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LOGARITHMICALLY ABSOLUTE MONOTONICITY OF

THE RATIO BETWEEN NORMALIZED REMAINDERS

FOR A FUNCTION IN AN INTEGRAL REPRESENTATION

OF THE RECIPROCAL OF THE GAMMA FUNCTION

YE SHUANG, CHUN-YING HE AND FENG QI ∗

(Communicated by L. Mihoković)

Abstract. Let Φ(t) = 1− t
tant + ln t

sint for t ∈ (−π,π) . In the paper, in light of a theorem on
signs of coefficients in power series and with aid of the Wronski formula, the authors prove that
the normalized remainder T2n+1[Φ(t)] for n ∈ N0 is a logarithmically absolutely monotonic
function in t ∈ (0,π) and a logarithmically completely monotonic function in t ∈ (−π,0) , that

the ratio T2n+3 [Φ(t)]
T2n+1 [Φ(t)] for n∈N0 is an absolutely monotonic function in t ∈ (0,π) and a completely

monotonic function in t ∈ (−π,0) , and that the normalized remainder T2n+1[Φ(t)] and the ratio
T2n+3[Φ(t)]
T2n+1[Φ(t)] for n ∈ N0 can be extended analytically into the complex z -plane and are analytic

in the disc |z| < π . Moreover, the authors expand 1
Φ(t) for 0 < |t| < π into a Laurent series.

These results verify a guess and generalize the corresponding ones in a paper published on Math.
Inequal. Appl. 28 (2025), no. 2, 343–354.

1. Introduction

We first recall from [1, Section 5], [11, Definition 1], [12, Section 1], [15, Sec-
tion 1], [18, Sections 1.9 and 1.10], [24, Remarks 2 and 4], and [31, Section 1] the
definition of Qi’s normalized remainders of the Maclaurin expansions of functions as
follows.

DEFINITION 1. Let f be a real infinitely differentiable function on an interval
I ⊆ R such that the origin 0 is an interior point of I . If f (n+1)(0) �= 0 for some
n ∈ N0 = {0}∪N = {0,1,2, . . .} , then we call the function

Tn[ f (x)] =

⎧⎪⎨
⎪⎩

1

f (n+1)(0)
(n+1)!

xn+1

[
f (x)−

n

∑
j=0

f ( j)(0)
x j

j!

]
, x �= 0

1, x = 0

(1)
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for x ∈ I the n th normalized remainder or the n th normalized tail of the Maclaurin
expansion of the function f .

The normalized remainders have been investigated in [14, 27], for example.
We also recall from the monograph [21] and [25, Chapter IV] that

1. an infinitely differentiable real function f (x) defined on an interval I is said
to be absolutely monotonic in x ∈ I if and only if all of its derivatives satisfy
f (k)(x) � 0 for k ∈ N0 and x ∈ I ,

2. an infinitely differentiable function f (x) defined on I is said to be completely
monotonic in x ∈ I if and only if all of its derivatives satisfy (−1)k f (k)(x) � 0
for k ∈ N0 and x ∈ I .

A function f (x) is completely monotonic on (a,b) if and only if it is absolutely mono-
tonic on (−b,−a) ; see [25, p. 145, Definition 2c].

In [4, Definition 1] and [19, Definition 1], the notions of logarithmically absolutely
(completely) monotonic functions were defined as follows:

1. A positive function f (x) is said to be logarithmically absolutely monotonic on
an interval I if it has derivatives of all orders and [ln f (x)](k) � 0 for x ∈ I and
k ∈ N .

2. A positive function f (x) is said to be logarithmically completely monotonic on
an interval I if it has derivatives of all orders and (−1)k[ln f (x)](k) � 0 for x ∈ I
and k ∈ N .

In [4, Theorem 1], the authors proved that a logarithmically absolutely monotonic
function on an interval I is also absolutely monotonic on I , but not conversely. In [2],
[4, Theorem 4], and [19, Theorem 1], the authors proved that a logarithmically com-
pletely monotonic function on an interval I is also completely monotonic on I , but not
conversely.

The classical Euler gamma function Γ(z) can be defined [23, Chapter 3] by

Γ(z) = lim
n→∞

n!nz

∏n
k=0(z+ k)

, z ∈ C\ {0,−1,−2, . . .}.

It is general knowledge for scientists that the gamma function Γ(z) has had very exten-
sive applications in mathematical sciences, including physics and engineering, in the
past centuries. In [23, p. 71, Eq. (3.38)], we find the integral representation

1
Γ(z)

=
ez z1−z

π

∫ π

0
e−zΦ(t) dt, ℜ(z) � 0,

where

Φ(t) = 1− t
tant

+ ln
t

sin t
=

∞

∑
j=1

2 j +1
2 j

|B2 j| (2t)
2 j

(2 j)!
(2)
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for |t| < π and B2 j denotes the classical Bernoulli numbers generated [23, p. 3] by

1
T0[ex]

=
x

ex−1
=

∞

∑
j=0

Bj
x j

j!
= 1− x

2
+

∞

∑
j=1

B2 j
x2 j

(2 j)!
, |x| < 2π . (3)

In the paper [30], the authors considered the normalized remainder

T2n+1[Φ(t)] =

⎧⎪⎨
⎪⎩

2n+2
2n+3

1
|B2n+2|

(2n+2)!
(2t)2n+2

[
Φ(t)−

n

∑
j=1

2 j +1
2 j

|B2 j| (2t)
2 j

(2 j)!

]
, t �= 0

1, t = 0

for n ∈ N0 and t ∈ (−π ,π) .
It is obvious that

T2n+1[Φ(t)] =
2n+2
2n+3

(2n+2)!
|B2n+2|

∞

∑
j=0

2 j +2n+3
2 j +2n+2

|B2 j+2n+2|
(2 j +2n+2)!

(2t)2 j (4)

for n ∈ N0 and |t| < π . Hence, it is easy to see that Qi’s normalized remainder
T2n+1[Φ(t)] for n ∈ N0 is even in t ∈ (−π ,π) , absolutely monotonic in t ∈ (0,π) ,
and completely monotonic in t ∈ (0,π) .

In the paper [30], the authors mainly obtained the following results:

1. For n ∈ N0 , the normalized remainder T2n+1[Φ(t)] is logarithmically convex in
t ∈ (−π ,π) . See [30, Theorem 1].

2. For n ∈ N0 , the ratio T2n+3[Φ(t)]
T2n+1[Φ(t)] is decreasing in t ∈ (−π ,0) and increasing in

t ∈ (0,π) . See [30, Theorem 2].

In [30, Remark 5], the authors guessed that the ratio T2n+3[Φ(t)]
T2n+1[Φ(t)] for n ∈ N0 should be

convex, even logarithmically convex, in t ∈ (−π ,π) . For example, when n = 0, we
have

T3[Φ(t)]
T1[Φ(t)]

= 9

[
2
t2

− 1
Φ(t)

]

= 9

(
2
t2

− 1
t2
2 + t4

36 + t6
405 + t8

4200 + t10

42525 + · · ·

)

=
18
t2

(
1− 1

1+ t2
18 + 2t4

405 + t6
2100 + 2t8

42525 + · · ·

)

= 1+
t2

30
+

101t4

56700
+

109t6

1020600
+

15979t8

2357586000
+ · · ·

for t ∈ (−π ,π) , where we used the Maclaurin expansion in (2). This implies that the

ratio T3[Φ(t)]
T1[Φ(t)] is possibly convex in t ∈ (−π ,π) .
In this paper, we will prove the following results which are stronger than the above

guess and [30, Theorem 1 and 2].
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THEOREM 1. For n ∈ N0 , the normalized remainder T2n+1[Φ(t)] is a logarith-
mically absolutely monotonic function in t ∈ (0,π) and a logarithmically completely
monotonic function in t ∈ (−π ,0) .

For n ∈ N0 , the function 1
t

dlnT2n+1[Φ(t)]
dt is an absolutely monotonic function in

(0,π) and a completely monotonic function in (−π ,0) .

For n∈N0 , the normalized remainder T2n+1[Φ(t)] and the function 1
t

d lnT2n+1[Φ(t)]
dt

can be extended analytically into the complex z-plane and are analytic in the disc
|z| < π .

THEOREM 2. For n ∈ N0 , the ratio T2n+3[Φ(t)]
T2n+1[Φ(t)]

1. is an absolutely monotonic function in t ∈ (0,π) ,

2. is a completely monotonic function in t ∈ (−π ,0) ,

3. can be extended analytically into the complex z-plane and is analytic in the disc
|z| < π .

We will also establish a Laurent series expansion of the function 1
Φ(t) for 0 < |t|<

π , whose coefficients are expressed in terms of determinants.

THEOREM 3. The function 1
Φ(t) for 0 < |t| < π can be expanded into

1
Φ(t)

=
2
t2

+
∞

∑
j=0

b j+1t
2 j

=
2
t2

− 1
9
− 1

270
t2− 101

510300
t4− 109

9185400
t6− 15979

21218274000
t8−·· ·

such that b j < 0 for j ∈ N , where b j is a j× j order determinant defined by

b j = (−1) j2 j+1
∣∣σi,k

∣∣
j× j , j ∈ N, (5)

σi,k =

{
ai−k+1, i− k+1 � 0;

0, i− k+1 < 0,

and

a� =
2�+3
�+1

22�+1

(2�+2)!
|B2�+2|, � ∈ N0.
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2. Lemmas

For smoothly proceeding, we recall the following lemmas.

LEMMA 1. ([30, Lemma 3]) The sequence

j(2 j +3)
[( j +1)(2 j +1)]2

∣∣∣∣B2 j+2

B2 j

∣∣∣∣
is increasing in j ∈ N0 .

LEMMA 2. ([8, Theorems 1 and 2]) Let

k(t) =
∞

∑
�=0

k�t
�, q(t) =

∞

∑
�=0

q�t
�, p(t) =

∞

∑
�=0

p�t
�

be formal series such that k(t) = q(t)
p(t) and p� > 0 for � ∈ N0 .

1. If both of the sequences p�+1
p�

and q�
p�

are increasing in � ∈ N0 , then k� � 0 for
� ∈ N .

2. If the sequence p�+1
p�

is increasing in � ∈ N0 and the sequence q�
p�

is decreasing
in � ∈ N0 , then k� � 0 for � ∈ N .

REMARK 1. The case q(t) = 1 and k� � 0 of Lemma 2 appeared in [5, p. 68,
Theorem 22] and [9, 22], see also [6, p. 13, Problem 6] and [10, p. 331]. This special
case was applied in [13, 16, 17]. Lemma 2 was modified in [28, Proposition 2].

3. Proofs of theorems

We are now in a position to prove our theorems.

Proof of Theorem 1. Directly computing yields

d lnT2n+1[Φ(t)]
dt

=
T ′
2n+1[Φ(t)]

T2n+1[Φ(t)]

=

∞

∑
j=1

2 j +2n+3
2 j +2n+2

|B2 j+2n+2|
(2 j +2n+2)!

22 j(2 j)t2 j−1

∞

∑
j=0

2 j +2n+3
2 j +2n+2

|B2 j+2n+2|
(2 j +2n+2)!

22 jt2 j

= 8t

∞

∑
j=0

2 j +2n+5
j +n+2

|B2 j+2n+4|
(2 j +2n+4)!

22 j( j +1)t2 j

∞

∑
j=0

2 j +2n+3
j +n+1

|B2 j+2n+2|
(2 j +2n+2)!

22 jt2 j
,
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where we used the series representation (4). Let

pn( j) =
2 j +2n+3
j +n+1

|B2 j+2n+2|
(2 j +2n+2)!

22 j

and

qn( j) =
2 j +2n+5
j +n+2

|B2 j+2n+4|
(2 j +2n+4)!

22 j( j +1)

for j,n ∈ N0 . Then

qn( j)
pn( j)

=
j +1

2(2 j +2n+3)
( j +n+1)(2 j +2n+5)
( j +n+2)2(2 j +2n+3)

∣∣∣∣B2 j+2n+4

B2 j+2n+2

∣∣∣∣
and

pn( j +1)
pn( j)

=
2( j +n+1)(2 j +2n+5)
( j +n+2)2(2 j +2n+3)2

∣∣∣∣B2 j+2n+4

B2 j+2n+2

∣∣∣∣
for j,n ∈ N0 . Making use of Lemma 1, we see that the sequences qn( j)

pn( j) and pn( j+1)
pn( j)

for n ∈ N0 are increasing in j ∈ N0 . Employing Lemma 2, we conclude that

1
8t

dlnT2n+1[Φ(t)]
dt

=
(n+1)(2n+5)

2(n+2)2(2n+3)2

∣∣∣∣B2n+4

B2n+2

∣∣∣∣+ ∞

∑
j=1

kn( j)t2 j

such that kn( j) � 0 for j ∈ N and n ∈ N0 . This means that the function 1
t

d lnT2n+1[Φ(t)]
dt

is absolutely monotonic in t ∈ (0,π) and

dlnT2n+1[Φ(t)]
dt

=
4(n+1)(2n+5)
(n+2)2(2n+3)2

∣∣∣∣B2n+4

B2n+2

∣∣∣∣t +8
∞

∑
j=1

kn( j)t2 j+1

for n ∈ N0 is absolutely monotonic in t ∈ (0,π) . Hence, the normalized remainder
T2n+1[Φ(t)] for n ∈ N0 is logarithmically absolutely monotonic in t ∈ (0,π) .

Since the normalized remainder T2n+1[Φ(t)] and the function 1
t

d lnT2n+1[Φ(t)]
dt are

even, they are logarithmically completely monotonic function and completely mono-
tonic function in t ∈ (−π ,0) , respectively.

By [25, p. 146, Theorem 3a], we see that the normalized remainder T2n+1[Φ(t)]
and the function 1

t
d lnT2n+1[Φ(t)]

dt can be extended analytically into the complex z-plane
and they are analytic in the disc |z| < π . The proof of Theorem 1 is complete. �

Proof of Theorem 2. It is easy to see that

T2n+1[Φ(t)] =
2n+2
2n+3

(2n+2)!
|B2n+2|

∞

∑
j=0

2 j +2n+3
2 j +2n+2

|B2 j+2n+2|
(2 j +2n+2)!

(2t)2 j

for n ∈ N0 and |t| < π . Then

T2n+3[Φ(t)]
T2n+1[Φ(t)]

=
[(2n+3)(2n+4)]2

(2n+2)(2n+5)
|B2n+2|
|B2n+4|

∑∞
j=0

2 j+2n+5
2 j+2n+4

|B2 j+2n+4|
(2 j+2n+4)!(2t)

2 j

∑∞
j=0

2 j+2n+3
2 j+2n+2

|B2 j+2n+2|
(2 j+2n+2)!(2t)

2 j
.
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Let

q j,n =
2 j +2n+5
2 j +2n+4

|B2 j+2n+4|
(2 j +2n+4)!

and

p j,n =
2 j +2n+3
2 j +2n+2

|B2 j+2n+2|
(2 j +2n+2)!

for j,n ∈ N0 . The ratios

p j+1,n

p j,n
=

(2 j +2n+2)(2 j +2n+5)
[(2 j +2n+3)(2 j +2n+4)]2

|B2 j+2n+4|
|B2 j+2n+2| =

q j,n

p j,n

for j,n∈ N0 . By virtue of Lemma 1, we see that the ratios
p j+1,n
p j,n

and
q j,n
p j,n

is increasing

in j ∈ N0 for fixed n ∈ N0 . In view of Lemma 2, we see that the series expansion

T2n+3[Φ(t)]
T2n+1[Φ(t)]

=
2[(2n+3)(n+2)]2

(n+1)(2n+5)
|B2n+2|
|B2n+4|

∞

∑
j=0

k j,n(2t) j, |t| < π

satisfies k j,n � 0 for j ∈ N and n ∈ N0 . It is clear that

k0,n = lim
t→0

T2n+3[Φ(t)]
T2n+1[Φ(t)]

=
limt→0 T2n+3[Φ(t)]
limt→0 T2n+1[Φ(t)]

= 1.

Accordingly, the ratio T2n+3[Φ(t)]
T2n+1[Φ(t)] for n ∈ N0 is absolutely monotonic in t ∈ (0,π) .

By [25, p. 145, Definition 2c], it is completely monotonic in t ∈ (−π ,0) . By [25,
p. 146, Theorem 3a], it can be extended analytically into the complex z-plane and the
ratio T2n+3[Φ(z)]

T2n+1[Φ(z)] is analytic in the disc |z|< π . The proof of Theorem 2 is complete. �

Proof of Theorem 3. In [6, p. 17, Theorem 1.3], [7, p. 347], [20, Section 2], and
the old book [26] in 1881, we find the following proposition.

If a0 �= 0 and P(x) = a0 + a1x + a2x2 + · · · is a formal series, then the
coefficients of the reciprocal series 1

P(x) = b0 +b1x+b2x2 + · · · are given

by b0 = 1
a0

and

b j =
(−1) j

a j+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 · · · 0 0 0
a2 a1 a0 0 · · · 0 0 0
a3 a2 a1 a0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
a j−2 a j−3 a j−4 a j−5 · · · a1 a0 0
a j−1 a j−2 a j−3 a j−4 · · · a2 a1 a0

a j a j−1 a j−2 a j−3 · · · a3 a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, j ∈ N. (6)

We call the determinantal formula (6) the Wronski formula. It was cited and applied
in [13, Lemma 1], [16, Lemma 2.1], and [17, Lemma 2.1].
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From the series expansion (2), it follows that

t2

Φ(t)
=

1

∑∞
j=0

2 j+3
j+1

22 j+1

(2 j+2)! |B2 j+2|t2 j
=

∞

∑
j=0

b jt
2 j.

Taking a j = 2 j+3
j+1

22 j+1

(2 j+2)! |B2 j+2| for j ∈ N0 in the determinantal formula (6) yields the
determinantal formula (5) for j ∈ N . Then we obtain

1
Φ(t)

=
1
t2

∞

∑
j=0

b jt
2 j

=
b0

t2
+

∞

∑
j=1

b jt
2 j−2

=
2
t2

− 1
9
− 1

270
t2− 101

510300
t4− 109

9185400
t6− 15979

21218274000
t8−·· ·

for 0 < |t| < π .
From Theorem 2, we immediately deduce that the function 2

t2
− 1

Φ(t) is absolutely

monotonic on (0,π) and completely monotonic on (−π ,0) . Consequently, the se-
quence b j for j ∈ N is negative. The proof of Theorem 3 is complete. �

4. Guesses and more remarks

4.1. Guesses on T2n−1
[
tan2 x

]
In the paper [3, p. 798], we find the Maclaurin power series expansion

tan2 x =
∞

∑
j=1

22 j+2
(
22 j+2−1

)
(2 j +1)

(2 j +2)!
|B2 j+2|x2 j

= x2 +
2x4

3
+

17x6

45
+

62x8

315
+

1382x10

14175
+

21844x12

467775
+ · · ·

(7)

for |x| < π
2 , where the Bernoulli numbers Bj are generated by (3). Making use of the

series expansion (7) and taking f (x) = tan2 x in (1) lead to the normalized remainder

T2n−1
[
tan2 x

]
=⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(2n+2)!

[
tan2 x−

n−1

∑
j=1

22 j+2
(
22 j+2−1

)
(2 j +1)

(2 j +2)!
|B2 j+2|x2 j

]

22n+2(22n+2−1)(2n+1)|B2n+2|x2n , x �= 0

1, x = 0

(8)

for n∈ N and |x|< π
2 . For more information on normalized remainders Tn

[
tan2 x

]
and

T2n−1
[
tan2 x

]
= T2n−2

[
tan2 x

x

]
= T2n−3

[(
tanx

x

)2]
= T2n−1

[
sec2 x

]
, n � 2,
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please refer to [14, 27, 31] and closely related references.
Theorem 1 in [31] reads that the normalized remainder T2n−1

[
tan2 x

]
for n ∈ N is

a logarithmically convex function in x ∈ (− π
2 , π

2

)
. In [31, Theorem 2], the logarithm

lnT2n−1
[
tan2 x

]
for n ∈ N was expanded into a Maclaurin power series. In [12, The-

orem 1.1], the ratio T2n+1[tan2 x]
T2n−1[tan2 x] for n ∈ N was proved to be increasing in x ∈ (− π

2 ,0
)

and decreasing in x ∈ (0, π
2

)
.

In [12, Remark 4.1], the authors proposed the following guess.

GUESS 1. ([12, Remark 4.1]) The ratio T2n+1[tan2 x]
T2n−1[tan2 x] for n ∈ N is concave in x ∈(− π

2 , π
2

)
.

We now propose one more stronger guess as follows.

GUESS 2. For n∈N , the ratio T2n−1[tan2 x]
T2n+1[tan2 x] is completely monotonic in x∈ (− π

2 ,0
)

and is absolutely monotonic in x ∈ (0, π
2

)
.

REMARK 2. The normalized remainder T2n−1
[
tan2 x

]
defined by (8) for n ∈ N

has a series representation

T2n−1
[
tan2 x

]
=

(2n+2)!
(2n+1)(22n+2−1)|B2n+2|

×
∞

∑
j=0

(2n+2 j +1)
(
22n+2 j+2−1

)
(2n+2 j +2)!

|B2n+2 j+2|(2x)2 j (9)

for |x| < π
2 . From the series representation (9), it follows that

T2n−1[tan2 x]
T2n+1[tan2 x]

=
1

2(2n+1)(n+2)
22n+4−1
22n+2−1

∣∣∣∣B2n+4

B2n+2

∣∣∣∣

×

∞

∑
j=0

(2n+2 j +1)(22n+2 j+2−1)
(2n+2 j +2)!

|B2n+2 j+2|(2x)2 j

∞

∑
j=0

(2n+2 j +3)(22n+2 j+4−1)
(2n+2 j +4)!

|B2n+2 j+4|(2x)2 j

for n ∈ N and |x| < π
2 .

Let

qn( j) =
(2n+2 j +1)

(
22n+2 j+2−1

)
(2n+2 j +2)!

|B2n+2 j+2|

and pn( j) = qn( j +1) for n ∈ N and j ∈ N0 . Then

pn( j +1)
pn( j)

=
1

2(2n+2 j +3)(n+ j +3)
22n+2 j+6−1
22n+2 j+4−1

∣∣∣∣B2n+2 j+6

B2n+2 j+4

∣∣∣∣
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and
qn( j)
pn( j)

= 2(2n+2 j +1)(n+ j +2)
22n+2 j+2−1
22n+2 j+4−1

∣∣∣∣B2n+2 j+2

B2n+2 j+4

∣∣∣∣
for n ∈ N and j ∈ N0 . Since the sequence

1
(2 j−1)( j +1)

22 j+2−1
22 j −1

∣∣∣∣B2 j+2

B2 j

∣∣∣∣
is decreasing in j ∈ N , see [12, Lemma 2.1], we conclude that the sequence pn( j+1)

pn( j)

for fixed n ∈ N is decreasing in j ∈ N0 and that the sequence qn( j)
pn( j) for fixed n ∈ N is

increasing in j ∈ N0 . This means that we cannot use Lemma 2 to confirm Guess 2.

4.2. Guesses on Tn[ex]

In the papers [1, 11, 15, 29] and [18, Section 1.7], the normalized remainder
Tn[ex] was investigated systematically. The normalized remainder Tn[ex] for n ∈ N0

was proved to be logarithmically convex and absolutely monotonic in x ∈R and the ra-
tio Tn+1[ex]

Tn[ex] for n∈N0 was verified to be decreasing in x∈R . We propose the following
guess.

GUESS 3. For n ∈ N0 , the normalized remainder Tn[ex] is a logarithmically ab-

solutely monotonic function in x ∈ R . For n ∈ N0 , the ratio Tn[ex]
Tn+1[ex] is an absolutely

monotonic function in x ∈ R .

REMARK 3. It is clear that, for n ∈ N0 ,

Tn[ex] =
∞

∑
j=0

1( j+n+1
n+1

) x j

j!
, x ∈ R.

Standard computation gives

dlnTn[ex]
dx

=
T ′
n [ex]

Tn[ex]

=
∑∞

j=1
1

( j+n+1
n+1 )

x j−1

( j−1)!

∑∞
j=0

1
( j+n+1

n+1 )
x j

j!

=
∑∞

j=0
1

( j+n+2
n+1 )

x j

j!

∑∞
j=0

1
( j+n+1

n+1 )
x j

j!

for n ∈ N0 and x ∈ R .
Let

pn( j) =
1( j+n+1

n+1

) 1
j!

and qn( j) =
1( j+n+2

n+1

) 1
j!
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for j,n ∈ N0 . Then

pn( j +1)
pn( j)

=
1( j+n+2

n+1

) 1
( j +1)!

(
j +n+1
n+1

)
j!

=
1

j +n+2

is decreasing in j ∈ N0 and

qn( j)
pn( j)

=
1( j+n+2

n+1

) 1
j!

(
j +n+1
n+1

)
j!

=
j +1

j +n+2

is increasing in j ∈ N0 for fixed j ∈ N0 . This means that we cannot employ Lemma 2
to confirm Guess 3.
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