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SHARP UPPER BOUNDS FOR THE COMPLETE
ELLIPTIC INTEGRALS OF THE FIRST KIND

ZHONG-XUAN MAO, JUN-PING HOU* AND JING-FENG TIAN

(Communicated by L. Mihokovic)

Abstract. The complete elliptic integral of the first kind, denoted by .7 (-), is a class of special
functions widely applied in mathematics, physics, and engineering. In this paper, we establish
an upper bound for this function, given by
/a 1 2 4 6 8
H(r) < = (1 — p2)zP14par+p3rtpar+psr®)
(n<Z-r)

for all r € (0,1), where the parameters satisfy p1 < p1o = —1/2, p» < po=1/32, p3 <
P30 = 1/64, ps < pso = 251/24576 and ps < psp = 123/16384. Meanwhile, our results
show that the parameters p1o, p20. p3.0, P40 and pso are optimal and cannot be replaced
by larger values. Finally, by utilizing the relationship between the complete elliptic integral of
the first kind and the Gauss arithmetic-geometric mean, we establish sharp lower bounds for the
Gauss arithmetic-geometric mean.

1. Introduction

Special functions are fundamental in mathematics, physics, and engineering, ow-
ing to their profound connections with complex analysis, number theory, and opti-
mization. Famous special functions include the Gaussian hypergeometric function
[8, 10, 14, 17], confluent hypergeometric function [4,9, 12], modified Bessel functions
[6,7,18,23], elliptic integrals [15, 16,22, 25], the Gamma and Beta functions [24,27],
as well as Lommel function [3, 11].

The complete elliptic integrals of the first kind ¢ (r) is defined by

z 1
H(r) =/ _—dr.
0 /1—r2sin?t

It can be expressed by the Gaussian hypergeometric function

n (11 ra TP(i+n)
H==F(=,=;” )| =2y —~2 7 2n 1.1
(=3 (2 2 r) 2n§0r2(%)r2(n+1)r (b

Mathematics subject classification (2020): Primary 33E05, 26E60; Secondary 40A99, 41A21.

Keywords and phrases: The complete integral of the first kind, upper bound, Gauss arithmetic-geo-
metric mean, inequality.

* Corresponding author.

© deav., Zagreb 1223

Paper IMI-19-79


http://dx.doi.org/10.7153/jmi-2025-19-79

1224 Z.-X.MAO, J.-P. HOU AND J.-F. TIAN

where

F(a,b;c;x) = ;ZE) B

c (a)k(b)kxk
|

is the Gaussian hypergeometric function,

I'x)= /oo s le5ds
0

is the gamma function and

(@)o=1, (a)y:=ala+1)---(a+k—1)=

is the Pochhammer symbol.

Since elliptic integrals cannot be expressed in terms of elementary functions such
as polynomials, trigonometric functions, or exponential functions, research has mainly
focused on establishing elementary upper and lower bounds for them. Qiu and Vamana-
murthy [13] provided the following upper bounds for J#"(r):

H(r) < (l—i—%) In (%) =M (r), re(0,1),

and

H(r) < 9.0961 (4

m n —) ::Mz(r), re (0,1),

r/
where here and after we denote that ¥/ = /1 —r2 € (0,1). Then, Alzer and Qiu [1]
proposed two double bounds for # (r), namely,

arth(r) \ ' _ 2 arth(r)\P 2
bk VA <z o (ath() )\ 2
( r ) = n%(r)\ - EM3([31,V), re(0,1),
with the best constants oy =3/4, f; =1 and

azln(r’) 2(1 — Otz) < g,%/(}") < ﬁzln(}”/) i 2(1 —ﬁz)

r—1 1+7/ T x o1 14+

, re(0,1),
with the best constants o =2/7, B, = 3/4, where

1.1
arth(r) = Eln 1 rr
—r

is the inverse hyperbolic tangent function. Furthermore, Yang et al. [20] proved that the
following inequality
1+ (6p —7)r marthr
p+(Sp-=5)r 2r

1+ (6qg —7)r marthr
=M. 0,1
q+(5q—6)}’/ 2 4((],}"), VE( ) )7

H(r) <

ifand only if p > /2 and ¢ < 89/69. Besides, some scholars have also provided vari-
ous bounds for % (r). For example, Andds and Baricz [2] established sharp bounds for
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 (r) using hypergeometric functions. Yang et al. [19] derived bounds involving loga-
rithmic functions for .# (r) by proving the monotonicity of the function 7+ r'Pe”’ (),
Yang and Tian [21] established some new sharp lower and upper bounds for the gen-
eralized elliptic integrals of the first kind. Moreover, Yang et al. [26] derived lower
bounds for % (r) using the inverse hyperbolic tangent function.

Inspired by these bounds, we aim to establish some highly accurate bounds near

r — 0T . For convenience, we introduce some notations here.

1 2 4 2515 1238

m(r>:_1+6_4+@+m+m’ (1.2)
ml(Plar):%_Fg_"%_F%—i_%’ (1.3)
o) =~ i+ B+ s (-
ma(pa,r) = _%+g_z+%+p42r6 3122%; (1.
ms(ps,r) =~k Dy 1 U0 psrt (1.7)

4 64 128 49152 27

and

F(p1.pa.ps, pa. psir) i= (1 — ) 20remartpsrtepartopsr®),

To be specific, we will prove the following theorem.

THEOREM 1.1. The inequality
2
E‘%/(r) <(1- r2)%(P1+p2r2+p3r4+p4r6+p5r8) = F(p1,p2,P3:Pa: Psir)

holds for all r € (0,1) if

1 1 1
g ) < = 5A < =
P1 X Po ) P2 X Po2 32 P3 X Poj3 64
- _ 251 - _ 123
P4x Po4= 24576’ P5Xx Pos = 16384

Moreover, we have X (r) < 5(1 — Y™ forall r € (0,1).

We will also prove that the parameters p1g, p20o, P30, P40 and psgo in above
theorem are optimal and cannot be replaced by larger values. Using Theorems 1.1, we
will establish some inequalities involving Gauss arithmetic-geometric mean.
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2. Lemmas
In this section, we present several lemmas that will be used in the next section.

LEMMA 2.1. Define functions R and Ry on N by

1 1 o 1 o 251 _ 123 k>5
R(k) := 4 T 6a(k—1) ~ 128(k—2)  49152(k—3)  32763(k—4)’ Z 9 @.1)
0, k<4

and

7 791
Ry(k) = {ZR(k_1)+aR(k_2)+l92R(k 3)+ tmaR(k—=4), k=6,

22
; k< (2.2)
Then we have
2T 13r6 79178 1523710 97349,12 &
In(1—r")=—+4 — R(or
m(r)In(1=r") = 7+ 2+ 797+ 16383 T 20960 T 2949120 +,§‘7 W

and
2

2 27 130 7918
<m(r)1n(l—r2)> ><Z+6_4+ T m) —l—ZRl koor>o.

Proof. According to the expansion of function In(1 — 7?) at r = 1, we obtain

oo r2k
—m() 3,
k=1 k
- i ﬁ B i 2k+2 B i 2k+4 251r2k+6 B oo 123r2k+8
Aak T A Teak &~ 128k & 49152k & 32768k

2T 130 N 7918 N 1523710 N 97349712
4 64 192 16384 40960 2949120
1 1 251 123
& &~y o~ wy e
S \4k 64(k—1) 128(k—2) 49152(k—3) 32768(k—4)
27 13/% 7918 1523710 97349712 &=

o 7t 2k
=764 " 792 T 16384 " 20960 2949120 +k§7 B

Meantime, we have
5\ 2
(m(r)n(1 =)

2Tt 135 7918 & )\’
- (z*a*m*m*%w‘)’ )
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7 6a T 192 T 16384

27 13/° 79148

r.mT R(k )

i 64 ST 192 + 16384) ZS (Z

7 13/° 7918 P 13r 791r >
Toxga) * (z )2

2

;

7 61 T 102 T 16334 192 T 16384
_|_

274 13/ 79148 hnd
(ZJ“E 192 16384) 2

_<r2 7 13 791r8>2
+

V

REMARK 2.1. Substituting R(k) into R;(k), Ry (k) changes into

0, k=1,2,3.4,5,
109846369 P
11833835520’ o
2329767599 7
Ry (k) = { 189341368320’ v
106313523593 P—g
7952337469440’ o
Ry (k
1 (k) i k>0,
9694278057984, (k — j)
0.04
0.03
230,02* 1
Nilig
0 0606090
0 5 10 15 20
k
0.015
0.01
i
0.005 [ T T T 1
0—o-—o0-o00o
0 5 10 15 20

Figure 1: Plots of functions R and R\
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where

1002746896395k — 34559510561332k°
+494700205483734k> — 3799171689851704k*

+ 16834596177554907k> — 42823415193408580k>
+57547130155136388k — 31273980479514768

Ry (k) =

see Figure 1.

LEMMA 2.2. The inequalities

( (F)n(1 2)>3 - ro N 2178 N 355710 N 1407,
m(r —r —
64 ' 1024 ' 16384 = 65536

4 I 710 857,12
<m(’)ln(l _’2)> ~ 256 T 1024 T 98304

o 3512
1024 " 16384’

and
5
(m(r) In(1— r2)> >
are valid for all r € (0,1).

Proof. Noting that

R — 1 1 251 123
T 4k 64(k—1) 128(k—2) 49152(k—3) 32768(k—4)
11 1 251 123 42916623

> — - — — — — = >
“ 4k 64k 128k 49152k 32768k 197230592k ~ 0,

we obtain

P2 N 7t N 1370 N 79178 N 1523710 N 97349712
4 64 ' 192 ' 16384 ' 40960 = 2949120°

m(r)In(1—r?) >

Thus, we have

3
(m lnl—r )

2 r6 7918 1523710 9734971243
Z+_ 2 T 16384 T 20060 2949120)
218 355r10 1407r'2
~ 54 T 1024 " 16384 T 65536

V

<m(r) In(1 — r2)>4

><r2 7t 13r6 7918 1523710 97349r12>4 710 85712

4 64 + + 16384 * 40960 + 2949120

~ 256 T 1024 T 98304°
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and

2 5

(m(r)in(1 =)
- (ﬁ_'_ﬁ_’_lSr(’ 79178 1523710 97349r12>5> 710 +35r12
1024 16384°

4 64 192 + 16384 + 40960 + 2949120

LEMMA 2.3. The inequality

(3 +k)

R(k)+ Ry (k) — —r2(%)r2(k+ D

isvalid for all k =9, where R(k) and R\ (k) are defined by (2.1) and (2.2), respectively.

Proof. Based on the following estimate [5] of the ratio of the gamma functions

T(k+ %) 1 1
Thrl) ~ /A
k+ %
we have
2(4+k
R0 +Ri(k) = mmiiey

_ 1551936317k%—55398840414k7+830978041428k°—6803742743478k7+33025734909435k*
- 4831838208 (k—8) (k—7) (k—6) (k—5) (k—4) (k—3) (k—2) (k— 1)k

+ —96420321761868k+163218018346084k>— 143643270800784k+48704929136640
4831838208 (k—8) (k—7) (k—6)(k—5) (k—4) (k—3)(k—2) (k— 1)k
2(4+k)
2(5)r2(k+1)
> 155193631748 —553988404 14k +830978041428k°—6803742743478k°+33025734909435k*
4831838208 (k—8) (k—7) (k—6) (k—>5) (k—4) (k—3) (k—2) (k— 1)k
+ —96420321761868k+163218018346084k2— 143643270800784k+48704929136640 1
4831838208 (k—8) (k—7)(k—6) (k—5) (k—4) (k—3) (k—2) (k—1)k Tk
_ h(k)
— 4831838208(k—8)(k—7)(k—6) (k—5) (k—4) (k—3) (k—2) (k—1)k

where

h(k) = (155193631771 — 4831838208)k® — 6(92331400697 — 28991029248)k”
+36(23082723373 71— 73282879488k
+(21917218111488 — 6803742743478 1)k
+3(110085783031457 — 36156645310464)k*
—36(2678342271163— 9030705610752)k
+4(40804504586521 71— 142689014120448)K>
—48(29925681416837— 11031086628864)k
+48704929136640(m— 4).
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We claim that i(k) > 0 for all k > 9. In fact, expanding h(k) at k=9 yields

8

W) = 3 1(k—9)",

w=0
where
I3 = 15519363177 — 4831838208 > 0,
I7 = 6(93900957357m — 28991029248) > 0,
le = 8606426623027 — 2638183661568 > 0,
Is =36(1997747820731 — 608811614208) > 0,
l4 = 357520109333251 — 108469935931392 > 0,
I3 = 18(5970985718545r— 18061411221504) > 0,
I, = 8(23622454376171w— 71344507060224) > 0,
I} =768(228306889829 — 689442914304) > 0,
lo = 13824(4661206657— 14092861440) > 0. O

3. Sharp upper bounds of the complete elliptic integrals of the first kind

In this section, we provide some upper bounds for ¢ (r). Taking partial deriva-
tions on F(p1, pa, p3, p4, ps;r) with respect to p; yields

J [ 5 (p1+par?+p3rt+par®+psr®
ap,F(pl,pz,ps,m,ps;r):§r2( Din (1 - 2) (1 - 2) 2ttt
l

)

namely, F(p1,p2, p3, pa, ps;r) is decreasing with respect to p1, pa, p3, p4 and ps. As
aresult, Theorem 1.1 is equivalent to the following theorem.

THEOREM 3.1. The inequality
2
~H () < (=" = Fu(r)
is valid for all r € (0, 1), where function m(r) is defined by (1.2).

Proof. By employing Lemma 2.2, we have

é( r)In( 1—1’ ) -|-%(m(r)ln(l—r2)>4+$<m(r)ln(l—r2)>5

- s N 112 +1919r10+ 934112
384 3072 491520 2359296

Noting that m(r)In(1 —r?) > 0 and

Fa(r) = (1= 2)"0) = exp (m(r)n(1 ~ 7))
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2 2
Fulr) = 2 (r) = exp (m(r) In(1 = %)) = Z¢ (1
L2
> 1+2“( (1 —r )) — A ()
2 1 2 2
> 1+m(r)In(1 —r )—|—§<m(r)ln(1—r ))

O 118 1919/ 9341712 2
— + + + — ZH(r).
384 3072 491520 2359296 =

+

Further using Lemma 2.2, we obtain

1 2S5 118 191910
1 In(1— 2 —( In(1— 2) =

> Lm(r)In(l=r%) &3 {(m(r)In(l =) ) + 322+ 3575 + J91520
9341712 2
* 2350006 7 )

27 135 7918 1523710 9734912 3 Rk

=1 -
+ + 64 + 192 + 16384+ 40960 + 2949120

i k=
+1 ((r _|_7L_|_ 13,0 791r ) ZRI r2k+ 2 Rg(k)r2k>

2\\7 "6 T T2 T Te3sa o

s N 118 N 1919r10+ 9341r12 2%( )
o —_ r
384 ' 3072 491520 ' 2359296 7«

34777712 1028374 625681716 & e "
— R(k R (k

11706380 + 3145738 " 536870013 T 2 KK +§ 1o

oo 2(1 -l—k)
+ Ry (k) — —r2k
2, Ralk) ErOrE+)

k=10
3477712 10283r14 625681716 & >
R(k 2k R (k 2k
11796480 3145728 +536870912+k§7 (k)r +k§7 (k)

o 2(1
B (5 +k) 2k
ST ()T (k+1)
= = = T2(L4k)
> Y RO+ YR -y ——2 >0,
R A Ty
where the final step follows from Lemma 2.3. [

Several inequalities can be easily derived from Theorem 3.1, which we present in
the form of corollaries.
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COROLLARY 3.1. The following four inequalities hold for all r € (0,1).

-

JH(r) < (1—r2)7 ,

SESEEN)

e
A%

,%/(r)g(l—rz)_ T,

(SN

r4
H ()< (1—P2) itatis,

(SR
to 2%
0|

4 6
ZH(r) < (1-A) et st B,
T

Furthermore, we prove the following theorem.
THEOREM 3.2. The inequality
E _ 2\mi(pisr)
A ()< (=" e (0,1),

is valid for all i =1,2,3,4,5 if and only if p; < po.i, where

_ - - 1 - 251 - 123
Po,1 = bk P0,2—32, P0,3—64, P0,4—24576, p0’5_16384'

Proof. The necessity follows from Theorem 1.1. We will now demonstrate the
sufficiency. Define Fy, ;(pi;r) = (1 — r2)"iPisr)
(1) Expanding Fyi (p1:r) — 2. (r) yields

2

pLonyd 250 A4 20 9o
Fo1(p1ir) — E%(r) = (1 _r2) > Pt pm st

()

Since

pL 1238 250 A2
lim 72 ( (1 o r2)7+32728+491g2+1rﬁ+2_4 _ E%(r)) >0
= b

r—0+

we have p; < —%.

(2) Noting that
Fualpair) = 2 () = — (1= 32p2)r* + 0(5),
’ T 64
and
Tim (Fmg(pg;r) - %%(r)) - 6i4(1 —32p) >0,

we obtain py < 3%
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(3) Noting that

2 1
Fn3(p3ir) = —A(r)

(1 _ 6 8
p = 128(1 64p3)r’ 4+ O0(r°),

and

2 1
lim 6 (F - Z ) — —(1—64p3) >
Jim, 1 m3(p3ir) = —H(r) | = 172 (1-64p3) >0,

we obtain p3 < 6i4.

(4) Noting that
2 251 —24576p4 ¢ 10
F, )= A= —— g 00,
ma(pair) = — A (r) w5 O
and 2 25124576
. —8 cr) — = _7p4
rlir(%r (Fm,4(p47r) n%(r)) - 49152 -
we obtain p4 < %-
(5) Noting that
2 123 — 16384ps |, 12
Fns(psir) — — — 73768 o,
spsir) = 2 # (1) e O

and

o 2 123 — 16384ps

lim 10 (Fm ) — = ) ==
T spsir) = 2 A1) 32768 ’

r—0t

we obtain ps < %. O

4. Sharp lower bounds of Gauss arithmetic-geometric mean

The Gauss arithmetic-geometric mean (AGM) is defined by
AGM = AGM (x,y) = lim x, = lim y,,

where xp = x, yo =y and

Xn+ Yn

Xn1 = A (Xp,Yn) = 7 Ynt1 = G (Xn,yn) = VXuyn, neN. “4.1)

An interesting link between the complete elliptic integrals of the first kind ¢ (r)
and Gauss arithmetic-geometric mean AGM(x,y) is given by Gauss’ formula

AGM (1,/) = 4.2)

2¢(r)

Hence, if there exists a function u(r) such that

%,%/(r) <u(r)
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forall r € (0,1), then
1

AGM(1,r) >

forall r € (0,1).
Then Theorem 1.1, 3.1 and 3.2 give the following theorems, respectively.

THEOREM 4.1. The inequality
AGM(1,r) > exp (G(pl,pz,pa,m,ps;r)lnr)

holds for all r € (0,1) if

1 1 1 _ 251 _ 123
PUS ™5 P23 P3S g PAS 5760 PSS Jg3ga0

where
G(p1,p2, D3, PasPs;7) = —(P1+ P2+ p3+ patps)+ (p2+2p3+3pa+4ps)r
—(p3 —3pa—6ps)r* + (pa+4ps)r® — psr®.

THEOREM 4.2. The inequality

21401 1009-2 1874 989/0 1238
AGM(1, _ _ )1
(1,r) > exp ((49152 T 8192 T 2048 T 24576 16384 “r>

holds for all r € (0,1).

THEOREM 4.3. The inequality

3175 1009/ 1874 989,65  123/%
AGM(1 (— - - - I
GM(1,r) >eXp< P1= 39152 " 8192 2048 T 24576 16384) nr)

holds for all r € (0,1) if and only if py < —1/2. The inequality

22937 753 18774 989/5  123/8
AGM(1, (— _ (— ) 2_ _ )1
( ’)>eXp< w152 P2 \5192 772)" 2048 T 24576 16384) "

holds for all r € (0,1) if and only if py < 1/32. The inequality

22169 753 155
N
( ’)>6Xp< w152 P2 5102 7))~ \qoas ~13)"

989s0 1238
+ ) Inr
<

24576 16384
holds for all r € (0,1) if and only if p3

7301 3792 497r4
AGM(1, (Seaes — P4+ Spae + 304 — o —3par®
(L,r) > eXp( 16384 74T 2006 TPV T grop P

123/° 6 12378
+ + par >1nr

1/64. The inequality

4096 ' P*" T 16384
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holds for all r € (0,1) if and only if ps < 251/24576. The inequality

10885 76372 37974
AGM(1 <— Aps® — 20 gt
GM(1,r) >eXp< 24576 5T g10g TP T gigg ~ Ops
MESLLA )m
24576 pst® —pst® ) Inr

holds for all r € (0,1) if and only if ps < 123/16384.

5. Comparisons and conclusions

Previous studies have proposed several upper bounds for % (r), such as M;(r),
My (r), M5(1,r), and M4(89/69,r), as mentioned in the introduction. Here, we com-
pare these upper bounds with our bound 7 /2(1— 2)"(") in Theorem 1.1 through graph-
ical illustrations, as shown in Figure 2. The results indicate that our upper bound per-
forms exceptionally well over the interval r € (0,1), demonstrating higher accuracy
than the other bounds.

451 X0
- = = My(r)
—————— My(r)
P Ms(1,7)
_______ M4(89/69,7)
17511 =t Our: 7/2(1 — TQ)m(r)
55l 1751

1.7509

5117508 /
1.7507

0.59995 0.6 0.60005 0.6001

251

Figure 2: Comparison of upper bounds for complete elliptic integral ¢ (r)

Specifically, we have

() - ()~ DT,

Ma(r) — K (r) ~2.2741n(2) — g +o(r?),

Ms(1,7) = (r) ~ 2 4 0(r*),
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437w
M4(89/69,r)—<%/(r) ~ m}’ﬁ 0(}’8),
T o2y _ 348Im 4o 14
(L= =) ~ 33557960 ()

Moreover, numerical calculations at r = 0.2 yield

M;(0.2) — #(0.2) ~ 0.157447,
M5(0.2) — #(0.2) ~ 0.00459881,
M3(1,0.2) — ¢ (0.2) ~ 0.00538991,
M4(89/69,0.2) — ¢ (0.2) ~ 8.71761 x 107%,
z ) - (02) ~

_(1 022)11102 H

5 2.02214 x 1071,

However, we must also acknowledge that our upper bound performs less effectively

than some other bounds for r € (0.8, 1), such as numerical calculations at r = 0.9 yield
M,;(0.9) — 2 (0.9) ~ 0.0414022,
M>(0.9) — 2#(0.9) =~ 0.0080705,
M5(1,0.9) — 2#(0.9) ~ 0.288959,
M4(89/69,0.9) — .2 (0.9) ~ 0.00616693,
5(1 —0.9%)"09 _ 2(0.9) ~ 0.0128702.
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