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Abstract. The complete elliptic integral of the first kind, denoted by K (·) , is a class of special
functions widely applied in mathematics, physics, and engineering. In this paper, we establish
an upper bound for this function, given by

K (r) � π
2

(1− r2)
1
2 (p1+p2r2+p3r4+p4r6+p5r8)

for all r ∈ (0,1) , where the parameters satisfy p1 � p1,0 = −1/2 , p2 � p2,0 = 1/32 , p3 �
p3,0 = 1/64 , p4 � p4,0 = 251/24576 and p5 � p5,0 = 123/16384 . Meanwhile, our results
show that the parameters p1,0 , p2,0 , p3,0 , p4,0 and p5,0 are optimal and cannot be replaced
by larger values. Finally, by utilizing the relationship between the complete elliptic integral of
the first kind and the Gauss arithmetic-geometric mean, we establish sharp lower bounds for the
Gauss arithmetic-geometric mean.

1. Introduction

Special functions are fundamental in mathematics, physics, and engineering, ow-
ing to their profound connections with complex analysis, number theory, and opti-
mization. Famous special functions include the Gaussian hypergeometric function
[8, 10, 14, 17], confluent hypergeometric function [4, 9, 12], modified Bessel functions
[6, 7, 18, 23], elliptic integrals [15, 16, 22, 25], the Gamma and Beta functions [24, 27],
as well as Lommel function [3, 11].

The complete elliptic integrals of the first kind K (r) is defined by

K (r) =
∫ π

2

0

1√
1− r2 sin2 t

dt.

It can be expressed by the Gaussian hypergeometric function

K (r) =
π
2

F

(
1
2
,
1
2
;1;r2

)
=

π
2

∞

∑
n=0

Γ2( 1
2 +n)

Γ2( 1
2 )Γ2(n+1)

r2n, (1.1)
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where

F(a,b;c;x) =
∞

∑
k=0

(a)k(b)k

(c)kk!
xk

is the Gaussian hypergeometric function,

Γ(x) =
∫ ∞

0
sx−1e−sds

is the gamma function and

(a)0 = 1, (a)k := a(a+1) · · ·(a+ k−1) =
Γ(a+ k)

Γ(a)
,

is the Pochhammer symbol.
Since elliptic integrals cannot be expressed in terms of elementary functions such

as polynomials, trigonometric functions, or exponential functions, research has mainly
focused on establishing elementary upper and lower bounds for them. Qiu and Vamana-
murthy [13] provided the following upper bounds for K (r) :

K (r) <

(
1+

(r′)2

4

)
ln

(
4
r′

)
:= M1(r), r ∈ (0,1),

and

K (r) <
9.096
8+ r2 ln

(
4
r′

)
:= M2(r), r ∈ (0,1),

where here and after we denote that r′ =
√

1− r2 ∈ (0,1) . Then, Alzer and Qiu [1]
proposed two double bounds for K (r) , namely,

(
arth(r)

r

)α1

� 2
π

K (r) �
(

arth(r)
r

)β1

:=
2
π

M3(β1,r), r ∈ (0,1),

with the best constants α1 = 3/4, β1 = 1 and

α2 ln(r′)
r′ −1

+
2(1−α2)

1+ r′
� 2

π
K (r) � β2 ln(r′)

r′ −1
+

2(1−β2)
1+ r′

, r ∈ (0,1),

with the best constants α2 = 2/π , β2 = 3/4, where

arth(r) =
1
2

ln
1+ r
1− r

is the inverse hyperbolic tangent function. Furthermore, Yang et al. [20] proved that the
following inequality

1+(6p−7)r′

p+(5p−5)r′
πarthr

2r
< K (r) <

1+(6q−7)r′

q+(5q−6)r′
πarthr

2r
:= M4(q,r), r ∈ (0,1),

if and only if p � π/2 and q � 89/69. Besides, some scholars have also provided vari-
ous bounds for K (r) . For example, Andás and Baricz [2] established sharp bounds for
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K (r) using hypergeometric functions. Yang et al. [19] derived bounds involving loga-
rithmic functions for K (r) by proving the monotonicity of the function r �→ r′peK (r) .
Yang and Tian [21] established some new sharp lower and upper bounds for the gen-
eralized elliptic integrals of the first kind. Moreover, Yang et al. [26] derived lower
bounds for K (r) using the inverse hyperbolic tangent function.

Inspired by these bounds, we aim to establish some highly accurate bounds near
r → 0+ . For convenience, we introduce some notations here.

m(r) = −1
4

+
r2

64
+

r4

128
+

251r6

49152
+

123r8

32768
, (1.2)

m1(p1,r) =
p1

2
+

r2

64
+

r4

128
+

251r6

49152
+

123r8

32768
, (1.3)

m2(p2,r) = −1
4

+
p2r2

2
+

r4

128
+

251r6

49152
+

123r8

32768
, (1.4)

m3(p3,r) = −1
4

+
r2

64
+

p3r4

2
+

251r6

49152
+

123r8

32768
, (1.5)

m4(p4,r) = −1
4

+
r2

64
+

r4

128
+

p4r6

2
+

123r8

32768
, (1.6)

m5(p5,r) = −1
4

+
r2

64
+

r4

128
+

251r6

49152
+

p5r8

2
, (1.7)

and

F(p1, p2, p3, p4, p5;r) := (1− r2)
1
2 (p1+p2r

2+p3r
4+p4r

6+p5r
8).

To be specific, we will prove the following theorem.

THEOREM 1.1. The inequality

2
π

K (r) � (1− r2)
1
2 (p1+p2r

2+p3r
4+p4r

6+p5r
8) = F(p1, p2, p3, p4, p5;r)

holds for all r ∈ (0,1) if

p1 � p0,1 = −1
2
, p2 � p0,2 =

1
32

, p3 � p0,3 =
1
64

,

p4 � p0,4 =
251

24576
, p5 � p0,5 =

123
16384

.

Moreover, we have K (r) < π
2 (1− r2)m(r) for all r ∈ (0,1) .

We will also prove that the parameters p1,0 , p2,0 , p3,0 , p4,0 and p5,0 in above
theorem are optimal and cannot be replaced by larger values. Using Theorems 1.1, we
will establish some inequalities involving Gauss arithmetic-geometric mean.
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2. Lemmas

In this section, we present several lemmas that will be used in the next section.

LEMMA 2.1. Define functions R and R1 on N by

R(k) :=

{
1
4k − 1

64(k−1) − 1
128(k−2) − 251

49152(k−3) − 123
32768(k−4) , k � 5,

0, k � 4,
(2.1)

and

R1(k) =

{
1
4R(k−1)+ 7

64R(k−2)+ 13
192R(k−3)+ 791

16384R(k−4), k � 6,

0, k � 5.
(2.2)

Then we have

m(r) ln(1− r2) =
r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

1523r10

40960
+

97349r12

2949120
+

∞

∑
k=7

R(k)r2k,

and(
m(r) ln(1− r2)

)2
>

( r2

4
+

7r4

64
+

13r6

192
+

791r8

16384

)2
+

∞

∑
k=6

R1(k)r2k, r > 0.

Proof. According to the expansion of function ln(1− r2) at r = 1, we obtain

m(r) ln(1− r2)

= −m(r)
∞

∑
k=1

r2k

k

=
∞

∑
k=1

r2k

4k
−

∞

∑
k=1

r2k+2

64k
−

∞

∑
k=1

r2k+4

128k
−

∞

∑
k=1

251r2k+6

49152k
−

∞

∑
k=1

123r2k+8

32768k

=
r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

1523r10

40960
+

97349r12

2949120

+
∞

∑
k=7

( 1
4k

− 1
64(k−1)

− 1
128(k−2)

− 251
49152(k−3)

− 123
32768(k−4)

)
r2k

=
r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

1523r10

40960
+

97349r12

2949120
+

∞

∑
k=7

R(k)r2k.

Meantime, we have(
m(r) ln(1− r2)

)2

=
(

r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

∞

∑
k=5

R(k)r2k
)2
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=
( r2

4
+

7r4

64
+

13r6

192
+

791r8

16384

)2

+
(r2

4
+

7r4

64
+

13r6

192
+

791r8

16384

) ∞

∑
k=5

R(k)r2k +
( ∞

∑
k=5

R(k)r2k
)2

>
( r2

4
+

7r4

64
+

13r6

192
+

791r8

16384

)2
+

(r2

4
+

7r4

64
+

13r6

192
+

791r8

16384

) ∞

∑
k=5

R(k)r2k

=
( r2

4
+

7r4

64
+

13r6

192
+

791r8

16384

)2
+

∞

∑
k=6

R1(k)r2k. �

REMARK 2.1. Substituting R(k) into R1(k) , R1(k) changes into

R1(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k = 1,2,3,4,5,

109846369
11833835520

, k = 6,

2329767599
189341368320

, k = 7,

106313523593
7952337469440

, k = 8,

R11(k)
9694278057984∏8

j=1(k− j)
, k � 9,

0

0.01

0.02

0.03

0.04

0 5 10 15 20

0

0.005

0.01

0.015

0 5 10 15 20

Figure 1: Plots of functions R and R1
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where

R11(k) =

⎛
⎜⎜⎜⎜⎝

1002746896395k7−34559510561332k6

+494700205483734k5−3799171689851704k4

+16834596177554907k3−42823415193408580k2

+57547130155136388k−31273980479514768

⎞
⎟⎟⎟⎟⎠ ,

see Figure 1.

LEMMA 2.2. The inequalities

(
m(r) ln(1− r2)

)3
>

r6

64
+

21r8

1024
+

355r10

16384
+

1407r12

65536
,

(
m(r) ln(1− r2)

)4
>

r8

256
+

7r10

1024
+

857r12

98304
,

and (
m(r) ln(1− r2)

)5
>

r10

1024
+

35r12

16384
,

are valid for all r ∈ (0,1) .

Proof. Noting that

R(k) =
1
4k

− 1
64(k−1)

− 1
128(k−2)

− 251
49152(k−3)

− 123
32768(k−4)

� 1
4k

− 1
64k

− 1
128k

− 251
49152k

− 123
32768k

=
42916623

197230592k
� 0,

we obtain

m(r) ln(1− r2) � r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

1523r10

40960
+

97349r12

2949120
.

Thus, we have (
m(r) ln(1− r2)

)3

>
( r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

1523r10

40960
+

97349r12

2949120

)3

>
r6

64
+

21r8

1024
+

355r10

16384
+

1407r12

65536
,

(
m(r) ln(1− r2)

)4

>
( r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

1523r10

40960
+

97349r12

2949120

)4
>

r8

256
+

7r10

1024
+

857r12

98304
,
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and (
m(r) ln(1− r2)

)5

>
(r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

1523r10

40960
+

97349r12

2949120

)5
>

r10

1024
+

35r12

16384
. �

LEMMA 2.3. The inequality

R(k)+R1(k)−
Γ2( 1

2 + k)
Γ2( 1

2 )Γ2(k+1)
> 0

is valid for all k � 9 , where R(k) and R1(k) are defined by (2.1) and (2.2), respectively.

Proof. Based on the following estimate [5] of the ratio of the gamma functions

Γ(k+ 1
2 )

Γ(k+1)
<

1√
k+ 1

4

<
1√
k
,

we have

R(k)+R1(k)− Γ2( 1
2 +k)

Γ2( 1
2 )Γ2(k+1)

= 1551936317k8−55398840414k7+830978041428k6−6803742743478k5+33025734909435k4

4831838208(k−8)(k−7)(k−6)(k−5)(k−4)(k−3)(k−2)(k−1)k

+−96420321761868k3+163218018346084k2−143643270800784k+48704929136640
4831838208(k−8)(k−7)(k−6)(k−5)(k−4)(k−3)(k−2)(k−1)k

− Γ2( 1
2 +k)

Γ2( 1
2 )Γ2(k+1)

> 1551936317k8−55398840414k7+830978041428k6−6803742743478k5+33025734909435k4

4831838208(k−8)(k−7)(k−6)(k−5)(k−4)(k−3)(k−2)(k−1)k

+−96420321761868k3+163218018346084k2−143643270800784k+48704929136640
4831838208(k−8)(k−7)(k−6)(k−5)(k−4)(k−3)(k−2)(k−1)k − 1

πk

= h(k)
4831838208(k−8)(k−7)(k−6)(k−5)(k−4)(k−3)(k−2)(k−1)k ,

where

h(k) = (1551936317π−4831838208)k8−6(9233140069π−28991029248)k7

+36(23082723373π−73282879488)k6

+(21917218111488−6803742743478π)k5

+3(11008578303145π−36156645310464)k4

−36(2678342271163π−9030705610752)k3

+4(40804504586521π−142689014120448)k2

−48(2992568141683π−11031086628864)k
+48704929136640(π−4).
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We claim that h(k) > 0 for all k � 9. In fact, expanding h(k) at k = 9 yields

h(k) =
8

∑
w=0

lw(k−9)w,

where
l8 = 1551936317π−4831838208> 0,

l7 = 6(9390095735π−28991029248)> 0,

l6 = 860642662302π−2638183661568> 0,

l5 = 36(199774782073π−608811614208)> 0,

l4 = 35752010933325π−108469935931392> 0,

l3 = 18(5970985718545π−18061411221504)> 0,

l2 = 8(23622454376171π−71344507060224)> 0,

l1 = 768(228306889829π−689442914304)> 0,

l0 = 13824(4661206657π−14092861440)> 0. �

3. Sharp upper bounds of the complete elliptic integrals of the first kind

In this section, we provide some upper bounds for K (r) . Taking partial deriva-
tions on F(p1, p2, p3, p4, p5;r) with respect to pi yields

∂
∂ pi

F(p1, p2, p3, p4, p5;r)=
1
2
r2(i−1) ln

(
1− r2)(

1− r2) 1
2 (p1+p2r

2+p3r
4+p4r

6+p5r
8)

< 0,

namely, F(p1, p2, p3, p4, p5;r) is decreasing with respect to p1, p2, p3, p4 and p5 . As
a result, Theorem 1.1 is equivalent to the following theorem.

THEOREM 3.1. The inequality

2
π

K (r) � (1− r2)m(r) := Fm(r)

is valid for all r ∈ (0,1) , where function m(r) is defined by (1.2).

Proof. By employing Lemma 2.2, we have

1
6

(
m(r) ln(1− r2)

)3
+

1
24

(
m(r) ln(1− r2)

)4
+

1
120

(
m(r) ln(1− r2)

)5

>
r6

384
+

11r8

3072
+

1919r10

491520
+

9341r12

2359296
.

Noting that m(r) ln(1− r2) > 0 and

Fm(r) = (1− r2)m(r) = exp
(
m(r) ln(1− r2)

)
,
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we have

Fm(r)− 2
π

K (r) = exp
(
m(r) ln(1− r2)

)
− 2

π
K (r)

> 1+
5

∑
l=1

1
l!

(
m(r) ln(1− r2)

)l − 2
π

K (r)

> 1+m(r) ln(1− r2)+
1
2

(
m(r) ln(1− r2)

)2

+
r6

384
+

11r8

3072
+

1919r10

491520
+

9341r12

2359296
− 2

π
K (r).

Further using Lemma 2.2, we obtain

Fm(r)− 2
π

K (r)

> 1+m(r) ln(1− r2)+
1
2

(
m(r) ln(1− r2)

)2
+

r6

384
+

11r8

3072
+

1919r10

491520

+
9341r12

2359296
− 2

π
K (r)

= 1+
r2

4
+

7r4

64
+

13r6

192
+

791r8

16384
+

1523r10

40960
+

97349r12

2949120
+

∞

∑
k=7

R(k)r2k

+
1
2

((r2

4
+

7r4

64
+

13r6

192
+

791r8

16384

)2
+

∞

∑
k=6

R1(k)r2k +
∞

∑
k=10

R2(k)r2k
)

+
r6

384
+

11r8

3072
+

1919r10

491520
+

9341r12

2359296
− 2

π
K (r)

=
34777r12

11796480
+

10283r14

3145728
+

625681r16

536870912
+

∞

∑
k=7

R(k)r2k +
∞

∑
k=7

R1(k)r2k

+
∞

∑
k=10

R2(k)r2k −
∞

∑
k=6

Γ2( 1
2 + k)

Γ2( 1
2 )Γ2(k+1)

r2k

>
34777r12

11796480
+

10283r14

3145728
+

625681r16

536870912
+

∞

∑
k=7

R(k)r2k +
∞

∑
k=7

R1(k)r2k

−
∞

∑
k=6

Γ2( 1
2 + k)

Γ2( 1
2 )Γ2(k+1)

r2k

>
∞

∑
k=9

R(k)r2k +
∞

∑
k=9

R1(k)r2k −
∞

∑
k=9

Γ2( 1
2 + k)

Γ2( 1
2 )Γ2(k+1)

r2k > 0,

where the final step follows from Lemma 2.3. �

Several inequalities can be easily derived from Theorem 3.1, which we present in
the form of corollaries.
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COROLLARY 3.1. The following four inequalities hold for all r ∈ (0,1) .

2
π

K (r) � (1− r2)−
1
4 ,

2
π

K (r) � (1− r2)−
1
4+ r2

64 ,

2
π

K (r) � (1− r2)−
1
4+ r2

64 + r4
128 ,

2
π

K (r) � (1− r2)−
1
4+ r2

64 + r4
128+ 251r6

49152 .

Furthermore, we prove the following theorem.

THEOREM 3.2. The inequality

2
π

K (r) � (1− r2)mi(pi;r), r ∈ (0,1),

is valid for all i = 1,2,3,4,5 if and only if pi � p0,i , where

p0,1 = −1
2
, p0,2 =

1
32

, p0,3 =
1
64

, p0,4 =
251

24576
, p0,5 =

123
16384

.

Proof. The necessity follows from Theorem 1.1. We will now demonstrate the
sufficiency. Define Fm,i(pi;r) = (1− r2)mi(pi;r) .

(1) Expanding Fm1(p1;r)− 2
π K (r) yields

Fm,1(p1;r)− 2
π

K (r) =
(
1− r2) p1

2 + 123r8
32768+ 251r6

49152+ r4
128 + r2

64 − 2
π

K (r)

=
(
− p1

2
− 1

4

)
r2 +O(r4).

Since

lim
r→0+

r−2
((

1− r2) p1
2 + 123r8

32768 + 251r6
49152 + r4

128 + r2
64 − 2

π
K (r)

)
� 0,

we have p1 < − 1
2 .

(2) Noting that

Fm,2(p2;r)− 2
π

K (r) =
1
64

(1−32p2)r4 +O(r6),

and

lim
r→0+

r−4
(
Fm,2(p2;r)− 2

π
K (r)

)
=

1
64

(1−32p2) � 0,

we obtain p2 � 1
32 .
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(3) Noting that

Fm,3(p3;r)− 2
π

K (r) =
1

128
(1−64p3)r6 +O(r8),

and

lim
r→0+

r−6
(
Fm,3(p3;r)− 2

π
K (r)

)
=

1
128

(1−64p3) � 0,

we obtain p3 � 1
64 .

(4) Noting that

Fm,4(p4;r)− 2
π

K (r) =
251−24576p4

49152
r8 +O(r10),

and

lim
r→0+

r−8
(
Fm,4(p4;r)− 2

π
K (r)

)
=

251−24576p4

49152
� 0,

we obtain p4 � 251
24576 .

(5) Noting that

Fm,5(p5;r)− 2
π

K (r) =
123−16384p5

32768
r10 +O(r12),

and

lim
r→0+

r−10
(
Fm,5(p5;r)− 2

π
K (r)

)
=

123−16384p5

32768
� 0,

we obtain p5 � 123
16384 . �

4. Sharp lower bounds of Gauss arithmetic-geometric mean

The Gauss arithmetic-geometric mean (AGM) is defined by

AGM = AGM (x,y) = lim
n→∞

xn = lim
n→∞

yn,

where x0 = x , y0 = y and

xn+1 = A(xn,yn) =
xn + yn

2
, yn+1 = G(xn,yn) =

√
xnyn, n ∈ N. (4.1)

An interesting link between the complete elliptic integrals of the first kind K (r)
and Gauss arithmetic-geometric mean AGM(x,y) is given by Gauss’ formula

AGM
(
1,r′

)
=

π
2K (r)

. (4.2)

Hence, if there exists a function u(r) such that

2
π

K (r) < u(r)
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for all r ∈ (0,1) , then

AGM(1,r) >
1

u(
√

1− r2)
for all r ∈ (0,1) .

Then Theorem 1.1, 3.1 and 3.2 give the following theorems, respectively.

THEOREM 4.1. The inequality

AGM(1,r) > exp
(
G(p1, p2, p3, p4, p5;r) ln r

)
holds for all r ∈ (0,1) if

p1 � −1
2
, p2 � 1

32
, p3 � 1

64
, p4 � 251

24576
, p5 � 123

16384
,

where

G(p1, p2, p3, p4, p5;r) = −(p1 + p2 + p3 + p4 + p5)+ (p2 +2p3 +3p4 +4p5)r2

−(p3−3p4−6p5)r4 +(p4 +4p5)r6 − p5r
8.

THEOREM 4.2. The inequality

AGM(1,r) > exp

((21401
49152

+
1009r2

8192
− 187r4

2048
+

989r6

24576
− 123r8

16384

)
lnr

)

holds for all r ∈ (0,1) .

THEOREM 4.3. The inequality

AGM(1,r) > exp

((
− p1− 3175

49152
+

1009r2

8192
− 187r4

2048
+

989r6

24576
− 123r8

16384

)
lnr

)

holds for all r ∈ (0,1) if and only if p1 � −1/2 . The inequality

AGM(1,r) > exp

((22937
49152

− p2 +
( 753

8192
+ p2

)
r2 − 187r4

2048
+

989r6

24576
− 123r8

16384

)
lnr

)

holds for all r ∈ (0,1) if and only if p2 � 1/32 . The inequality

AGM(1,r) > exp

((22169
49152

− p3 +
( 753

8192
+2p3

)
r2 −

( 155
2048

− p3

)
r4

+
989r6

24576
− 123r8

16384

)
lnr

)

holds for all r ∈ (0,1) if and only if p3 � 1/64 . The inequality

AGM(1,r) > exp

(( 7301
16384

− p4 +
379r2

4096
+3p4r

2 − 497r4

8192
−3p4r

4

+
123r6

4096
+ p4r

6− 123r8

16384

)
lnr

)
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holds for all r ∈ (0,1) if and only if p4 � 251/24576 . The inequality

AGM(1,r) > exp

((10885
24576

− p5 +
763r2

8192
+4p5r

2 − 379r4

8192
−6p5r

4

+
251r6

24576
+4p5r

6 − p5r
8
)

lnr

)

holds for all r ∈ (0,1) if and only if p5 � 123/16384 .

5. Comparisons and conclusions

Previous studies have proposed several upper bounds for K (r) , such as M1(r) ,
M2(r) , M3(1,r) , and M4(89/69,r) , as mentioned in the introduction. Here, we com-
pare these upper bounds with our bound π/2(1−r2)m(r) in Theorem 1.1 through graph-
ical illustrations, as shown in Figure 2. The results indicate that our upper bound per-
forms exceptionally well over the interval r ∈ (0,1) , demonstrating higher accuracy
than the other bounds.

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5

0.59995 0.6 0.60005 0.6001

1.7507

1.7508

1.7509

1.751

1.7511

1.7512

Figure 2: Comparison of upper bounds for complete elliptic integral K (r)

Specifically, we have

M1(r)−K (r) ∼ 5log(2)
2

− π
2

+o(r2),

M2(r)−K (r) ∼ 2.274ln(2)− π
2

+o(r2),

M3(1,r)−K (r) ∼ π
24

r2 +o(r4),
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M4(89/69,r)−K (r) ∼ 437π
1075200

r6 +o(r8),

π
2

(1− r2)m(r) −K (r) ∼ 34781π
23592960

r12 +o(r14).

Moreover, numerical calculations at r = 0.2 yield

M1(0.2)−K (0.2) ≈ 0.157447,

M2(0.2)−K (0.2) ≈ 0.00459881,

M3(1,0.2)−K (0.2) ≈ 0.00538991,

M4(89/69,0.2)−K (0.2) ≈ 8.71761×10−8,

π
2

(1−0.22)m(0.2) −K (0.2) ≈ 2.02214×10−11.

However, we must also acknowledge that our upper bound performs less effectively
than some other bounds for r ∈ (0.8,1) , such as numerical calculations at r = 0.9 yield

M1(0.9)−K (0.9) ≈ 0.0414022,

M2(0.9)−K (0.9) ≈ 0.0080705,

M3(1,0.9)−K (0.9) ≈ 0.288959,

M4(89/69,0.9)−K (0.9) ≈ 0.00616693,

π
2

(1−0.92)m(0.9)−K (0.9) ≈ 0.0128702.
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[2] S. ANDRÁS AND A. BARICZ, Bounds for complete elliptic integrals of the first kind, Expo. Math., 28
(4): 357–364, 2010.

[3] R. E. GAUNT, Bounds for an integral involving the modified Lommel function of the first kind, Results
Math., 77 (4): Paper No. 159, 19, 2022.
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