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ADVANCED NUMERICAL RADIUS INEQUALITIES
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Abstract. In this article, we present some new inequalities for the numerical radius of products
of Hilbert space operators. In particular, we show that if S,7 € B (H), then for any ¢, >0

. V2B ((TT)  (S*S)"
" ($*T) < > u)< o +i B >7

for any r > 1. Some consequences that generalize some results from the literature are discussed.

1. Introduction

Given a complex Hilbert space H, endowed with the inner product (-, -), we utilize
B(H) to denote the C*-algebra of all bounded linear operators on H. For T € B(H),
the numerical radius and the operator norm of 7 are defined respectively by

o(T) = HST\JPI [(Tx,x)| and || T = HST\JPI 1T

It is well known that if 7' is normal, in the sense that 7*T = TT*, then ||T| = o(T).
However, for non-normal operators, this equality fails. In general, the following holds
forany 7 € B(H):

1
STl < o(r) < 7). (.

This inequality is significant because it approximates @(T') in terms of ||T||, a more
manageable quantity to compute than @(7). Sharpening (1.1) and other inequalities
for the numerical radius has interested numerous researchers in the past few years; see
[1,4,5, 6, 12] for example.

Among the most interesting bounds, we have the following:

Ly o2 2
o (S'T) <5 ISP+ 7P|, (12)
2 < 1 2 *|2
o (T) < FITF+T (1.3)
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1 *
o(T) < 5IHTI+IT7 I, (1.4)

<5 (ITI+ 17212, (1.5)

forany S,7 € B(H). Notice that inequality (1.2) is given in [10, Ineq. (17)], inequality
(1.3) is shown in [10, Theorem 1], inequality (1.4) is proved in [8, Ineq. (8)], and
inequality (1.5) is established in [8, Theorem 1].

It is shown in [1 1, Corollary 2.2] that

o (1)< Lo (1] +ilT). 1.6)

It has been proven in [1 1] that this inequality improves upon (1.3).
Another upper estimate for the numerical radius is given in [7, Corollary 3.3] in
the following form

o<

In the same paper, the authors showed that this inequality strengthens (1.3) and (1.5).
In this paper, we extend inequality (1.6). Indeed, we will show that if T € B (H),
0<r<l,and r > 1, then forany a,f3 >0

s\ Tt w\r(1-1)
\/—Zaﬁw<(T )t )

1 .
TP+ 7P|+ 50 (TT). (1.7)

N

o' (T) < X5 Lt

We also present a refinement and extension of inequality (1.7) by proving that
0 (T) < %w (1T + 7P+ 27|7°1).
To achieve our goal, we need the following lemmas.
LEMMA 1.1. [14, Ineq. (2.3)] Let T € B(H). Then
IRT|| < @ (T).

LEMMA 1.2. [2, Theorem 2.3] Let f be a non-negative non-decreasing convex
Sfunction on [0,) and let A,B € B(H) be positive operators. Then for any 0 <t < 1

1F((L=0)A+1B)|| < [[(1—1)f(A)+1f(B)].
.. AC*
LEMMA 1.3. [9] Let A,B,C € B(H) be such that A,B are positive. Then [C B]
is a positive operator in B(H ® H) if and only if
|(Cx, ) < (Ax,x) (By.y)

forall x,y € H.
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2. Results
We begin this section with a useful lemma.

LEMMA 2.1. Let S,T € B(H). If h is an increasing convex function on [0,),
then

Ho(my <|[LITHE|

Proof. Let x € H be a unit vector. Then
|<S*Tx7x>‘ = |<Tx,Sx>|
< 7] 1 Sx]|
= /(T*Tx,x) (S*Sx,x)

1

< 3 ((T"Tx,x) + (S*Sx,x))
1

=3 (T*T + S*S)x,x),

where the first inequality follows from the Cauchy-Schwarz inequality, and the second
inequality is obtained from the arithmetic-geometric mean inequality. After taking the
supremum over x € H with ||x|| = 1, we have

1
o (S'T) < 3 | TT 4+ S*S]| .
Now, since A is an increasing convex function on [0,e0), by Lemma 1.2, we have

7o (S'T)) <h (% ||T*T+S*S)

()]

< Hh(T*T)—l—h(S*S) ’

2

as required. [

We start this section with the following generalization and modification of (1.7).
The advantages of this result will be discussed later.

THEOREM 2.1. Let S,T € B(H). If h is an increasing convex function on [0,0),
then

n (0 (S*T)) < ~o (B (T*T) +h* (S*S)+2h (T*T) h(S*S)).

N

In particular, for any r > 1

0¥ (ST) < ~w ((T*T)2’+ (5*S)* +2(T*T)’(S*S)’> . 2.1)

N
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Proof. By Lemma 2.1, we have

W (o (S*T))
_|[P(T°T) +h(57S) 2
ol

_ ||<w>2

= % |W* (T*T) +1? (S*S) +h (T*T) h (S*S) + h(S*S) h (T*T)|
_1 Hh2 T*T)+h*(S*S)+ 2R (h(T*T)h (S*S))||

Hsn W (T*T)+h* (S*S)+2h (T*T) h(S*S)) ||
< lw (K (T*T)+h*(S*S) +2h(T*T)h(S*S))  (by Lemma 1.1),
as required. [

REMARK 2.1. If we put r =1, in (2.1), we obtain

02 (S'T) < %w (IT1*+1si* +2/7IsP)
The following result is a direct consequence of Theorem 2.1.

COROLLARY 2.1. Let A € B(H). If h is an increasing convex function on [0,0),
then for any 0 <t < 1

12 (0 (A)) < %w <h2 (|A|2t> R (|A*|2(17r)> on <‘A‘2t> I (|A*|2(171)>> .
In particular, for any r > 1

ﬂ)2r(A) <|A|4ﬂ+|A ‘4r1 —1) +2‘A‘2rt|A*‘2rl t)) (22)

-lkl'—‘

Proof. Let A = U |A| be the polar decomposition of A. Put §* = UJA|'™" and
= |A[", we infer that

<

%w (h2 <|A|2t> 12 (U|A|2(1—’>U*) +2h <|A|2’) h (U\AF“‘”U*))
_ %w (hz <|A|zt> Y (W‘z(m)) Lon <‘A‘zt> I (|A*|2(H)>> ,

as required. [



ADVANCED NUMERICAL RADIUS INEQUALITIES 1193
REMARK 2.2. If we put # = £, in (2.2), we infer

0¥ (1) < g0 (I +|7* P +2T[ 7).

4>|~

forany 7 € B(H).

REMARK 2.3. Let T € B(H). If we put r =1, in (2.2), we obtain

1
4w(‘T‘4t+‘T*‘ (1—t) +2‘T‘2I‘T ‘ (1— t>

®*(T) <
forany 0 < ¢ < 1. In particular,
02 (T) < %w (1T + 7P+ 27|7°1). 2.3)
REMARK 2.4. It follows from (2.3) that
W (T) < %w (1712 +17° P 2] 7))

1 2 2, L *
70 (ITP+17°P) + 30 (T/|T7)

(by the triangle inequality)

1
T4

(since |T|* +|T*|* is normal).

)

Therefore, our result improves (1.7).

As mentioned in the introduction, one of our main goals in this paper is to present
an extension of (1.6). This goal is addressed in the following result. To do this, we
need the definition of doubly convex functions. Recall that f : [0,00) — [0, o) is called
geometrically convex [13] if

f(Vab) <T@ ®),

for any a,b > 0. We will say that a function f is doubly convex if f is convex in the
usual sense [3].

THEOREM 2.2. Let S,T € B(H). If h is an increasing doubly convex function on

[0,00), then
ZocB h(T h(S*S)
ho o (MGG,

forany a, > 0. In particular, for any r > 1

1< V2, (1) 580
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Proof. We know that for any a,b > 0
Vab< 4tb.

holds. Now, if we replace a and b by éa and %b, o, >0, we get

Vab < \/W<g+2>. (2.4)
2 a p

On the other hand, it has been shown in [11] that
|A+B|| < V2w (A+iB), (2.5)

when A, B € B(H) are self-adjoint operators. Hence,

h(|<S*Tx,x>\)= (I{Tx,Sx))
A (|| Tx|[ [|Sx])
gh( (T*Tx7x><S*Sx7x>>
<AVh((T*Tx,x)) h ((S*Sx,x))
< VT T)w (55w
\/@ T)x,x) {(h(S*S)x,x)
S ( o )
VB [ (h(T°T) | h(S"S)
S

So,

sy < SR [HETL G

Now, by (2.5), we can write

h(o(S*T)) <

- \/;c_ﬁHh(Z;‘T) +h(S*S)‘

B
V2B (h(T*T)  h(S*S)
< > w( » +1i i )

Indeed, we have shown that

h(w(S*T)) < \/mw (h(T*T) +lh(S*S))’

2 o B

as required. [

The following result is a direct consequence of Theorem 2.2.
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COROLLARY 2.2. Let A € B(H). If h is an increasing doubly convex function
on [0,0), then

Sforany a, > 0. In particular, for any r > 1

/ A\ s\ r(1—t)
0" (A) < Zaﬁw<(A§) —H(AAZg1 ) (2.6)

Proof. Let A = U |A| be the polar decomposition of A. Put §* = UJA|'™" and
T = |A|', in Theorem 2.2, we infer that

B @A) < V2aB (h(T*T) . _h(S*S))

2 o ! B
:\/22“—Bw h<|A|2’>+ih<U|A\2(H)U*>
o B
:\/2206—ﬁw h<|2|2t>+ih<lA*|;“")> |

as required. [J

REMARK 2.5. Ifweput o =f=1,r=1,and r = %, in (2.6), then we reobtain
(1.6). Namely, our result extends (1.6).

The next two results extend two Theorems 2.1 and 2.2 in the above. We remind

* *
here that [T

ST §*S is a positive operator in B (H @ H).

THEOREM 2.3. Let A,B,C € B(H) be such that A,B are positive and let h be an
increasing convex function on [0,%0). If [2 Cl;} is a positive operator in B (H @ H),
then

n* (0 (C)) < ~o (K (A) +h*(B)+2h(A) h(B)).

N
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*

Proof. Let x € H be a unit vector. Since [ C B

] is a positive operator, then from

Lemma 1.3, we have
[{Cx,x)| < +/(Ax,x) (Bx,x)

<

N —

((Ax,x) + (Bx,x))

(by the arithmetic-geometric mean inequality)

1
=3 ((A+B)x,x)

ie.,
(Cx,x)| < %<(A+B)x,x>.

By taking the supremum over all unit vectors x € H, we obtain
1
0 (C) <5 A+B.

Since £ is an increasing convex function on [0,0), we can write
1
h(ow(C))<h (E ||A+B||)
A+B
—|p(22
)
1
< 3 lIR(A)+h(B)|| (byLemma 1.2).

Consequently,
h(©(C) < 3 () +h(B)].
Thus,
2 ((C) < 7 Ih(A) +h(B) P

= 1 | +rmy
= % |1 (A) +h* (B)+ 1 (A) h (B) +h (B) h (A) |
= L)+ (8) + 29 () 8)|
= L (2 @)+ 12(8) + 204)1(8)|
< %w (h*(A)+h*(B)+2h(A)h(B)) (by Lemma 1.1),

as required. [
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THEOREM 2.4. Let A,B,C € B(H) be such that A,B are positive and let h be
an increasing doubly convex function on [0,0). If [Ié %] is a positive operator in

B(H@H), then

h(0(0) < X5 +i

V208 (h(A) .h%B))»
o

Sforany o, > 0.

*

CB
increasing geometrically convex function on [0, ), we have

Proof. Let x € H be a unit vector. Since is a positive operator and /4 is

hA)xx) <h(3)x7x>) (by (2.4))

i.e.,

h({Cx]) < m<(”“> D)),

2 a B

By taking the supremum over all unit vectors x € H, we obtain

h(@(C) < \/g_ﬁth‘x)Jrh%B)H.

We infer the desired result if we apply (2.5) on the right side of the inequality above.
This completes the proof. [l
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