . (17)
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On the other hand,

i = sup
|(z)|>rN

(1−|(z)|2) +2
p +i−2| f (i)((z))| (z)Ei(z)

(1−|(z)|2) +2
p +i−2

� ‖ f‖Z p


sup
|(z)|>rN

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

. (18)

Taking the limits as N →  in (17) and (18) yields

limsup
j→

i �
4


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B , (19)

and

limsup
j→

i � limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

(20)

Similarly, we have

limsup
j→

i �
4


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B and limsup

j→
i � limsup

|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

.

(21)

Therefore, from (14)–(16), (19)–(21), we get

limsup
j→

‖Tm,n
u,v, −Tm,n

u,v,Krj‖Z p
 →B

= limsup
j→

sup
‖ f‖

Z
p


�1
‖(Tm,n

u,v, −Tm,n
u,v,Krj ) f‖B

�
4


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B ,

and

limsup
j→

‖Tm,n
u,v, −Tm,n

u,v,Krj‖Z p
 →B

�
i∈I

limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

.

From the last two inequalities we get (13) and the proof is completed. �
Using the same approach as in the proof of Theorem 5, which along with Theorem

2, the results below can be derived for the case m+1 = n .

THEOREM 6. Let u,v ∈H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 , m,n ∈
N , m + 1 = n,  be a radial weight and J denote the set {m,n+ 1} . Suppose that
Tm,n
u,v, : Z p

 → B is bounded. Then

‖Tm,n
u,v,‖e,Z p

 →B
≈

3


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B

≈
i∈J

limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

+ limsup
|(z)|→1

(z)|u(z) ′(z)+ v′(z)|
(1−|(z)|2) +2

p +n−2
,

where f j,w are defined in (3).
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For the case m = 0, note that every sequence in Z p
 bounded in norm has a

subsequence which converges uniformly in D to a function in Z p
 (see [42, Lemma

2.5]), which along with the similar arguments as in the proof of Theorem 5 yields the
following theorems.

THEOREM 7. Let u,v ∈ H(D) ,  ∈ S(D) , 1 � p <  , p−2 <  � p−1 and 
be a radial weight. Suppose that Tu,v, : Z p

 → B is bounded. Then

‖Tu,v,‖e,Z p
 →B

≈
3


j=1

limsup
|w|→1

‖Tu,v, f j,w‖B

≈ limsup
|(z)|→1

(z)|u(z) ′(z)+ v′(z)|
(1−|(z)|2) +2

p −1
+ limsup

|(z)|→1

(z)|v(z) ′(z)|
(1−|(z)|2) +2

p

,

where f j,w are defined in (3).

THEOREM 8. Let u,v∈H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 , n∈ N ,
n > 1 ,  be a radial weight, L denote the set {1,n,n+ 1} and E1(z) = |u(z) ′(z)| .
Suppose that T 0,n

u,v, : Z p
 → B is bounded. Then

‖T 0,n
u,v,‖e,Z p

 →B
≈

4


j=1

limsup
|w|→1

‖T 0,n
u,v, f j,w‖B ≈

i∈L
limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

,

where f j,w are defined in (3).

It is well known that ‖T‖e,X→Y = 0 if and only if T : X → Y is compact. There-
fore, from Theorems 5–8 we immediately obtain the following corollaries.

COROLLARY 1. Let u,v ∈ H(D) ,  ∈ S(D) , 1 � p <  , p− 2 <  � p− 1 ,
m,n ∈ N , m + 1 < n,  be a radial weight and I denote the set {m,m + 1,n,n +
1} . Suppose that Tm,n

u,v, : Z p
 → B is bounded. Then the following statements are

equivalent.
(i) The operator Tm,n

u,v, : Z p
 → B is compact.

(ii)

4


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B = 0,

where f j,w are defined in (3).
(iii)


i∈I

limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

= 0.
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COROLLARY 2. Let u,v ∈ H(D) ,  ∈ S(D) , 1 � p <  , p− 2 <  � p− 1 ,
m,n ∈ N , m+1 = n,  be a radial weight and J denote the set {m,n+1} . Suppose
that Tm,n

u,v, : Z p
 → B is bounded. Then the following statements are equivalent.

(i) The operator Tm,n
u,v, : Z p

 → B is compact.
(ii)

3


j=1

limsup
|w|→1

‖Tm,n
u,v, f j,w‖B = 0,

where f j,w are defined in (3).
(iii)


i∈J

limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

+ limsup
|(z)|→1

(z)|u(z) ′(z)+ v′(z)|
(1−|(z)|2) +2

p +n−2
= 0.

COROLLARY 3. Let u,v ∈ H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 and
 be a radial weight. Suppose that Tu,v, : Z p

 → B is bounded. Then the following
statements are equivalent.

(i) The operator Tu,v, : Z p
 → B is compact.

(ii)

3


j=1

limsup
|w|→1

‖Tu,v, f j,w‖B = 0,

where f j,w are defined in (3).
(iii)

limsup
|(z)|→1

(z)|u(z) ′(z)+ v′(z)|
(1−|(z)|2) +2

p −1
+ limsup

|(z)|→1

(z)|v(z) ′(z)|
(1−|(z)|2) +2

p

= 0.

COROLLARY 4. Let u,v ∈ H(D) ,  ∈ S(D) , 1 � p < , p−2 <  � p−1 , n ∈
N , n > 1 ,  be a radial weight, L denote the set {1,n,n+1} and E1(z) = |u(z) ′(z)| .
Suppose that T 0,n

u,v, : Z p
 →B is bounded. Then the following statements are equiva-

lent.
(i) The operator T 0,n

u,v, : Z p
 → B is compact.

(ii)

4


j=1

limsup
|w|→1

‖T 0,n
u,v, f j,w‖B = 0,

where f j,w are defined in (3).
(iii)


i∈L

limsup
|(z)|→1

(z)Ei(z)

(1−|(z)|2) +2
p +i−2

= 0.
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