

**LOGARITHMICALLY ABSOLUTE MONOTONICITY OF
THE RATIO BETWEEN NORMALIZED REMAINDERS
FOR A FUNCTION IN AN INTEGRAL REPRESENTATION
OF THE RECIPROCAL OF THE GAMMA FUNCTION**

YE SHUANG, CHUN-YING HE AND FENG QI*

(Communicated by L. Mihoković)

Abstract. Let $\Phi(t) = 1 - \frac{t}{\tan t} + \ln \frac{t}{\sin t}$ for $t \in (-\pi, \pi)$. In the paper, in light of a theorem on signs of coefficients in power series and with aid of the Wronski formula, the authors prove that the normalized remainder $T_{2n+1}[\Phi(t)]$ for $n \in \mathbb{N}_0$ is a logarithmically absolutely monotonic function in $t \in (0, \pi)$ and a logarithmically completely monotonic function in $t \in (-\pi, 0)$, that the ratio $\frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]}$ for $n \in \mathbb{N}_0$ is an absolutely monotonic function in $t \in (0, \pi)$ and a completely monotonic function in $t \in (-\pi, 0)$, and that the normalized remainder $T_{2n+1}[\Phi(t)]$ and the ratio $\frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]}$ for $n \in \mathbb{N}_0$ can be extended analytically into the complex z -plane and are analytic in the disc $|z| < \pi$. Moreover, the authors expand $\frac{1}{\Phi(t)}$ for $0 < |t| < \pi$ into a Laurent series. These results verify a guess and generalize the corresponding ones in a paper published on Math. Inequal. Appl. **28** (2025), no. 2, 343–354.

1. Introduction

We first recall from [1, Section 5], [11, Definition 1], [12, Section 1], [15, Section 1], [18, Sections 1.9 and 1.10], [24, Remarks 2 and 4], and [31, Section 1] the definition of Qi's normalized remainders of the Maclaurin expansions of functions as follows.

DEFINITION 1. Let f be a real infinitely differentiable function on an interval $I \subseteq \mathbb{R}$ such that the origin 0 is an interior point of I . If $f^{(n+1)}(0) \neq 0$ for some $n \in \mathbb{N}_0 = \{0, 1, 2, \dots\}$, then we call the function

$$T_n[f(x)] = \begin{cases} \frac{1}{f^{(n+1)}(0)} \frac{(n+1)!}{x^{n+1}} \left[f(x) - \sum_{j=0}^n f^{(j)}(0) \frac{x^j}{j!} \right], & x \neq 0 \\ 1, & x = 0 \end{cases} \quad (1)$$

Mathematics subject classification (2020): Primary 41A80; Secondary 26A48, 26A51, 41A58.

Keywords and phrases: Logarithmically absolute monotonicity, logarithmically complete monotonicity, absolute monotonicity, complete monotonicity, normalized remainder, reciprocal, Laurent series expansion, determinantal expression, integral representation, gamma function, guess.

The last two authors were partially supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. 2025QN01041) and by the Youth Project of Hulunbuir City for Basic Research and Applied Basic Research (Grant No. GH2024020).

* Corresponding author.

for $x \in I$ the n th normalized remainder or the n th normalized tail of the Maclaurin expansion of the function f .

The normalized remainders have been investigated in [14, 27], for example.

We also recall from the monograph [21] and [25, Chapter IV] that

1. an infinitely differentiable real function $f(x)$ defined on an interval I is said to be absolutely monotonic in $x \in I$ if and only if all of its derivatives satisfy $f^{(k)}(x) \geq 0$ for $k \in \mathbb{N}_0$ and $x \in I$,
2. an infinitely differentiable function $f(x)$ defined on I is said to be completely monotonic in $x \in I$ if and only if all of its derivatives satisfy $(-1)^k f^{(k)}(x) \geq 0$ for $k \in \mathbb{N}_0$ and $x \in I$.

A function $f(x)$ is completely monotonic on (a, b) if and only if it is absolutely monotonic on $(-b, -a)$; see [25, p. 145, Definition 2c].

In [4, Definition 1] and [19, Definition 1], the notions of logarithmically absolutely (completely) monotonic functions were defined as follows:

1. A positive function $f(x)$ is said to be logarithmically absolutely monotonic on an interval I if it has derivatives of all orders and $[\ln f(x)]^{(k)} \geq 0$ for $x \in I$ and $k \in \mathbb{N}$.
2. A positive function $f(x)$ is said to be logarithmically completely monotonic on an interval I if it has derivatives of all orders and $(-1)^k [\ln f(x)]^{(k)} \geq 0$ for $x \in I$ and $k \in \mathbb{N}$.

In [4, Theorem 1], the authors proved that a logarithmically absolutely monotonic function on an interval I is also absolutely monotonic on I , but not conversely. In [2], [4, Theorem 4], and [19, Theorem 1], the authors proved that a logarithmically completely monotonic function on an interval I is also completely monotonic on I , but not conversely.

The classical Euler gamma function $\Gamma(z)$ can be defined [23, Chapter 3] by

$$\Gamma(z) = \lim_{n \rightarrow \infty} \frac{n! n^z}{\prod_{k=0}^n (z+k)}, \quad z \in \mathbb{C} \setminus \{0, -1, -2, \dots\}.$$

It is general knowledge for scientists that the gamma function $\Gamma(z)$ has had very extensive applications in mathematical sciences, including physics and engineering, in the past centuries. In [23, p. 71, Eq. (3.38)], we find the integral representation

$$\frac{1}{\Gamma(z)} = \frac{e^z z^{1-z}}{\pi} \int_0^\pi e^{-z\Phi(t)} dt, \quad \Re(z) \geq 0,$$

where

$$\Phi(t) = 1 - \frac{t}{\tan t} + \ln \frac{t}{\sin t} = \sum_{j=1}^{\infty} \frac{2j+1}{2j} |B_{2j}| \frac{(2t)^{2j}}{(2j)!} \quad (2)$$

for $|t| < \pi$ and B_{2j} denotes the classical Bernoulli numbers generated [23, p. 3] by

$$\frac{1}{T_0[e^x]} = \frac{x}{e^x - 1} = \sum_{j=0}^{\infty} B_j \frac{x^j}{j!} = 1 - \frac{x}{2} + \sum_{j=1}^{\infty} B_{2j} \frac{x^{2j}}{(2j)!}, \quad |x| < 2\pi. \quad (3)$$

In the paper [30], the authors considered the normalized remainder

$$T_{2n+1}[\Phi(t)] = \begin{cases} \frac{2n+2}{2n+3} \frac{1}{|B_{2n+2}|} \frac{(2n+2)!}{(2t)^{2n+2}} \left[\Phi(t) - \sum_{j=1}^n \frac{2j+1}{2j} |B_{2j}| \frac{(2t)^{2j}}{(2j)!} \right], & t \neq 0 \\ 1, & t = 0 \end{cases}$$

for $n \in \mathbb{N}_0$ and $t \in (-\pi, \pi)$.

It is obvious that

$$T_{2n+1}[\Phi(t)] = \frac{2n+2}{2n+3} \frac{(2n+2)!}{|B_{2n+2}|} \sum_{j=0}^{\infty} \frac{2j+2n+3}{2j+2n+2} \frac{|B_{2j+2n+2}|}{(2j+2n+2)!} (2t)^{2j} \quad (4)$$

for $n \in \mathbb{N}_0$ and $|t| < \pi$. Hence, it is easy to see that Qi's normalized remainder $T_{2n+1}[\Phi(t)]$ for $n \in \mathbb{N}_0$ is even in $t \in (-\pi, \pi)$, absolutely monotonic in $t \in (0, \pi)$, and completely monotonic in $t \in (0, \pi)$.

In the paper [30], the authors mainly obtained the following results:

1. For $n \in \mathbb{N}_0$, the normalized remainder $T_{2n+1}[\Phi(t)]$ is logarithmically convex in $t \in (-\pi, \pi)$. See [30, Theorem 1].
2. For $n \in \mathbb{N}_0$, the ratio $\frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]}$ is decreasing in $t \in (-\pi, 0)$ and increasing in $t \in (0, \pi)$. See [30, Theorem 2].

In [30, Remark 5], the authors guessed that the ratio $\frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]}$ for $n \in \mathbb{N}_0$ should be convex, even logarithmically convex, in $t \in (-\pi, \pi)$. For example, when $n = 0$, we have

$$\begin{aligned} \frac{T_3[\Phi(t)]}{T_1[\Phi(t)]} &= 9 \left[\frac{2}{t^2} - \frac{1}{\Phi(t)} \right] \\ &= 9 \left(\frac{2}{t^2} - \frac{1}{\frac{t^2}{2} + \frac{t^4}{36} + \frac{t^6}{405} + \frac{t^8}{4200} + \frac{t^{10}}{42525} + \dots} \right) \\ &= \frac{18}{t^2} \left(1 - \frac{1}{1 + \frac{t^2}{18} + \frac{2t^4}{405} + \frac{t^6}{2100} + \frac{2t^8}{42525} + \dots} \right) \\ &= 1 + \frac{t^2}{30} + \frac{101t^4}{56700} + \frac{109t^6}{1020600} + \frac{15979t^8}{2357586000} + \dots \end{aligned}$$

for $t \in (-\pi, \pi)$, where we used the Maclaurin expansion in (2). This implies that the ratio $\frac{T_3[\Phi(t)]}{T_1[\Phi(t)]}$ is possibly convex in $t \in (-\pi, \pi)$.

In this paper, we will prove the following results which are stronger than the above guess and [30, Theorem 1 and 2].

THEOREM 1. For $n \in \mathbb{N}_0$, the normalized remainder $T_{2n+1}[\Phi(t)]$ is a logarithmically absolutely monotonic function in $t \in (0, \pi)$ and a logarithmically completely monotonic function in $t \in (-\pi, 0)$.

For $n \in \mathbb{N}_0$, the function $\frac{1}{t} \frac{d \ln T_{2n+1}[\Phi(t)]}{dt}$ is an absolutely monotonic function in $(0, \pi)$ and a completely monotonic function in $(-\pi, 0)$.

For $n \in \mathbb{N}_0$, the normalized remainder $T_{2n+1}[\Phi(t)]$ and the function $\frac{1}{t} \frac{d \ln T_{2n+1}[\Phi(t)]}{dt}$ can be extended analytically into the complex z -plane and are analytic in the disc $|z| < \pi$.

THEOREM 2. For $n \in \mathbb{N}_0$, the ratio $\frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]}$

1. is an absolutely monotonic function in $t \in (0, \pi)$,
2. is a completely monotonic function in $t \in (-\pi, 0)$,
3. can be extended analytically into the complex z -plane and is analytic in the disc $|z| < \pi$.

We will also establish a Laurent series expansion of the function $\frac{1}{\Phi(t)}$ for $0 < |t| < \pi$, whose coefficients are expressed in terms of determinants.

THEOREM 3. The function $\frac{1}{\Phi(t)}$ for $0 < |t| < \pi$ can be expanded into

$$\begin{aligned} \frac{1}{\Phi(t)} &= \frac{2}{t^2} + \sum_{j=0}^{\infty} b_{j+1} t^{2j} \\ &= \frac{2}{t^2} - \frac{1}{9} - \frac{1}{270} t^2 - \frac{101}{510300} t^4 - \frac{109}{9185400} t^6 - \frac{15979}{21218274000} t^8 - \dots \end{aligned}$$

such that $b_j < 0$ for $j \in \mathbb{N}$, where b_j is a $j \times j$ order determinant defined by

$$b_j = (-1)^j 2^{j+1} |\sigma_{i,k}|_{j \times j}, \quad j \in \mathbb{N}, \quad (5)$$

$$\sigma_{i,k} = \begin{cases} a_{i-k+1}, & i-k+1 \geq 0; \\ 0, & i-k+1 < 0, \end{cases}$$

and

$$a_\ell = \frac{2\ell+3}{\ell+1} \frac{2^{2\ell+1}}{(2\ell+2)!} |B_{2\ell+2}|, \quad \ell \in \mathbb{N}_0.$$

2. Lemmas

For smoothly proceeding, we recall the following lemmas.

LEMMA 1. ([30, Lemma 3]) *The sequence*

$$\frac{j(2j+3)}{[(j+1)(2j+1)]^2} \left| \frac{B_{2j+2}}{B_{2j}} \right|$$

is increasing in $j \in \mathbb{N}_0$.

LEMMA 2. ([8, Theorems 1 and 2]) *Let*

$$k(t) = \sum_{\ell=0}^{\infty} k_{\ell} t^{\ell}, \quad q(t) = \sum_{\ell=0}^{\infty} q_{\ell} t^{\ell}, \quad p(t) = \sum_{\ell=0}^{\infty} p_{\ell} t^{\ell}$$

be formal series such that $k(t) = \frac{q(t)}{p(t)}$ and $p_{\ell} > 0$ for $\ell \in \mathbb{N}_0$.

1. If both of the sequences $\frac{p_{\ell+1}}{p_{\ell}}$ and $\frac{q_{\ell}}{p_{\ell}}$ are increasing in $\ell \in \mathbb{N}_0$, then $k_{\ell} \geq 0$ for $\ell \in \mathbb{N}$.
2. If the sequence $\frac{p_{\ell+1}}{p_{\ell}}$ is increasing in $\ell \in \mathbb{N}_0$ and the sequence $\frac{q_{\ell}}{p_{\ell}}$ is decreasing in $\ell \in \mathbb{N}_0$, then $k_{\ell} \leq 0$ for $\ell \in \mathbb{N}$.

REMARK 1. The case $q(t) = 1$ and $k_{\ell} \leq 0$ of Lemma 2 appeared in [5, p. 68, Theorem 22] and [9, 22], see also [6, p. 13, Problem 6] and [10, p. 331]. This special case was applied in [13, 16, 17]. Lemma 2 was modified in [28, Proposition 2].

3. Proofs of theorems

We are now in a position to prove our theorems.

Proof of Theorem 1. Directly computing yields

$$\begin{aligned} \frac{d \ln T_{2n+1}[\Phi(t)]}{dt} &= \frac{T'_{2n+1}[\Phi(t)]}{T_{2n+1}[\Phi(t)]} \\ &= \frac{\sum_{j=1}^{\infty} \frac{2j+2n+3}{2j+2n+2} \frac{|B_{2j+2n+2}|}{(2j+2n+2)!} 2^{2j} (2j) t^{2j-1}}{\sum_{j=0}^{\infty} \frac{2j+2n+3}{2j+2n+2} \frac{|B_{2j+2n+2}|}{(2j+2n+2)!} 2^{2j} t^{2j}} \\ &= 8t \frac{\sum_{j=0}^{\infty} \frac{2j+2n+5}{j+n+2} \frac{|B_{2j+2n+4}|}{(2j+2n+4)!} 2^{2j} (j+1) t^{2j}}{\sum_{j=0}^{\infty} \frac{2j+2n+3}{j+n+1} \frac{|B_{2j+2n+2}|}{(2j+2n+2)!} 2^{2j} t^{2j}}, \end{aligned}$$

where we used the series representation (4). Let

$$p_n(j) = \frac{2j+2n+3}{j+n+1} \frac{|B_{2j+2n+2}|}{(2j+2n+2)!} 2^{2j}$$

and

$$q_n(j) = \frac{2j+2n+5}{j+n+2} \frac{|B_{2j+2n+4}|}{(2j+2n+4)!} 2^{2j}(j+1)$$

for $j, n \in \mathbb{N}_0$. Then

$$\frac{q_n(j)}{p_n(j)} = \frac{j+1}{2(2j+2n+3)} \frac{(j+n+1)(2j+2n+5)}{(j+n+2)^2(2j+2n+3)} \left| \frac{B_{2j+2n+4}}{B_{2j+2n+2}} \right|$$

and

$$\frac{p_n(j+1)}{p_n(j)} = \frac{2(j+n+1)(2j+2n+5)}{(j+n+2)^2(2j+2n+3)^2} \left| \frac{B_{2j+2n+4}}{B_{2j+2n+2}} \right|$$

for $j, n \in \mathbb{N}_0$. Making use of Lemma 1, we see that the sequences $\frac{q_n(j)}{p_n(j)}$ and $\frac{p_n(j+1)}{p_n(j)}$ for $n \in \mathbb{N}_0$ are increasing in $j \in \mathbb{N}_0$. Employing Lemma 2, we conclude that

$$\frac{1}{8t} \frac{d \ln T_{2n+1}[\Phi(t)]}{dt} = \frac{(n+1)(2n+5)}{2(n+2)^2(2n+3)^2} \left| \frac{B_{2n+4}}{B_{2n+2}} \right| + \sum_{j=1}^{\infty} k_n(j) t^{2j}$$

such that $k_n(j) \geq 0$ for $j \in \mathbb{N}$ and $n \in \mathbb{N}_0$. This means that the function $\frac{1}{t} \frac{d \ln T_{2n+1}[\Phi(t)]}{dt}$ is absolutely monotonic in $t \in (0, \pi)$ and

$$\frac{d \ln T_{2n+1}[\Phi(t)]}{dt} = \frac{4(n+1)(2n+5)}{(n+2)^2(2n+3)^2} \left| \frac{B_{2n+4}}{B_{2n+2}} \right| t + 8 \sum_{j=1}^{\infty} k_n(j) t^{2j+1}$$

for $n \in \mathbb{N}_0$ is absolutely monotonic in $t \in (0, \pi)$. Hence, the normalized remainder $T_{2n+1}[\Phi(t)]$ for $n \in \mathbb{N}_0$ is logarithmically absolutely monotonic in $t \in (0, \pi)$.

Since the normalized remainder $T_{2n+1}[\Phi(t)]$ and the function $\frac{1}{t} \frac{d \ln T_{2n+1}[\Phi(t)]}{dt}$ are even, they are logarithmically completely monotonic function and completely monotonic function in $t \in (-\pi, 0)$, respectively.

By [25, p. 146, Theorem 3a], we see that the normalized remainder $T_{2n+1}[\Phi(t)]$ and the function $\frac{1}{t} \frac{d \ln T_{2n+1}[\Phi(t)]}{dt}$ can be extended analytically into the complex z -plane and they are analytic in the disc $|z| < \pi$. The proof of Theorem 1 is complete. \square

Proof of Theorem 2. It is easy to see that

$$T_{2n+1}[\Phi(t)] = \frac{2n+2}{2n+3} \frac{(2n+2)!}{|B_{2n+2}|} \sum_{j=0}^{\infty} \frac{2j+2n+3}{2j+2n+2} \frac{|B_{2j+2n+2}|}{(2j+2n+2)!} (2t)^{2j}$$

for $n \in \mathbb{N}_0$ and $|t| < \pi$. Then

$$\frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]} = \frac{[(2n+3)(2n+4)]^2}{(2n+2)(2n+5)} \frac{|B_{2n+2}|}{|B_{2n+4}|} \frac{\sum_{j=0}^{\infty} \frac{2j+2n+5}{2j+2n+4} \frac{|B_{2j+2n+4}|}{(2j+2n+4)!} (2t)^{2j}}{\sum_{j=0}^{\infty} \frac{2j+2n+3}{2j+2n+2} \frac{|B_{2j+2n+2}|}{(2j+2n+2)!} (2t)^{2j}}.$$

Let

$$q_{j,n} = \frac{2j+2n+5}{2j+2n+4} \frac{|B_{2j+2n+4}|}{(2j+2n+4)!}$$

and

$$p_{j,n} = \frac{2j+2n+3}{2j+2n+2} \frac{|B_{2j+2n+2}|}{(2j+2n+2)!}$$

for $j, n \in \mathbb{N}_0$. The ratios

$$\frac{p_{j+1,n}}{p_{j,n}} = \frac{(2j+2n+2)(2j+2n+5)}{[(2j+2n+3)(2j+2n+4)]^2} \frac{|B_{2j+2n+4}|}{|B_{2j+2n+2}|} = \frac{q_{j,n}}{p_{j,n}}$$

for $j, n \in \mathbb{N}_0$. By virtue of Lemma 1, we see that the ratios $\frac{p_{j+1,n}}{p_{j,n}}$ and $\frac{q_{j,n}}{p_{j,n}}$ is increasing in $j \in \mathbb{N}_0$ for fixed $n \in \mathbb{N}_0$. In view of Lemma 2, we see that the series expansion

$$\frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]} = \frac{2[(2n+3)(n+2)]^2}{(n+1)(2n+5)} \frac{|B_{2n+2}|}{|B_{2n+4}|} \sum_{j=0}^{\infty} k_{j,n}(2t)^j, \quad |t| < \pi$$

satisfies $k_{j,n} \geq 0$ for $j \in \mathbb{N}$ and $n \in \mathbb{N}_0$. It is clear that

$$k_{0,n} = \lim_{t \rightarrow 0} \frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]} = \frac{\lim_{t \rightarrow 0} T_{2n+3}[\Phi(t)]}{\lim_{t \rightarrow 0} T_{2n+1}[\Phi(t)]} = 1.$$

Accordingly, the ratio $\frac{T_{2n+3}[\Phi(t)]}{T_{2n+1}[\Phi(t)]}$ for $n \in \mathbb{N}_0$ is absolutely monotonic in $t \in (0, \pi)$. By [25, p. 145, Definition 2c], it is completely monotonic in $t \in (-\pi, 0)$. By [25, p. 146, Theorem 3a], it can be extended analytically into the complex z -plane and the ratio $\frac{T_{2n+3}[\Phi(z)]}{T_{2n+1}[\Phi(z)]}$ is analytic in the disc $|z| < \pi$. The proof of Theorem 2 is complete. \square

Proof of Theorem 3. In [6, p. 17, Theorem 1.3], [7, p. 347], [20, Section 2], and the old book [26] in 1881, we find the following proposition.

If $a_0 \neq 0$ and $P(x) = a_0 + a_1x + a_2x^2 + \dots$ is a formal series, then the coefficients of the reciprocal series $\frac{1}{P(x)} = b_0 + b_1x + b_2x^2 + \dots$ are given

by $b_0 = \frac{1}{a_0}$ and

$$b_j = \frac{(-1)^j}{a_0^{j+1}} \begin{vmatrix} a_1 & a_0 & 0 & 0 & \dots & 0 & 0 & 0 \\ a_2 & a_1 & a_0 & 0 & \dots & 0 & 0 & 0 \\ a_3 & a_2 & a_1 & a_0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{j-2} & a_{j-3} & a_{j-4} & a_{j-5} & \dots & a_1 & a_0 & 0 \\ a_{j-1} & a_{j-2} & a_{j-3} & a_{j-4} & \dots & a_2 & a_1 & a_0 \\ a_j & a_{j-1} & a_{j-2} & a_{j-3} & \dots & a_3 & a_2 & a_1 \end{vmatrix}, \quad j \in \mathbb{N}. \quad (6)$$

We call the determinantal formula (6) the Wronski formula. It was cited and applied in [13, Lemma 1], [16, Lemma 2.1], and [17, Lemma 2.1].

From the series expansion (2), it follows that

$$\frac{t^2}{\Phi(t)} = \frac{1}{\sum_{j=0}^{\infty} \frac{2j+3}{j+1} \frac{2^{2j+1}}{(2j+2)!} |B_{2j+2}| t^{2j}} = \sum_{j=0}^{\infty} b_j t^{2j}.$$

Taking $a_j = \frac{2j+3}{j+1} \frac{2^{2j+1}}{(2j+2)!} |B_{2j+2}|$ for $j \in \mathbb{N}_0$ in the determinantal formula (6) yields the determinantal formula (5) for $j \in \mathbb{N}$. Then we obtain

$$\begin{aligned} \frac{1}{\Phi(t)} &= \frac{1}{t^2} \sum_{j=0}^{\infty} b_j t^{2j} \\ &= \frac{b_0}{t^2} + \sum_{j=1}^{\infty} b_j t^{2j-2} \\ &= \frac{2}{t^2} - \frac{1}{9} - \frac{1}{270} t^2 - \frac{101}{510300} t^4 - \frac{109}{9185400} t^6 - \frac{15979}{21218274000} t^8 - \dots \end{aligned}$$

for $0 < |t| < \pi$.

From Theorem 2, we immediately deduce that the function $\frac{2}{t^2} - \frac{1}{\Phi(t)}$ is absolutely monotonic on $(0, \pi)$ and completely monotonic on $(-\pi, 0)$. Consequently, the sequence b_j for $j \in \mathbb{N}$ is negative. The proof of Theorem 3 is complete. \square

4. Guesses and more remarks

4.1. Guesses on $T_{2n-1}[\tan^2 x]$

In the paper [3, p. 798], we find the Maclaurin power series expansion

$$\begin{aligned} \tan^2 x &= \sum_{j=1}^{\infty} \frac{2^{2j+2}(2^{2j+2}-1)(2j+1)}{(2j+2)!} |B_{2j+2}| x^{2j} \\ &= x^2 + \frac{2x^4}{3} + \frac{17x^6}{45} + \frac{62x^8}{315} + \frac{1382x^{10}}{14175} + \frac{21844x^{12}}{467775} + \dots \end{aligned} \tag{7}$$

for $|x| < \frac{\pi}{2}$, where the Bernoulli numbers B_j are generated by (3). Making use of the series expansion (7) and taking $f(x) = \tan^2 x$ in (1) lead to the normalized remainder

$$\begin{aligned} T_{2n-1}[\tan^2 x] &= \\ &\begin{cases} (2n+2)! \left[\tan^2 x - \sum_{j=1}^{n-1} \frac{2^{2j+2}(2^{2j+2}-1)(2j+1)}{(2j+2)!} |B_{2j+2}| x^{2j} \right], & x \neq 0 \\ 1, & x = 0 \end{cases} \end{aligned} \tag{8}$$

for $n \in \mathbb{N}$ and $|x| < \frac{\pi}{2}$. For more information on normalized remainders $T_n[\tan^2 x]$ and

$$T_{2n-1}[\tan^2 x] = T_{2n-2} \left[\frac{\tan^2 x}{x} \right] = T_{2n-3} \left[\left(\frac{\tan x}{x} \right)^2 \right] = T_{2n-1}[\sec^2 x], \quad n \geq 2,$$

please refer to [14, 27, 31] and closely related references.

Theorem 1 in [31] reads that the normalized remainder $T_{2n-1}[\tan^2 x]$ for $n \in \mathbb{N}$ is a logarithmically convex function in $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$. In [31, Theorem 2], the logarithm $\ln T_{2n-1}[\tan^2 x]$ for $n \in \mathbb{N}$ was expanded into a Maclaurin power series. In [12, Theorem 1.1], the ratio $\frac{T_{2n+1}[\tan^2 x]}{T_{2n-1}[\tan^2 x]}$ for $n \in \mathbb{N}$ was proved to be increasing in $x \in (-\frac{\pi}{2}, 0)$ and decreasing in $x \in (0, \frac{\pi}{2})$.

In [12, Remark 4.1], the authors proposed the following guess.

GUESS 1. ([12, Remark 4.1]) *The ratio $\frac{T_{2n+1}[\tan^2 x]}{T_{2n-1}[\tan^2 x]}$ for $n \in \mathbb{N}$ is concave in $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$.*

We now propose one more stronger guess as follows.

GUESS 2. *For $n \in \mathbb{N}$, the ratio $\frac{T_{2n-1}[\tan^2 x]}{T_{2n+1}[\tan^2 x]}$ is completely monotonic in $x \in (-\frac{\pi}{2}, 0)$ and is absolutely monotonic in $x \in (0, \frac{\pi}{2})$.*

REMARK 2. The normalized remainder $T_{2n-1}[\tan^2 x]$ defined by (8) for $n \in \mathbb{N}$ has a series representation

$$\begin{aligned} T_{2n-1}[\tan^2 x] &= \frac{(2n+2)!}{(2n+1)(2^{2n+2}-1)|B_{2n+2}|} \\ &\quad \times \sum_{j=0}^{\infty} \frac{(2n+2j+1)(2^{2n+2j+2}-1)}{(2n+2j+2)!} |B_{2n+2j+2}| (2x)^{2j} \end{aligned} \quad (9)$$

for $|x| < \frac{\pi}{2}$. From the series representation (9), it follows that

$$\begin{aligned} \frac{T_{2n-1}[\tan^2 x]}{T_{2n+1}[\tan^2 x]} &= \frac{1}{2(2n+1)(n+2)} \frac{2^{2n+4}-1}{2^{2n+2}-1} \left| \frac{B_{2n+4}}{B_{2n+2}} \right| \\ &\quad \times \frac{\sum_{j=0}^{\infty} \frac{(2n+2j+1)(2^{2n+2j+2}-1)}{(2n+2j+2)!} |B_{2n+2j+2}| (2x)^{2j}}{\sum_{j=0}^{\infty} \frac{(2n+2j+3)(2^{2n+2j+4}-1)}{(2n+2j+4)!} |B_{2n+2j+4}| (2x)^{2j}} \end{aligned}$$

for $n \in \mathbb{N}$ and $|x| < \frac{\pi}{2}$.

Let

$$q_n(j) = \frac{(2n+2j+1)(2^{2n+2j+2}-1)}{(2n+2j+2)!} |B_{2n+2j+2}|$$

and $p_n(j) = q_n(j+1)$ for $n \in \mathbb{N}$ and $j \in \mathbb{N}_0$. Then

$$\frac{p_n(j+1)}{p_n(j)} = \frac{1}{2(2n+2j+3)(n+j+3)} \frac{2^{2n+2j+6}-1}{2^{2n+2j+4}-1} \left| \frac{B_{2n+2j+6}}{B_{2n+2j+4}} \right|$$

and

$$\frac{q_n(j)}{p_n(j)} = 2(2n+2j+1)(n+j+2) \frac{2^{2n+2j+2}-1}{2^{2n+2j+4}-1} \left| \frac{B_{2n+2j+2}}{B_{2n+2j+4}} \right|$$

for $n \in \mathbb{N}$ and $j \in \mathbb{N}_0$. Since the sequence

$$\frac{1}{(2j-1)(j+1)} \frac{2^{2j+2}-1}{2^{2j}-1} \left| \frac{B_{2j+2}}{B_{2j}} \right|$$

is decreasing in $j \in \mathbb{N}$, see [12, Lemma 2.1], we conclude that the sequence $\frac{p_n(j+1)}{p_n(j)}$ for fixed $n \in \mathbb{N}$ is decreasing in $j \in \mathbb{N}_0$ and that the sequence $\frac{q_n(j)}{p_n(j)}$ for fixed $n \in \mathbb{N}$ is increasing in $j \in \mathbb{N}_0$. This means that we cannot use Lemma 2 to confirm Guess 2.

4.2. Guesses on $T_n[e^x]$

In the papers [1, 11, 15, 29] and [18, Section 1.7], the normalized remainder $T_n[e^x]$ was investigated systematically. The normalized remainder $T_n[e^x]$ for $n \in \mathbb{N}_0$ was proved to be logarithmically convex and absolutely monotonic in $x \in \mathbb{R}$ and the ratio $\frac{T_{n+1}[e^x]}{T_n[e^x]}$ for $n \in \mathbb{N}_0$ was verified to be decreasing in $x \in \mathbb{R}$. We propose the following guess.

GUESS 3. For $n \in \mathbb{N}_0$, the normalized remainder $T_n[e^x]$ is a logarithmically absolutely monotonic function in $x \in \mathbb{R}$. For $n \in \mathbb{N}_0$, the ratio $\frac{T_n[e^x]}{T_{n+1}[e^x]}$ is an absolutely monotonic function in $x \in \mathbb{R}$.

REMARK 3. It is clear that, for $n \in \mathbb{N}_0$,

$$T_n[e^x] = \sum_{j=0}^{\infty} \frac{1}{\binom{j+n+1}{n+1}} \frac{x^j}{j!}, \quad x \in \mathbb{R}.$$

Standard computation gives

$$\begin{aligned} \frac{d \ln T_n[e^x]}{dx} &= \frac{T'_n[e^x]}{T_n[e^x]} \\ &= \frac{\sum_{j=1}^{\infty} \frac{1}{\binom{j+n+1}{n+1}} \frac{x^{j-1}}{(j-1)!}}{\sum_{j=0}^{\infty} \frac{1}{\binom{j+n+1}{n+1}} \frac{x^j}{j!}} \\ &= \frac{\sum_{j=0}^{\infty} \frac{1}{\binom{j+n+2}{n+1}} \frac{x^j}{j!}}{\sum_{j=0}^{\infty} \frac{1}{\binom{j+n+1}{n+1}} \frac{x^j}{j!}} \end{aligned}$$

for $n \in \mathbb{N}_0$ and $x \in \mathbb{R}$.

Let

$$p_n(j) = \frac{1}{\binom{j+n+1}{n+1}} \frac{1}{j!} \quad \text{and} \quad q_n(j) = \frac{1}{\binom{j+n+2}{n+1}} \frac{1}{j!}$$

for $j, n \in \mathbb{N}_0$. Then

$$\begin{aligned} \frac{p_n(j+1)}{p_n(j)} &= \frac{1}{\binom{j+n+2}{n+1}} \frac{1}{(j+1)!} \binom{j+n+1}{n+1} j! \\ &= \frac{1}{j+n+2} \end{aligned}$$

is decreasing in $j \in \mathbb{N}_0$ and

$$\begin{aligned} \frac{q_n(j)}{p_n(j)} &= \frac{1}{\binom{j+n+2}{n+1}} \frac{1}{j!} \binom{j+n+1}{n+1} j! \\ &= \frac{j+1}{j+n+2} \end{aligned}$$

is increasing in $j \in \mathbb{N}_0$ for fixed $j \in \mathbb{N}_0$. This means that we cannot employ Lemma 2 to confirm Guess 3.

Acknowledgements. The authors are grateful to anonymous referees for their careful reading, valuable corrections, and helpful suggestions on the original version of this paper.

REFERENCES

- [1] Z.-H. BAO, R. P. AGARWAL, F. QI, AND W.-S. DU, *Some properties on normalized tails of Maclaurin power series expansion of exponential function*, Symmetry **16** (2024), no. 8, Art. 989, 15 pages, <https://doi.org/10.3390/sym16080989>.
- [2] C. BERG, *Integral representation of some functions related to the gamma function*, *Mediterr. J. Math.* **1** (2004), no. 4, 433–439, <https://doi.org/10.1007/s00009-004-0022-6>.
- [3] YU. A. BRYCHKOV, *Power expansions of powers of trigonometric functions and series containing Bernoulli and Euler polynomials*, *Integral Transforms Spec. Funct.* **20** (2009), no. 11–12, 797–804, <https://doi.org/10.1080/10652460902867718>.
- [4] B.-N. GUO AND F. QI, *A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function*, *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.* **72** (2010), no. 2, 21–30.
- [5] G. H. HARDY, *Divergent Series*, Oxford, at the Clarendon Press, 1949.
- [6] P. HENRICI, *Applied and Computational Complex Analysis*, vol. 1, reprint of the 1974 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988.
- [7] A. INSELBERG, *On determinants of Toeplitz–Hessenberg matrices arising in power series*, *J. Math. Anal. Appl.* **63** (1978), no. 2, 347–353, [https://doi.org/10.1016/0022-247X\(78\)90080-X](https://doi.org/10.1016/0022-247X(78)90080-X).
- [8] W. B. JURKAT, *Questions of signs in power series*, *Proc. Amer. Math. Soc.* **5** (1954), 964–970, <https://doi.org/10.2307/2032565>.
- [9] TH. KALUZA, *Über die Koeffizienten reziproker Potenzreihen*, *Math. Z.* **28** (1928), no. 1, 161–170, <https://doi.org/10.1007/BF01181155>, (German).
- [10] K. KNOPP, *Über Polynomentwicklungen im Mittag-Lefflerschen Stern Durch Anwendung der Euler-schen Reihentransformation*, *Acta Math.* **47** (1926), no. 4, 313–335, <https://doi.org/10.1007/BF02559516>, (German).

- [11] Y.-W. LI AND F. QI, *Elegant proofs for properties of normalized remainders of Maclaurin power series expansion of exponential function*, Math. Slovaca **75** (2025), no. 5, 1035–1044, <https://doi.org/10.1515/ms-2025-0076>.
- [12] X.-L. LIU AND F. QI, *Monotonicity results of ratio between two normalized remainders of Maclaurin series expansion for square of tangent function*, Math. Slovaca **75** (2025), no. 3, 699–705, <https://doi.org/10.1515/ms-2025-0051>.
- [13] D.-W. NIU, W.-H. LI, AND F. QI, *On signs of several Toeplitz–Hessenberg determinants whose elements contain central Delannoy numbers*, Commun. Comb. Optim. **8** (2023), no. 4, 665–671, <https://doi.org/10.22049/CCO.2022.27707.1324>.
- [14] W.-J. PEI AND B.-N. GUO, *Monotonicity, convexity, and Maclaurin series expansion of Qi’s normalized remainder of Maclaurin series expansion with relation to cosine*, Open Math. **22** (2024), no. 1, Paper No. 20240095, 11 pages, <https://doi.org/10.1515/math-2024-0095>.
- [15] F. QI, *Absolute monotonicity of normalized tail of power series expansion of exponential function*, Mathematics **12** (2024), no. 18, Art. 2859, 11 pages, <https://doi.org/10.3390/math12182859>.
- [16] F. QI, *On negativity of Toeplitz–Hessenberg determinants whose elements contain large Schröder numbers*, Palest. J. Math. **11** (2022), no. 4, 373–378.
- [17] F. QI, *On signs of certain Toeplitz–Hessenberg determinants whose elements involve Bernoulli numbers*, Contrib. Discrete Math. **18** (2023), no. 2, 48–59, <https://doi.org/10.55016/ojs/cdm.v18i2.73022>.
- [18] F. QI, *Series and connections among central factorial numbers, Stirling numbers, inverse of Vandermonde matrix, and normalized remainders of Maclaurin series expansions*, Mathematics **13** (2025), no. 2, Art. 223, 52 pages, <https://doi.org/10.3390/math13020223>.
- [19] F. QI AND C.-P. CHEN, *A complete monotonicity property of the gamma function*, J. Math. Anal. Appl. **296** (2004), 603–607, <https://doi.org/10.1016/j.jmaa.2004.04.026>.
- [20] H. RUTISHAUSER, *Eine formel von Wronski und ihre Bedeutung für denquotienten-differenzenalgorithmus*, Z. Angew. Math. Phys. **7** (1956), 164–169, <https://doi.org/10.1007/BF01600787>, (German).
- [21] R. L. SCHILLING, R. SONG, AND Z. VONDRAČEK, *Bernstein Functions*, 2nd ed., de Gruyter Studies in Mathematics **37**, Walter de Gruyter, Berlin, Germany, 2012, <https://doi.org/10.1515/9783110269338>.
- [22] G. SZEGÖ, *Bemerkungen zu einer Arbeit von Herrn Fejér über die Legendreschen Polynome*, Math. Z. **25** (1926), no. 1, 172–187, <https://doi.org/10.1007/BF01283833>, (German).
- [23] N. M. TEMME, *Special Functions: An Introduction to Classical Functions of Mathematical Physics*, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996, <https://doi.org/10.1002/9781118032572>.
- [24] F. WANG AND F. QI, *Absolute monotonicity of four functions involving the second kind of complete elliptic integrals*, J. Math. Inequal. **19** (2025), no. 2, 605–624, <http://dx.doi.org/10.7153/jmi-2025-19-37>.
- [25] D. V. WIDDER, *The Laplace Transform*, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ, 1941.
- [26] M. H. WRONSKI, *Introduction à la Philosophie des Mathématiques: Et Technie de l’Algorithmie*, Chez COURCIER, Imprimeur-Libraire pour les Mathématiques, quai des Augustins, no. 57, Paris, 1811, <https://gallica.bnf.fr/ark:/12148/bpt6k6225961k>, (French).
- [27] H.-C. ZHANG, B.-N. GUO, AND W.-S. DU, *On Qi’s normalized remainder of Maclaurin power series expansion of logarithm of secant function*, Axioms **13** (2024), no. 12, Art. 860, 11 pages, <https://doi.org/10.3390/axioms13120860>.
- [28] Z.-H. YANG, T.-H. ZHAO, AND M.-K. WANG, *Absolute monotonicity of a family of functions related to Chen–Malešević conjecture*, Appl. Anal. Discrete Math. **19** (2025), no. 1, 261–283, <https://doi.org/10.2298/AADM250113010Y>.
- [29] T. ZHANG AND F. QI, *Decreasing ratio between two normalized remainders of Maclaurin series expansion of exponential function*, AIMS Math. **10** (2025), no. 6, 14739–14756, <https://doi.org/10.3934/math.2025663>.

[30] J. ZHANG AND F. QI, *Some properties of normalized remainders of the Maclaurin expansion for a function originating from an integral representation of the reciprocal of the gamma function*, Math. Inequal. Appl. **28** (2025), no. 2, 343–354, <https://doi.org/10.7153/mia-2025-28-23>.

[31] G.-Z. ZHANG AND F. QI, *On convexity and power series expansion for logarithm of normalized tail of power series expansion for square of tangent*, J. Math. Inequal. **18** (2024), no. 3, 937–952, <https://doi.org/10.7153/jmi-2024-18-51>.

(Received May 29, 2025)

Ye Shuang

College of Mathematical Sciences

Inner Mongolia Minzu University

Tongliao 028043, Inner Mongolia, China

e-mail: shuangye152300@sina.com

ORCID: <https://orcid.org/0000-0002-1991-4828>

Chun-Ying He

School of Mathematics and Physics

Hulunbuir University

Hulunbuir 021008, Inner Mongolia, China

e-mail: hechunying9209@qq.com

ORCID: <https://orcid.org/0000-0002-9709-8002>

Feng Qi

Retired Professor and PhD

17709 Sabal Court, University Village

Dallas, TX 75252-8024, USA

e-mail: qifeng618@gmail.com

ORCID: <https://orcid.org/0000-0001-6239-2968>