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ON A STEVIC-SHARMA TYPE OPERATOR FROM
DIRICHLET-ZYGMUND-TYPE SPACE TO BLOCH-TYPE SPACE

LINLIN L1U, ZHITAO GUO* AND NING ZHANG

(Communicated by M. Krni¢)

Abstract. The boundedness, essential norm and compactness of a Stevi¢-Sharma-type operator
from Dirichlet-Zygmund-type space into Bloch-type space are investigated in this paper.

1. Introduction

Let D be the open unit disk in the complex plane C. The class H (D) denotes the
set of all analytic functions on D, while S(D) is the family of all analytic self-maps of
D. Denote by N the set of positive integers and Ny = NU{0}.

Suppose that 0 < p < o and ¢ > —1. The Dirichlet-type space &% is defined as
the set of all f € H(D) satisfying

1

Dy = 11O+ [ IF@P (-1 dAE) <,

where dA(z) = Ldxdy is the normalized Lebesgue area measure. For p > 1, 2% is

T
a Banach space under the norm ||-|[5». When o > p—1, 9k coincides with the

weighted Bergman space szof_p. For o =p—2 and p > 1, 9{7’72 is known as the
Besov space.

The Dirichlet-Zygmund-type space Z, which was introduced in [42], consists
of all f € H(ID) such that

IAI%p = 1£(0)7+ \f’(0)|p+/D\f”(Z)l”(l —[2*)*dA(z) < eo.

If a>p—1, Z7 reduces to Zj_,. For o= p—2, Qppp_z is called the Besov-
Zygmund-type space (studied in [7,45]). Note that ffbl is the minimal Mobius invariant
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space By, which includes functions of the form f(z) = ¥, b,0;, (z) € H(D), where
{ba} €1', Ay €D and 0,(z) = {== . The norm is given by

1flls, = inf{ gbﬂ 1 f(2) = ibn(’ln(z)}-

See [5] for more results on the minimal M6bius invariant space. We primarily focus on
thecase p—2<a<p—1.

Let u be a radial weight, i.e., a strictly positive continuous function on D that is
radial (meaning 1 (z) = u(|z|) for all z € D). The Bloch-type space %, is defined as
the set of all f € H(ID) satisfying sup_.p 1 (z)|f’(z)| < e. Equipped with the norm

I/

2, = 1FO)|+supu(@)|f (2)];
zeD

%, becomes a Banach space. When u(z) = (1 —|z[*)* where o > 0, the induced
space %), becomes the o -Bloch space, which in the case o = 1 reduces to the classical
Bloch space. For further investigations on the classical Bloch space, the o -Bloch space
and Bloch-type spaces, as well as some concrete operators on them, see for instance
[6,13,14,16,21,22,26,41,43].

Let y € H(D) and ¢ € S(D). The multiplication and composition operators are
defined respectively by My f =y - f and Cpf = fo @ for f € H(D). Their product
forms the weighted composition operator Wy, o f = ¥ - f o ¢, which has been exten-
sively studied. Additionally, the differentiation operator D, defined by Df(z) = f'(z)
for f € H(DD), holds significant importance in operator theory and numerous other areas
of mathematics.

The first papers on product-type operators including the differentiation operator
dealt with the operators DC, and CyD, (see, for example, [12, 15, 16, 20, 23-25]).
In [32,33], Stevi¢ et al. introduced the following so-called Stevi¢-Sharma operator

Tunef(2) = u@)f(0(2) +v(2)f'(0(z)), [feHD),

where u,v € H(D) and ¢ € S(D). By taking some specific choices of the involving
symbols, we can obtain the general product-type operators:

MuC(p = Tu.,O.,(p; C(pMu = Luo,0,0> M,D = TO,u,id; DM, = Tu’7u7ida C(pD = TO,I,(pa

DCy =Top' 05 MuCoD =Tougp, MDCy=Toup o, CoMuD =T0ucq,p:

DM,Cy =Ty up.ps  CoDMy = Tyoguop.ps  DCoMu= Ty (it0p).0' (uop).0-
Consequently, the Stevi¢-Sharma operator holds particular significance and has

aroused great interest of experts (see, for instance, [4, 19,37, 38,40,43] and the refer-

ences therein).
In [34], Stevi€ et al. introduced the following product-type operator

Thof () =u@) " (92) +v(@) " (e(z), neN, (1)
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and investigated its boundedness and compactness from a general space to Bloch-type
space. Subsequently, Abbasi in [1] studied the boundedness, compactness and essential
norm of 7./, , from Hardy space to nth weighted-type space. Abbasi and Zhu et al.
in [3,44] characterized the boundedness, compactness and essential norm of 7/, , from
or to Zygmund-type space. The second author et al. investigated the boundedness and
compactness of 7', , from Hardy space [9] and O (p,q) space [11] to Zygmund-type
space or Bloch-type space. Since the publication of [34] have also appeared several
extensions of operator (1) on the unit disc, as well as on the unit ball (see, for example,
[2,10,27-31,35,36]).
In [10], we investigated the generalized Stevi¢-Sharma type operator defined as:

T £(2) = u(z) f™ (9(2)) +v(2) f™ (9(z)), meNy, neN. ?)

Without loss of generality, we assume m < n. Note that when m =0 and n = 1, this
operator reduces to the classical Stevic-Sharma operator. The boundedness, essential
norm and compactness of Turf'v":,, acting from the derivative Hardy spaces into Zygmund-
type spaces were investigated in [10]. Furthermore, [39] characterized the boundedness
and compactness of T,y from H™ space into Bloch-type spaces.

In this study, we focus on analyzing the boundedness, essential norm, and com-
pactness of the Stevi¢-Sharma type operator T,,)', when mapping from Dirichlet-Zyg-
mund-type spaces 2 to Bloch-type spaces By .

Recall that the essential norm of a bounded linear operator 7 : X — Y is the dis-
tance from 7' to the compact operators K : X — Y, that is,

ITlex—y = inf{HT —K|lx—y:Kis compact}.

Here X and Y are Banach spaces.

Throughout this paper, for nonnegative quantities X and Y, we use the abbrevia-
tion X SY or Y 2 X if there exists a positive constant C independent of X and Y such
that X < CY. Moreover, we write X ~Y if X <Y < X.

2. Preliminary results

In this section, we present several lemmas that will be utilized in the proofs of the
main results. The first lemma is established in [42].

LEMMA 1. Suppose that 1 < p <o and p—2 < o < p—1. Then for any f €

28, 1fllee SN Sl g0 and
IO # N
Forany w e D and j € N, set
fiw) = —=DL e (3)

(I—Wz)%zﬂ'_z,
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By [42, Lemma 2.2], we have f;,, € 2% and sup,p [ fjwll zp S 1 forevery j €N,
where 1 < p <o and p—2 < a < p— 1. Moreover, we easily see that f;,, converges
to zero uniformly on compact subsets of D as |w| — 1.

LEMMA 2. Let 1 < p<oo, p—2<a<p—1, meNy, neNand m+1<n.
For any w € D\ {0} and i,k € {m,m+ 1,n,n —|— 1}, there exists a function gi,, € 2%
such that

ok
(k) W' Ojk
giw(w) = o ’
)

where Sy, is the Kronecker delta.

Proof. Forany w € D\ {0} and constants ¢y, c,c3,c4, let

4

gw(z) = 2 ijj,w(z)a

J=1

where fj,, is defined in (3). For each i € {m,m+ 1,n,n+ 1}, the system of linear
equations

) = — 3 T (B2 4 =2 k) = — T
(1-pwp) 7 2 =1 k=0 P (1-w2) 7 72

1 it 4 m . Wm+15im

g w) = — o 2 ¢ Il (OCTH‘F]_Z‘H‘): it

(1=lwf?)" P X j=1 1k 0 (1=lw?)"P

(") - OC+2 . Wna_

gw (W :7(1 Y cj H Ol 4 2 k) = — W om

w (W) (—lwp) 202 = J 0( p ) (1= |wP) 5202

(n+1) T . at2 | 7 Si41)

gy = — TS T (%2 424 k)= —

w ( ) (1 |W|2) ,2+n lj:1 Jk=0( P ) (1 |W|2) J,r2+n 1

has a unique solution ¢; j, j € {1,2,3,4} that is independent of w, where ]'[k”'z_o1 (ed2 4

P
Jj—2+k)=11if m = 0. Since the determinant of coefficient matrix M equals

a+2 oa+2\2/0+2 3ro+2 4 a+?2
(2R ) () ()
p p P p P
a+2 3ra+2 2 a+2 2ra+2
(2 1Y (2 ) (B2 ) (2 )
p P p p
“(n—m)*(n—m—1)2#0.

Meanwhile, M equals

(a:2+1>(0‘:2+2>2.. (aTH—Fn—Z)z(aTH—Fn—1>n2(n2—1)7é0,

if m=0.



ON A STEVIC-SHARMA TYPE OPERATOR 1159

For such chosen numbers ¢; j, j € {1,2,3,4} the function

4
giw(2) == Zlcz}jfﬁw (2)
=

satisfies the desired conditions. [

Similar to [42, Lemma 2.7], we obtain the result below. One can consult [18] for
more research.

LEMMA 3. Let u,ve H(D), p € S(D), I <p<oeo, p—2<a<p—1, meNy,
n €N and | be a radial weight such that the operator T,y : 27 — Py is bounded.
Then Ty : 24 — PBy is compact if and only if | T,V fill 2, — 0 as k — o foriach
sequence {fi}ren in 2 bounded in norm which converges to zero uniformly in D as

k — oo,

3. Main results

In this section, we first present necessary and sufficient conditions for the bound-
edness of the Stevi¢-Sharma type operator T,ﬁ;fp 2P %), under different cases
involving the parameters m and n. To simplify the notation, we adopt the following
conventions:

En(z) = |u'(2)],
Ent1(2) = [u(2)9'(2)],

En(z) = V(2)],
Enr1(z) = (2)9'(2)].

THEOREM 1. Let u,ve H(D), ¢ € S(D), 1< p<oo, p—2<a<p—1,mne
N, m+1<n, u be aradial weight and I denote the set {m,m~+1,n,n+ 1}. Then the
following statements are equivalent.
(i) The operator T, = 20 — Py is bounded.
(i1)
4
S sup [T froell, <o and Y supp(2)Ei(z) < e,

j=1 web icl z€D

where f;,, are defined in (3).
(iii)
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Proof. (i)=(ii). Assume that T\, : 2 — %, is bounded. Since for each
weD and je{1,2,3,4}, [|fjwll- < 1, we have sup,cp || T fiwllz, < oo, and

consequently

4
2 Sup 155 £l 2, < oo
jzlwe

Taking fu(z) =" € Z7, from the boundedness of T,y : 2 — B, we get

0 > H Turflﬁ,n(pfm

2, = Sup WD) (T fn) (2)] = sup u(2) Ep(2)m!,
zeD z€D

which yields
sup U (z)En(z) < oo. 4)

z€eD

Applying the operator T,,\, t0 finy1(z) = 2" € 2 we have
oo > || TN fnt1 ]2, > SUHI;H(Z)|(TJ7v’ffpﬁn+1)/(Z)|
S

=sup U(2)|En(2)@(2) (m+ 1)1+ Eps1(2) (m+ 1)

zeD
> SEHI;M(Z)EmH (@) (m+1)! = Sggu(Z)Em(Z)<P(Z)(m+ nt,

from which along with (4) and the fact that |@(z)| < 1 it follows that

Sup“(Z)Ein+l (Z) < oo, )

zeD
By using the function f;,(z) = 7" € 2, we obtain

o >|| T fn

2, = sup ()| (T £) 2)]
zeD

n!
' +E,(2)n!|,

=SUp(3)| En()0(0)" " s+ Enn D0 o,

z€D (n—m)!
from which along with (4), (5), the triangle inequality and the fact that |@(z)| < 1 gives

sup U(z)Ep(z) < oo. (6)
zeD
Taking f,41(z) = 2"t € 2, similarly we have
o >|| T fusill 2, > SUBH(Z)|(TJ7v’ffpfn+1)/(Z)|
S

=supu()| En(o()" " D ey R

zeD (n_m+1)

+E()e)n+ 1) +E;1(2)(n+ 1),
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from which along with (4), (5), (6), the triangle inequality and the fact that |@(z)| < 1
it follows that

sup U (2)Eps1(z) < oe. (7

z€eD

Combining (4)—(7) we can see that

Y supu(z)Ei(z) <

icl z€D

(ii)=>(iii). Suppose that (ii) holds. For each i € I and ¢@(w) # 0, Lemma 2 says
that there exist constants ¢; j, j € {1,2,3,4} such that

4
8i,p(w ch,ijqJ E gg;; 3)
and
ow)' &
8o () = :

at2 3 )
(1= [p(w)2) 72

where f jo(w) are defined in (3) and k € I. Then we have

o > 2 SupHTumvrépf/, ”ﬁﬂ SupHTu v08i.p(w ”ﬁﬂ

j= LwebD
HODEw) 9wl
(1= @) T2

> 10| (T 81 00) ()] =

From (9) it follows that for each i € I,

uw)E;(w

weD (1 — ‘(p(w)|2)“7+i—2
S sup “(W)Ei(z}gz — T sup “(W)Ei(z}gz -
onl>3 (1=eW)[2) 7 772 o<t (1= |@(w)2) 7 72

<2i sup H(W)El( )|(P( )|l +(§>l sup ‘L,L(W)Ei(W)

sup

a+2 4i-2

lpw)[>3 (1= Jo(w)[?)? p(w)|<
< oo,

Thus,

Sp BEOEE

a+2 | -
iet=D (1 - |g(z)|2) 7 2
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(iii)=>(i). Assume that (iii) holds. For any f € 2/, using Lemma | we have

Ly HEEE)

2)”‘T+2+i72'
(10)

HENT ) (@) < Y u)E (@) <

iel il (1—|o(2)]

In addition,

(L) (0] <[u(0) £ (9(0)] + [v(0) £ (9(0))

1u(0)] v(0)] )
5 ) + a+2 ||fH5(f
<<l—|<p< )2 R )

Hence T, : 2/ — 2y is bounded. The proof is completed. ]

When m+ 1 = n, as demonstrated in the proof of Lemma 2, we similarly conclude
that for any w € D\ {0} and i,k € {m,n,n+ 1}, there exist constants d;; (where
J €{1,2,3}) such that the function A; ,, = Z;zldi,jfj,w(z) € ZF satisfies

—k
®, WO
) = T

By this and a slight modification of the proof of Theorem 1, we obtain the following
result.

THEOREM 2. Let u,ve H(D), ¢ € S(D), 1< p<oeo, p—2<a<p—1,mne
N, m+1=n, u be aradial weight and J denote the set {m,n+1}. Then the following
statements are equivalent.

(i) The operator T,,mvrz,, A Py is bounded.

(i)
Z sup || Tyl fiwll 2, < e,
j= 1weD
and
Y sup () Ei(z) +sup () |u(z) @' () +V'(2)] < e,
ieJ zeD zeD

where f;,, are defined in (3).
(iii)

i€1ED (1—|p(z)P) 7 2 D (1-|p(z))2) » ™*

When m = 0, we consider two separate cases: n =1 and n > 1. In the same
manner as before we have the following theorems.

1(2)Ei(z) +sup 1@ u2)e"(2) +V(E) _
)
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THEOREM 3. Let u,v€ HD), p € S(D), 1< p<oo, p—2<a<p—1and
be a radial weight. Then the following statements are equivalent.

(i) The operator Ty o : 28 — Py is bounded.

(ii) u € By,

3
Y. sup (| Tong fiwll, <o,
j:1w€

and

sup (2)[u(z) @' (z) +v' ()| +sup () |[v(2) @’ (2)] < oo,

zeD z€eD

where f;,, are defined in (3).

(iii)) u € B,
SwudW@d@kﬂﬁﬂ+wPM@|@dgl<m
€D (I-lp@E)?) 7~ =P (A-]e@)P) »

THEOREM 4. Let u,v€ HD), p €S(D), I<p<eo, p—2<a<p—1,neN,
n>1, W be a radial weight, L denote the set {1,n,n+ 1} and Ei(z) = |u(z)¢'(z)|.
Then the following statements are equivalent.

(i) The operator T,E fqo A Py is bounded.

(ii) u € By,
2 sup || 7,0y <eo and Y supl(z)Ei(z) < e,
j=1weD ieLz€D

where f;,, are defined in (3).
(iil) u € By,

n(z)Ei(z)
2 sup T, <
i1zl (1—|p(z)?) »

Now we estimate the essential norm of the operator 7,y o 2P - %’u Further-
more, we establish several equivalent conditions for the compactness of Tuﬁw

THEOREM 5. Let u,ve H(D), ¢ € S(D), 1< p<oo, p—2<a<p—1,mne
N, m+1<n, u be aradial weight and I denote the set {m,m+ 1,n,n+ 1}. Suppose
that Tum,,'fp : 24 — By is bounded. Then

4
z
1Tl 27—, ~ zmnsupHT ~ Y limsup HE (;Jr —
j=1 w1 icl|o)=1 (1 —|@(2)|?) 7

where f;,, are defined in (3).
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Proof. For each j € {1,2,3,4} and w € D, we have ||fjw[|4» < 1. Moreover,
fjw converge to zero uniformly on the compact subsets of ID. For any compact operator
K from 27 into %, , by using some standard arguments (see, e.g., [8, 17]) we obtain

lim [|Kfjl|2, = 0.

[w|—1
It follows that
umv,réo_ >hmsup||( uvq) )fij%’
|7, y
[w|—1
> limsup |1,y fiwl 2, —limsup [|K £l 2,
[w|—1 [w|—1
= limsup | 1,15/ fjwl 2, -
[w|—1
Thus,
4
N5 e 2, = IE IS = Kll i, 2 201  limsup (e (1D
= W —>
Next, we prove that
u(z)Ei(z)
ITevolle, 20—, 2 . limsup l e (12)

icllo@)|=1 (1 —|(z)]?) »

Let {z;} be a sequence in D such that [@(z;)| — 1 as j — eo. Since T,y : 2o — By
is bounded, for any compact operator K : 27/ — %, and i € I, applying Lemma 3 and
(9), we obtain

%3, ZlirjnsupllTJ"v,'Eogm )z, — lirjnsupHKgi,go@,)II%

1Tl —

NE;i(z; |
+ timsup HEDECIOG
ime (L=e(z)?) 7

where the functions 8ip(zj) are defined in (8). Consequently,

NEi(z; AL .
T e 2 g, 2 limsup K(z)) (z,>|fgj>,|2:hmsup HEER) y
== (1= e(z)) 7 772 le@l=1 (1-|o(2)2) 7 T

This establishes the validity of inequality (12).
Now, we show that

4
2)Ei(z
| uv(P”e 2P By, Smln{ thSUPHTuvwa WHﬁu’zthUP b (32”_2}.
P illo@l=1 (1= |p(2)P) 7

For r € [0,1), let K.f(z) = f+(z) = f(rz). Then K, is compact on 27 with ||K,|| <
1. Tt is easy to see that f. — f uniformly on the compact subsets of I as r — 1.
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Let {r;j} C (0,1) be a sequence such that r; — 1 as j — oo. Then for each j € N,
TuvoKr, : 23 — Py is compact, and so

I Turtlﬁ,n(p Heﬁfo"’—»g&” < lim sup || Turtlfw - Tu’?VﬂPKrj | 2 —By
Jj—ee

Therefore, it is sufficient to show that

limsup |77y — TunoKr, | 2.3,

J—oe

4

. . . 2)Ei(z

,Smm{ D hmsupHT,:f',;fq(prwH,%ﬂ,thsup L) Z(LL+_72 } (13)
=1 wl—1 icllo@)|-1 (1 —|@(z)|2) » ™

For every f € 2 such that || f]| » < 1, we have

I(Teso = TuwoKi ) fll 2,
=|Tuipf(0) = Tuyig fr; (0) + Supu(2)| (Tuvpf = Tuvipfr) (2)]
zE

<[u(0)(f = f,) " (9 (0)) |+ [V(O) (f = )" (0(0))]

%)

+ sup w@) X~ )V (9(2))|Eil2)

lo(z)|<ry icl

Dy

+ sup u@ YN~ ) (0@)E(z), (14)

lo(2)|>rn icl

2]

where N € N such that r; > % for all j > N. Furthermore, we have (f — f,j)(t) -0
uniformly on compact subsets of D as j — oo for any ¢ € Ny. Now Theorem 1 implies

limsup®y = limsup®; = 0. (15)
Jeo Joee
Obviously,
D, <Y, sup n@I N (@Q)IER)+Y, sup (@)D (re)Ek)  (16)
i€l |o()[>ry i€l |o()|[>ry
WY Qi

For each i € 1, using Lemma 1, (8) and (9) we obtain

(- 1e@P) T 219 (p@)| rEEE9E)

Y= sup ' el
lo(2)[>rn |(p(z)|l (1 _ ‘(p(Z)P)%JrHQ
SAlzy sup 1 Tuvioigw 2,

lo(2)[>ry

4
S sup [T fiw

j=1lw|>ry

By (17)
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On the other hand,
LA W w(z)Ei(z
Y= s (1- o@D () —HEEE
l0(@)|>ry (1=lp@)?) 7
u(z)Ei(z
<y sup e (18)
lo@>ry (1= (2)2) 7
Taking the limits as N — oo in (17) and (18) yields
limsup¥; < 211msup||TL:V7 (19)
J—oo j=1 ‘W‘—ﬂ
and
E;
limsup¥; < limsup K2 (22 — (20)
j=ee o@I=1 (1—|p()?) » "~
Similarly, we have
& o 1(2)Ei(z)
limsupQ; < 211msup||TM vofiwllz, and limsupQ; < limsup Sy
je e je lo@I=1 (1=[g(z)[2) 7~
(21
Therefore, from (14)—(16), (19)—(21), we get
limsup || ;5o — TuvioKr llzr_, 2, = limsup  sup [(Tuvie — TuvioKr, ) f1l 2,
Joeo J=ee il gp<t
4
2 limsup |7,/
j=1 [wl—=1
and
E;
limsupHTurfll;,n(P_ Mrflvn(P Ty zhmsup “(Z) (Z) 2’

2y

je il lo@l=1 (1-|g(z)2) »

From the last two inequalities we get (13) and the proof is completed. []
Using the same approach as in the proof of Theorem 5, which along with Theorem

2, the results below can be derived for the case m+ 1 =n.

THEOREM 6. Let u,ve H(D), ¢ € S(D), 1< p<oeo, p—2<a<p—1,mne
N m+1 =n, U be a radial weight and J denote the set {m,n+ 1}. Suppose that
Tyl : : 24 — By is bounded. Then

m,n

Tl 20—z, ~ zhlmlsuPHT
j=1 wl=1
1(z)[u(z)e’(z) +v'(2)|

~ ) limsup HER) + limsup FrE—
2) 457 tn-

o~ (1— @) T2 lo@l-1 (1—|¢()
where f;,, are defined in (3).

)
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For the case m = 0, note that every sequence in ZZ bounded in norm has a
subsequence which converges uniformly in I to a function in 2 (see [42, Lemma
2.5]), which along with the similar arguments as in the proof of Theorem 5 yields the
following theorems.

THEOREM 7. Let u,v€ HD), o € S(D), 1< p<oo, p—2<a<p—1and
be a radial weight. Suppose that T,y : 2% — Py is bounded. Then

[

3
‘e,!f(fﬂ%“ ~ 2 lim sup ”Tu,v,(pf/',w”,%’ﬂ
j=1 wl—=1
!/ / !/
~ limsup K@)u(z)9'(z) +V(2)] + limsup —“(ZHV(ZW (ZRL ,

oGl (1—]e@R)% " leGl=1(1— o))

where f;,, are defined in (3).

THEOREM 8. Let u,ve H(D), p €S(D), I<p<eo, p—2<a<p—1,neN,
n>1, U be a radial weight, L denote the set {1,n,n+ 1} and E1(z) = |u(2)@’'(z)].
Suppose that Tu(?’vf'(p 1 28 — By is bounded. Then

REE)
Ry

4
. 0. .
T 2 11msup||Tuﬁf¢f,'7W||,%M ~~ thsup

0,
1T
j=1 wl=1 icLlp(@)|—-1 (1 —|o(z

where f;,, are defined in (3).

It is well known that ||T||ox—y =0 if and only if T : X — Y is compact. There-
fore, from Theorems 5-8 we immediately obtain the following corollaries.

COROLLARY 1. Let u,v e HD), o € S(D), 1< p<eo, p—2<oa<p—1,
mmn €N, m+1<n, u be a radial weight and I denote the set {m,m+ 1,n,n+
1}. Suppose that T,y : 2 — By is bounded. Then the following statements are
equivalent.

(i) The operator T,fv’"z,, A Py is compact.

(ii)
4
Y limsup || T, £l 2, = O,
j=1 wl—1
where f;,, are defined in (3).
(iii)
: p(2)Ei(z
211msup @) (LLH-_Z =0
illo@=1 (1—|p(2)?) »
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COROLLARY 2. Let u,v € HD), ¢ € S(D), 1 < p<oo, p—2<a<p—1,
mn €N, m+1=n, U be aradial weight and J denote the set {m,n+1}. Suppose
that T,y : 28 — By is bounded Then the following statements are equivalent.

(i) The operator T,y o S A Py is compact.

(i)

2 limsup || T,/

j=1 [w|—1

7

where f;,, are defined in (3).
(i)
1(2)|u(z)9'(z) +v'(2)|

Y limsup ——— + limsup - =0.
oG- (1= )P T2 lo@l-1 (1—|g()[2) T 2

COROLLARY 3. Letu,ve H(D), p € S(D), I<p<eo, p—2<a<p—1and
U be a radial weight. Suppose that T, : 24 — Py is bounded. Then the following
statements are equivalent.

(i) The operator T, .o : 28 — Py is compact.

(i)

=0,

3
2 limsup || 7y,
j=1 |w|—1
where f;,, are defined in (3).
(iii)

! /
msap AOHDOE V@]

HEVE@'E)|
p@I-1 (1—le@P)T 1 leel-1 (1-|e()2)%

|
a+2

=0.

COROLLARY 4. Let u,ve HD), o €S(D), I<p<oeo, p—2<a<p—1,ne
N, n> 1, u be a radial weight, L denote the set {1,n,n+1} and E1(z) = [u(z)@’(z)|.
Suppose that Tuq;f(p S A By is bounded. Then the following statements are equiva-
lent.

(i) The operator Tu o 28 — By is compact.

(ii)
2 hmsup ”Tu v,q)f/, ‘%’H =0,
j=1 wl—=
where f;,, are defined in (3).
(iii)
. u(z)Ei(z
211msup @) (“22+i—2 =0.
SLo@1-1 (1— (@) P)F
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