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BOUNDEDNESS OF AVERAGING OPERATORS
ON NON-DOUBLING MANIFOLDS WITH ENDS

GUILIAN GAO, ZHIHUI HAN, JUN WANG AND HAIYING ZHANG

(Communicated by T. Buric)

Abstract. In this paper, we explicitly calculate the best constant for weak-type of the operator
Ss which averages f € LP(R") over B(x,d|x|), introduced by Christ and Grafakos in Proc.
Amer. Math. Soc. 123 (1995) 1687-1693. Let M be a non-doubling manifold with two ends
R™$%" with m > n > 2. We also show the weak type of the operator Sg on LP(M) and L” (M)
boundedness of the operators Sy and S5 .

1. Introduction

Let f be a locally integrable function on R". In [2], Christ and Grafakos consid-
ered the following two averaging operators:

1
(T5)®) = 5557 / IOz
and

1
(551)0) = gsTa0] /. i[OI

for any 6 > 0. For p > 1, they proved that the operator norm of 7; on L?(R") is
equal to #, which means that it is the same as in the usual one dimensional case.
Since (T5f)(x) = (T1.f)(dx), it is immediate that the operator norm of T5 on LP(R")
is %15_% . In some sense, the operator Sg lies between the identity operator and the
Hardy-Littlewood maximal function M, and that M f is not much larger than f.

Let 1 <p<eooandcp, = p’w” 22f’ lB(i(_ —1)," ) Christ and Grafakos in

[2] obtained:

(L (o fo |dy)pdx)%<cp,n(/R nf(y>|pdy>)’l’

forall f in LP(R") and the constant ¢, , is the best possible. More generally, they also
obtained
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THEOREM A. For 6 > 1, the operator norm of Sg on L (R") is

n
I

1 Wp—2 1 ! 2\ =3
pwnily/_l(l—s) T (s+Vs2+62—1)¢ ds.

For 0 < 1, the operator norm of S on LP(R") is
1 n n
p 2 218217 —(s—/52+ 62— )']ds.

con L 8" /\/T

The authors in [3] and [4] introduced the generalized averaging operators Ty and
Ss and derived the related mixed means inequalities. In [1 1], the authors obtained that
the sharp bound for the weak-type (p,p) inequality for 7} is 1, where 1 < p < . In
fact, we could easily obtained the sharp bound for the weak-type (p,p) inequality for
Ts is 8 7. Some improved results and further extended to other function spaces can
be found in [5, 8, 9, 10] and the references therein.

Let us recall manifolds with ends as in [7]. Let M be a complete non-compact
Riemannian manifold. Let K C M be a compact set with non-empty interior and smooth
boundary such that M \ K has k connected components Ej,...,E; and each E; is non-
compact. We say in such a case that M has k ends with respect to K and refer to K as
the central part of M. In many cases, each E; is isometric to the exterior of a compact
set in another manifold M;. In such case, we write M = M #M>4- - - M. and refer to M
as a connected sum of the manifolds M;, i=1,2,--- k.

Following [7] we consider the following model case. Fix a large integer N (which
will be the topological dimension of M) and, for any integer m € [2,N], define the
manifold 2™ by

M —R™ % SN—m’

where SV~ is the unit sphere in R”~". The manifold %™ has topological dimension
N but its “dimension at infinity” is m in the sense that V(x,r) = r" for r > 1, see [7].
Thus, for different values of m, the manifold Z™ have different dimension at infinity
but the same topological dimension N, this enables us to consider finite connected sums
of the Z'™’s.

Fix N and k integers Ni,Na,---, N € [2,N] such that

N = max{Nl,Ng, cee ,Nk}.
Next consider the manifold
M = BN 597Nk

In [7] Grigor’yan and Saloff-Coste establish both the global upper bound and lower
bound for the heat kernel acting on this model class. Now we recall the first part of
their results with the hypothesi that

n:= min N; > 2.
1<i<k
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Let K be the central part of M and E|,E,,---,Ex be the ebds of M so that E; is
isometric to the complement of a compact set in %V, With E; = %" \ K. Thus,
x € M\ K means that the point x € M belongs to the end associated with %™ . For
any x € M, define
|x| := supd(x,z),
z€K
where d = d(x,y) is the geodesic distance in M. One can see that |x| is separated from
zeroon M and |x| =~ 1 +d(x,K) where d(x,K) = inf{d(x,y) : y € K}.
For x e M, let
B(x,r):={yeM:d(x,y) <r}

be the geodesic ball with center x € M and radius » > 0 and let V(x,r) = u(B(x,r))
where (1 is a Riemannian measure on M.

Throughout the paper, we take the simple case k = 2 for the model of metric
spaces with non-doubling measure, i.e., we set M = R™f%" with 2 < n < m. From the
construction of the manifold M, we see that M does not satisfy the doubling condition
since

1. V(x,r)~ " forall x€ M, when r < 1;
2. V(x,r)=7r" for B(x,r) C Z", when r > 1;
3. V(x,r) =" forxe Z"\K, r>2x|,or xe R", r > 1.

In [6], Duong, Li and Sikora studied the boundedness of certain maximal functions on
non-doubling manifolds with ends. The authors in [1] showed certain singular integrals
with non-smooth kernels acting on non-doubling spaces. More generally, they obtained
the holomorphic functional calculus of Laplace transform type for operators with suit-
able heat kernel upper bounds such as the Schrodinger operator on a non-doubling
manifold with two ends.

The paper is organized as follows: in section 2 we obtain the weak-type estimates
for S on L”(R") and calculate the weak-type norm. We also get the weak-type bound-
edness of Sg on M. In section 3, we consider the boundedness of S; on LP(M). In
section 4, we consider the boundedness of S, on L?(M).

Let us introduce some notation. @,_; will denote the area of the unit sphere st
and v, the volume of the unit ball in R”. Let B(s,t) denote the usual beta-function
folx’ (1 —x)*dx. We denote by |A| the Lebesgue measure of the set A and by ), its
characteristic function.

2. Weak type bounds for Hardy operator
PROPOSITION 2.1. For 1 < p <o and 6 > 0, the following inequality

IS5/ lLpe=mry < 0 7| f Il Lo (mny

holds. Moreover,

<=

1S5l e (Re)—Lp= (1) = O
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Proof. We only give the proof for the case 1 < p < oo, with the usual modifications
made when p=1 or p=-c0. For 0 < A < oo, we have

{x e R":[Ssf(x)| > A}
} 1

1
1 » ,,f
<[{xer: / Pd) (/ d) >
{ vn6x|”< x5\x\)| Oy B(x,8]x]) Y

< erR" A (Val 82" < ||fHLP(R")}|

A1 g
AP

On the other hand, we will show that the constant 577 is the best possible. For
any € >0, taking fe(x) = xjo.¢(|x|), we obtain Hfg||Z,(R,1) = v,&" and Ssfe(x) < 1.
For 0 < A < 1, we divide € into two cases:
(i) If € > |x|, then S5fe(x) =1 and
HxeR": |Ssfe(x)| > A ={xeR":0< |x| < e} = v,&"

n

(i) If 0 < & < |x], then S5 fe(x) = |58XI” and

n. g" n 1 _
{xeR B n>x0<e<x}‘ Vp€ (MS" 1).

From the above results, we have

{xeR":|Ssfe(x)| > A} =

{xeR": [Ssfe(x)[ > A} =

xan W||f€HiP(Rn)

It implies that for 1 < p < oo,

1 _lL _n _n
sup A|{x €R":[S5fe(x)| > AP = sup 278 7| fell oy = 87 | fell o
0<A<1 0<A<l1

Hence, we finish the proof. [

PROPOSITION 2.2. Let 1 < p <o and x € M. Then

(i)IfO<5<ﬁ,wehave

1S5/ lp=ny S 87 1 f e

(i) If 6 > ﬁ, we have

1S5 r=(ay S max{8 7,8 7} f | oqan)
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Proof. (i)If0< 0 < |x| , then |B(x,6]x|)| = ¢,,0™|x|™. Similarly as the proof of

Proposition 2.1, we can finish the proof of (7).
(i) If 6 > I |,we split M into three components K, R"\K and %#"\K. Then

{xreM:[Ssf(x)| > A}

SHxeK:[Ss(f)(x0)] > A+ {x e R™M\K : S5 (f)(x)| > A}
+ {xre Z\K - |S5(f)(x)| > A}

=L+L+5

To estimate ;, we note that the measure of K is finite. Therefore /; < |K|. By Holder’s
inequality, we have

_1
1S5 () < [BCx, Sl 7 1 f 1o ar)
For x € K, we have |B(x,6]x|)| = ¢,,6™. So

-1 m
I < |{x6 K: A< Cmp(S_FHfHUz(M)}.
If A > Cm"5 f’ Hf”L” then I] =0.If A < cm"5 f’ Hf”L” then

supM” cm i,
A>0

To estimate I, we have |B(x,0x|)| = ¢, 6™|x|™ for x € R™\K. Therefore

1S5 (f)(x)] < cm e
Hence,

B
L<{xeR"\K:cn”8 7 |x|" 7| fllrn) > A}

Tl

Send "1

To estimate I3, we consider three cases.
Case 1: 0 > 1 and ¢, (6 — 1)"|x|™ < |B(x, |x|)| = ¢u|x|". Thatis
Lo
1 <8 <cipnlx|m " +1.
Hence, |B(x,0x])| = c,6"|x|" for x € Z"\K. Therefore

<Hx e Z"\K : ¢y 75 8P| 2| flloary > A}

A1
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l n
Case 2: & > cpalx|n 1 +1. For x € Z"\K, we have |B(x,8|x|)| = ¢, 6™|x|™.
Therefore
<S{xre Z"\K: 5 7177 Loy > A}

1A an

< —m
<cmd i

Case 3: ﬁ < 8 < 1. For x € Z"\K, we have |B(x,8|x|)| = ¢, 6"|x|". Therefore

B
LB<{xeZ"\K:cn "6 v Ix[ 7| fllra) > A}]
1112

AP

Combining the estimates of I}, I, and I3, we have

< 8"

1S5 lr=qaa) S max{8~ 7,8 7} Flpany. O

3. The boundedness of the Hardy operator S

THEOREM 3.1. Let 1 < p < e and f € LP(M). Then the following inequality
holds:

IS1f1lzr ey < ClF N er v

where
K| K7 YA 1 3
Opn Dp—1 \ 7 7w, —
C = max ‘ |7‘ | n—1 ,p/ n2B 1 i—l 7l’l 7
cm Cn n(p—1) ney, 2\ p 2

L moy
1 \K|P W1 P20 @y (1 (m m—3
— (Opn@p_1In2)7 B(=(—=—-1),—=2) .
Cn (O @p—yIn ) Cm (m(p—l) p mepy, 2\ p/ 2

Proof. First we split M into three components K, R”\K and #"\K, and denote
their characteristic functions by x|, x> and x3, respectively.

(U (i g r00085) dx>% |

S </jn\K<B ) \/ o )dy) dx)pl
(o G g 027) df‘)F
(e g r010) )’

=L+L+5
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To estimate [;, we note that for all x € Z"\K,

1 PN
s (/%n\,( (W /Boc,\x\) mf(y”dy) dx)
1 P
I dy) d
- </%"\K (B(x, x])| /B(x.,|x|> )0 y) *
X

o)
! Um (e Jrg 07 )(”"”y>pd )
=111+ 11+ 13.

y

p
1
P
For all x € Z"\K, |B(x,|x|)| = ca|x|". So

1
P
me| ], Juroras (], dy) dx
f"\K Cn |x|np
\Kl . g
/n1 n/gn l/ rn_Prn drdcldaz Hf”L”(M)

=‘K"7 a0t}
o \np—n) ) Ml

For all x € Z"\K, B(x, |x|) N (R™\K) = 0. Therefore, I;» = 0.
To estimate /3, we consider two cases. Fix f and g positive and continuous
with [|gl[, @nk) S 1. We express both ¢ and Sf in polar coordinates by writing

x=(r¢,o01) and y = (10,02), where o; € S " (i=1,2). From |x—y| < |x|, we can
get

1 1 1
0- ¢/—+—(1—261 62)>2r (t——).

2rt t

Case 1: We suppose r =2 and t > 2,50 60-¢ > Af—r. Let .| be the set of all these
selected points in Z"\K .

/g S(xo f)(x)dx

= dxd
//l //1 Cn‘x‘" )XB x7\x\)( ) y
— 4rf 10,0 o)X t"—t —rd dOdodo
Cn //Sm*’lz//S"*lz/l 0 (16.01)8(r9, 02) O-92/4r" T ¢ 15

(/ f(4rt6,01)( 4rt)%)a-) o=it? 7 dt>ﬂ

mn

X d¢d9d61d02

(sn=1)2 r
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) 1 n o P %
G(¢,02) [/1 (/0 f(4rt0,01)(4r1) 7 Yg.94 ,ﬂ> ﬂ}

t r

\
Cn

X d¢d9d61d02,

mn

Snl

where G(¢,07) = ([ g(r¢, 0P P = 1/P'Notice that the above bracketed expression

is the L? norm of the group (RF, ‘i’ ) convolution of the function ¢ — f(rt6, Gl)(l‘)%

with the kernel Y[o 9.4 (t)t7" at 4r. Therefore we have the following estimate

|, 8ISt )

417
<

& dt
sronz iy G0 OE (6 01) (/ >d¢d9d01daz,

where F(0,01) = (7" f(r8,01)7r*4<)1/P_ Tt follows from [2], we have

8(x)S(x7 .f)(x)dx

4
parw, o (n—p n—
2ncy B( 2p ’ )//m " ||F(9 GI)HLI’ -1 ”G((P G2)HLP (sn- ld61d62

no_ 1
:p/4"’ 2con_zB 1in | z
ney 2\ p

Therefore by duality we obtain

(L, (B s F007) d")%

4 2a) 7 1/n -3
/ n
<p TB (E <I7 - 1) ; ) £ llzr )

Case 2: We suppose 1 <r <2 and 1 <t < 2. Obviously, the measure of .75 :=
(Z"\K)\-7 is finite. Therefore

(/ (—1 [ >|d)pd);
y)ldy ) dx

S \ B, [x])] JB(xx)ns

P 1
< / : (/ If(y)”dy> (/ dy>'7dx p
=\ U llxr \ b ) B(x,/x])
<—</ / —r" 1dl’d01d(52> ||fHLp(M)

m—n Snl 1 jald

:c (©Op—n@,— 11112) Hf”U’

n

-3
D1t

—

==
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‘We have

n 1
47 2@, (1(n n—73 1 1
ERS P/TB<§<I7—1>, 5 )-i—a(wm—nwnllnz)” 1A llzr )

Combining the estimates of 11, I1» and I;3, we have

n_

1 1 ! 1
I < ‘K|I;/ Opn Oy—1 p+p/4p 2(0"sz 1 ﬁ_l 71’1—3
Cn n(p—1) ney 2\ p 2

1

1
+— (wm n @y 11112) )”fLP
Cn

To estimate I, we note that for all x € R"\K,

h< ( i " (m / - lef(y)dy)pdx)%
(Lo (G o [N 0ar) ar)
(Lo (s o [n0la) ar)

=:h1+ Do+ Dbs.

For all x € R"™\K, |B(x,|x|)| = ¢u|x|™. So

P L
1 F V4
br < / 7/ Pd /d) d
. (meﬁxm [roray(fLas)” as
l
\Kl" .
\ ~/Sm 1/ ymp rm drd61d02 Hf”U’

_ ‘K|17 W1 E
- Cm m(p_ l) Hf”L”(M)

To estimate I, , we adopt the same method in [2]. Note that |B(x,|x|)| = ¢;u|x|™, so we
have the following estimate:

m_y
27w, (1
by <P/TB<§ (;—1) )”le’

For x € R™\K, we have B(x,|x|) N (#Z"\K) = 0. Therefore I3 = 0. Combining the
estimates of Iy, I»; and I3, we have

1 1 m_q
‘K|p, Wp—1 P /21’/ Wyy—2 1/ m m—73
h< — L Om2p( () ,
? (Cm m(p—l) tr men, 2 p/ 2 Hf”LI(M)
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To estimate I3, we note that for all x € K, |x| =1 and |B(x, |x|)| = ¢;;. Therefore

5o\7
(/ / y)|Pdy (/ dy) ! dx)
B(x,1)N B(x,1)NK

K
< ‘C—'anLp(M)

Combining the estimates of I}, I and I3, we have

</ (B |X| ‘/)@\x\ dy) dx) <C”fHLP(M)

where

€1
I

Ly

C = max ‘ | ‘K| Wy Op—1 ”,p/z’) (Dn72B l E—l 771_3 7
cm Cn n(p—1) ney, 2\ p/

1 1

_(wm—nwnfllnz)’l’a

Cn

1 1 m_q
K|¥ — 20 _ 1 -3
K| Om—1 ”p/’ On2plLim 7m O
cm \m(p—1) mc,, 2\ p 2

4. The boundedness of the Hardy operator S,

THEOREM 4.1. Let 1 < p < e and f € LP(M)

. Then the following inequality
holds:

1521 zrar) < Cl Sl o (an)

where

1 1 1 1 L
C = max ‘ﬁ K| On—1_ )" p/ﬁ Om—1 )" w;/ K|" [ @Onpn @1\ P
cm 2Mem \m(p—1)) 77 cn \ 0y m=m ’
1
(3\/5) ":7 p/vna)m—n /V_m (mm—nwnl> P

)
2™ Cm Wy—1

1 - m
p’zir;;i[l(l—s2)7(s+ +3)I”ds}.
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Proof. Similarly as the proof of Theorem 3.1, we have

(U (e e 10085) "x>; |
T
(U (e 0 )

= Ji+h+ /s

To estimate J;, we note that for all x € Z"\K,

1 PN
hs </%"\K (B(X»ZIXI)I /B(x.,zwxu A (y)ldy) dx)
1 P
- (Lf"\K (B(x,zlxl)l /B<x,2|x|) |f2(y)|dy> dx)
| PN
* </%"\K (B(X»ZIXI)I /B<x,2|x|> 1 (y)|dy> dx)

=:Jn +Ji2+J13,

where fi(x) = xk(x), fa(x) = yxrm\k(x) and f3(x) = xgm\g(x). For all x € Z"\K,
[B(x,2|x])| = cn|2x|" + ¢m|x|™. We obtain

1

N
1 rd p

T s v AT rd /d d

" (/j g o ([ o) x>
1
\K|” . ’

/m n‘/sn 1 ymp r" drd61d62 ||fHLP(M)

\Kll7 Oy @y 1\ 7
= c o — ”fHLI’(M)
m p—n

For all x € Z"\K, B(x,2]x|) N (R™\K) = {y € R"\K : |[y| < |x|}. Therefore by polar
coordinates, we obtain

P
< / / 1/ ( m/ /7 F0)m 1d9dt> P ldodgdr
Sn— m—n Cmr m

b m m p
< @t [7([ oA DI/ La) L
1 N

Cm r
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We apply Holder’s inequality with exponents }—) + % =1 to the functions 1 and 6 —

Jo 1f @02 1)| (V2 F 0)ri7 4 and then to Fubini’s theorem to interchange the
integrals in 6 and r. We obtain

o mdi\"d
Jf2<M / 1/ (/ f(0\/ P2+ )|t/ 2+ 1) r 17 7) T ao.
C’n SITI
Let R denote the multiplicative group of positive real numbers with Haar measure
%. The function 77" y[o 11(z) is in L'(RT, %) with norm E By the group inequality
I8 #Kl[r < llgllzr|K ][, we have
/

[, (f wo v tievmnsr £) < (B Cicorrs:.

t r m

Therefore

1
v O @p—1\ 7
i< (—) Il

O
Therefore From |x —y| < |2x|, we obtaln [y| < 3|x|. Without loss of generality, assume
that f is nonegative. Therefore

1 P
Jr g/ 7/ d ) d
% S (0 o 700%)
oo 3Vrr+1 dr\? d
</1 /Sn—l /min (C rm/ /S" ! g nf(le 0)t"drd0 — ) r"dO'ld(Z)Tr
3 2+ p d
<t [ [ [ L seeoaacand) 0

—n@y— n I dt P
<%/ (/1/ / B3V E110,00)(3 r2+1t)m'd<;2—de>
Cm 1 sn m—n t

3WVATI\ 7 dr
()

r r

For r € (1,0), we have # < 3v/2. Hence,

Wpy—p Wy — 1(3\/_)

cm2mp

np
/

JPy < I,

where

n I p
/ (/ 1// fBVr+110,00)3V 2+ 1t)rt? d Gg—d@) ?.
sn— mn

We apply Holder’s inequality with exponents - + 7 =1 to the functions 1 and 6 —

Jo Jnn fFBVIZ+110,02)(3V7? t)PtP doy ¥ dt and then to Fubini’s theorem to in-
terchange the 1ntegra1s in 6 and r. We obtain

p
<o’ / 1/ (// 3V +110,0:)(3V 7 + 1) Ptﬂdaz—) 0.
S’l ’71"
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Let RT denote the multiplicative group of positive real numbers with Haar measure

4 The function 77 yjo1)(¢) is in L'(R*, %) with norm %/ By the group inequality
g+ Kl[r < l[gllLr[|K][,1 , we have

1

</ </ /'"’" FBVPR+110,0)(3Vr2 +11) Zt;dchT)pﬂ)

r
/ oo n Pd >

<z (/ ( f(re,crz)rﬁdaz> _,,),,
n 1 Sm—n r

By Minkowski’s integral inequality and Holder’s inequality, we obtain

1
- . PN b
(/’( fU&Gﬁ”d®> @)p
1 sm—n r
g/ (/ £(r0,02)P " 1dr) do,
L 1
v (/ / £(r0,02)P 1" 1drd<;2)

Therefore

I < (3V2)/ "V”“”"”an

Combining the estimates of Ji;, Ji2 and Ji3, we have

1 1 1
K|¥ WOp—p Dy —1 v Vi [ Omp—n Wp—1 v 4 /Vnwmfn
(B (Bt ) i (Bs Dt ) 35y 7 Bt

Cm mp—n Cm Wy | Ccm?2

To estimate J,, we note that for all x € R"\K,

hs(@w(aﬁmméw“mﬂmwwa
(Lo Gz fons (Gen0las) ax)
(Lo Gz o I(mf)(y)ldy)pdx)

=:1Jo1 +J2+ J23.

==
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For all x € R™\K, |B(x,2[x|)| = cm|2x|™ + cnlx|". So

RN
Jo1 < / 7/ Pd (/d) dx
2! ( Ri\K Chy|2x|MP [fO)Pdy y
|K‘p 1 1 ’
2mCm /S""*l /1 rm_Prm drdc\doy | || f|lLr(m)

4 1
K (o VP
o 2me, \m(p—1) Lr(M)

To estimate J»,, we adopt the same method in [2]. We have the following estimate:

1 m ﬂ
I <pon [ (1= (54 V37 dsl

2"me, J—1

For x € R™\K, we have B(x,2|x|) N (Z"\K) = {y € Z"\K : |y| < |x|}. Therefore by
polar coordinates, we obtain

- . ,
§3</ / ( 1 / / / |f(t9,0)t"1d0d0dt> M ldedr
1 sm=1 \ ¢, ™ Jo Jsn—1 Jgm—n
I 1 Lo ds Py
O (/ / / - f(tre70')|(tr)I’tl”do'_d9> _r.
1 sn—=1 Jo m—n t r

We apply Holder’s inequality with exponents }—) + % =1 to the functions 1 and 6 —

fol Jgm-n|f(tr0,0)| (tr) T 7dodt 4t and then to Fubini’s theorem to interchange the inte-
grals in 6 and r. We obtain

n l dt\"d
J§3 = r’;l " IAn 1/ (/ /m n tre G tr)p 7) _rde

Let R™ denote the multiplicative group of positive real numbers with Haar measure
. The function 7"y )(¢) is in L'(R¥, 4) with norm %/. By the group inequality
Hg*KHLv < gllzr|IK]|z1, we have

/<//m,, (tr,0)|(tr)rt Vdo ciz)l’?
: <%> /1 (/ |f(r0, g)|r,,d6>”?.

By Minkowski’s integral inequality and Holder’s inequality, we obtain

1
bl n p P
1 m—n r
1
e P
g/ (/ f(re,a)l’r"‘dr> do
'm—n 1
, ;
Y n(/ / f(re,o)|Pr" ldrd6>

EIS
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Therefore

1
= 1
Vo (@1 \7?
J23 <P’—C:l< ml) Ol Fllzr a)

Combining the estimates of J1, Jo» and Jy3, we have

1 1 1
|K‘pl Wy —1 b 'V [ Om—1 b L’
5 < —— ) 4+ =) e
2 (2’”c,n m(p—1) P Cm \ Wy—1 men

; WOp—2 1 2y =3 > m
1 g [ (1= 54V 3) 7 ds ) i

2"Mmcy,

To estimate J3, we note that for all x € K, |x| =1 and |B(x,2|x|)| = 2™c¢;, . Therefore

TN
// pdy(/ dy)pdx
B(x,2)N B(x,2)NK
K
< qunm
Cm

Combining the estimates of J;, J> and J3, we have

1
PoN»
d d <C ,
</ (Bx (x,2]x) I/xzm O y) x) 1A ller
where

1 1 1 1 1
K| |K|" [ @ v P4 K| a@ 1\ P
C:max u’ ‘ | i 1 7p - wn”:*n’ ‘ | wm u - 1 )
cm 2Mem \m(p—1) Cm \ 0y—1 Cm mp—n

1
Vv _aWy—1\ 7 Wy 1 mf m
p/_m<wm” n 1) P mz/(l—s 2 (s+ /52 rd }
~1

Cm Oyp—1 2" me,y,

=
=
S
7
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