lournal of
athematical
nequalities
Volume 19, Number 4 (2025), 1239-1251 doi:10.7153/jmi-2025-19-80
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FOR A FUNCTION IN AN INTEGRAL REPRESENTATION
OF THE RECIPROCAL OF THE GAMMA FUNCTION
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(Communicated by L. Mihokovic)

Abstract. Let ®(t) =1 — = +1In = for t € (—m, 7). In the paper, in light of a theorem on

signs of coefficients in power series and with aid of the Wronski formula, the authors prove that
the normalized remainder T»,4[®@(¢)] for n € Ny is a logarithmically absolutely monotonic
function in ¢ € (0,7) and a logarithmically completely monotonic function in ¢ € (—,0), that
T3 [P(1)]
D41 [@(1)]
monotonic function in ¢ € (—,0), and that the normalized remainder 75,1 [®(¢)] and the ratio

%ﬁim for n € Ny can be extended analytically into the complex z-plane and are analytic

in the disc |z| < w. Moreover, the authors expand #r) for 0 < || < 7 into a Laurent series.

These results verify a guess and generalize the corresponding ones in a paper published on Math.
Inequal. Appl. 28 (2025), no. 2, 343-354.

the ratio for n € Ny is an absolutely monotonic function in 7 € (0,7) and a completely

1. Introduction

We first recall from [1, Section 5], [11, Definition 1], [12, Section 1], [15, Sec-
tion 1], [18, Sections 1.9 and 1.10], [24, Remarks 2 and 4], and [31, Section 1] the
definition of Qi’s normalized remainders of the Maclaurin expansions of functions as
follows.

DEFINITION 1. Let f be a real infinitely differentiable function on an interval
I C R such that the origin 0 is an interior point of 7. If f"+1)(0) # 0 for some
neNy={0}UN={0,1,2,...}, then we call the function

_ 1 (! I
i) = @ e |17 BSTOG ] xE0

1, x=0
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for x € I the nth normalized remainder or the nth normalized tail of the Maclaurin
expansion of the function f.

The normalized remainders have been investigated in [14, 27], for example.
We also recall from the monograph [21] and [25, Chapter IV] that

1. an infinitely differentiable real function f(x) defined on an interval I is said
to be absolutely monotonic in x € I if and only if all of its derivatives satisfy
f®(x) >0 for ke Ny and x €1,

2. an infinitely differentiable function f(x) defined on I is said to be completely
monotonic in x € I if and only if all of its derivatives satisfy (—1)¥f®) (x) >0
for ke Ny and x € 1.

A function f(x) is completely monotonic on (a,b) if and only if it is absolutely mono-
tonic on (—b,—a); see [25, p. 145, Definition 2c].

In [4, Definition 1] and [19, Definition 1], the notions of logarithmically absolutely
(completely) monotonic functions were defined as follows:

1. A positive function f(x) is said to be logarithmically absolutely monotonic on
an interval I if it has derivatives of all orders and [In f(x)]¥) > 0 for x € I and
keN.

2. A positive function f(x) is said to be logarithmically completely monotonic on
an interval / if it has derivatives of all orders and (—1)¥[In f(x)]®) >0 for x € I
and k€ N.

In [4, Theorem 1], the authors proved that a logarithmically absolutely monotonic
function on an interval / is also absolutely monotonic on /, but not conversely. In [2],
[4, Theorem 4], and [19, Theorem 1], the authors proved that a logarithmically com-
pletely monotonic function on an interval [ is also completely monotonic on /, but not
conversely.

The classical Euler gamma function T'(z) can be defined [23, Chapter 3] by

I(z) = li nin’ C\{0,~1,-2,...}
7)=lim ———, z¢€ —1,-2,...}.
n==[Ti—o(z+k)

It is general knowledge for scientists that the gamma function I'(z) has had very exten-
sive applications in mathematical sciences, including physics and engineering, in the
past centuries. In [23, p. 71, Eq. (3.38)], we find the integral representation

L _ &7 T
— = e dt, R(z) =0,
T = /o )
h
e o) =1 Lt _i2j+1| ‘(Zz)zf 2
- tant sint 2; HE )
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for |t| < m and By; denotes the classical Bernoulli numbers generated [23, p. 3] by

1 X o X < x
= = B'_—Zl——+ B2'—.7 |x|<277:. (3)
Tolet] e'—1 ZZ) ! 2 Z’l 7(2))!

In the paper [30], the authors considered the normalized remainder

m+2 1 (2n+2)! 241 21)2i

mi31B (2 2n+)2 q)(t)_ZT|B2j|(2—?, , t#0
Toui1[@(1)] = § 2n+3 [Bansal (21) A 2 (2))!

1, t=0

forneNgandr € (—m, 7).
It is obvious that

_2n+2(2n+2)! - 2j+2n+3 |BQJ'+2,,+2|

Do [®(1)] =
[ @0 = 5= T S 2j+2n+2(2j+2n+2

p@? @

for n € Ny and || < m. Hence, it is easy to see that Qi’s normalized remainder
Top+1[®(7)] for n € Ny is even in 7 € (—x, ), absolutely monotonic in 7 € (0,7),
and completely monotonic in 7 € (0, 7).

In the paper [30], the authors mainly obtained the following results:

1. For n € Ny, the normalized remainder T3,+1[®(¢)] is logarithmically convex in
t € (—m,m). See [30, Theorem 1].

i Dus[®Q)]

2. For n € Ny, the ratio (0]

t € (0,m). See [30, Theorem 2].

is decreasing in ¢ € (—m,0) and increasing in

In [30, Remark 5], the authors guessed that the ratio %ﬁi{g% for n € Ny should be

convex, even logarithmically convex, in ¢ € (—m, 7). For example, when n =0, we
have

ToW0)] 9[% - @]

(2 1
=9 2 2,8 /6 8 /10
7t 3 Ta0s Tao0 tass T

18 ( 1 )
- 2 B 2 ol 6 28

P\ G+t At
ﬁ+ 10174 N 109¢° N 15979¢8 N
30 ' 56700 ' 1020600 = 2357586000

for 1 € (—m,m), where we used the Maclaurin expansion in (2). This implies that the
% gg;} is possibly convex in 7 € (—m, ).

In this paper, we will prove the following results which are stronger than the above
guess and [30, Theorem 1 and 2].

ratio
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THEOREM 1. For n € Ny, the normalized remainder Tr,1[®(t)] is a logarith-
mically absolutely monotonic function in t € (0,7) and a logarithmically completely
monotonic function in t € (—1,0).

For n € Ny, the function %%ﬁ[(bw is an absolutely monotonic function in

(0,7) and a completely monotonic function in (—m,0).

For n € Ny, the normalized remainder Tay+1[®(1)] and the function %%M

can be extended analytically into the complex z-plane and are analytic in the disc
lz| <.

T 3[D()]

THEOREM 2. For n € No, the ratio £,

1. is an absolutely monotonic functionin t € (0,7),
2. is a completely monotonic function in t € (—x,0),

3. can be extended analytically into the complex z-plane and is analytic in the disc
|z| < 7.

We will also establish a Laurent series expansion of the function (DL(’?) for 0 < Jt| <
7, whose coefficients are expressed in terms of determinants.

THEOREM 3. The function <I>L(t) for 0 < |t| < @ can be expanded into

1 2 e ;
= 24 Y b
o) 2 &Y

2 1 1, 101 , 109 15979

= — " — - °— 15—
29 270 510300 9185400 21218274000

such that b; <0 for j €N, where bj is a jx j order determinant defined by

b= (—1)/2/*! }0,-7;{}J.Xj, jEN, &)
a1, i—k+120;
Oik = .
’ 0, i—k+1<0,

and

2043 ¥

UL 20+ 2)

|Bai4a|, £ €Ny.
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2. Lemmas
For smoothly proceeding, we recall the following lemmas.

LEMMA 1. ([30, Lemma 3]) The sequence

Jj(2j+3)
[(j+1)(2j+1)]?

Bajyo
By

is increasing in j € Ny.

LEMMA 2. ([8, Theorems 1 and 2]) Let

oo =3

K=Ykt q)=Y ar's p)=" pu’
(=0

=0 =0

be formal series such that k(t) = % and py > 0 for ¢ € Ny.

1. If both of the sequences % and % are increasing in £ € Ny, then ky > 0 for
feN. ’ '

2. If the sequence % is increasing in { € Ny and the sequence % is decreasing
in £ € Ny, then ky <0 for / €N,

REMARK 1. The case ¢(t) = 1 and k; < 0 of Lemma 2 appeared in [5, p. 68,
Theorem 22] and [9, 22], see also [6, p. 13, Problem 6] and [10, p. 331]. This special
case was applied in [13, 16, 17]. Lemma 2 was modified in [28, Proposition 2].

3. Proofs of theorems

We are now in a position to prove our theorems.
Proof of Theorem 1. Directly computing yields
dIn T4 1 [®(1)] _ Ty, [®(1)]
dt Tops1[@(1)]

i 2j+2n+3 |Byjions2]
2jt2nt2(2j+2n+2)!

22](2])t2j—1
j=1

i2j+2n+3 |Bajant2| 22i2
&02j+ 2042 (2j+2n+2)!

o 2j+2n+5 [Bajionidl
Jtnt2 (2jtr2ntd)

2 4 1)
— g2 '

)

i 2j+2n+3 |Byjton+a 22i 2]
& 1 2j+2m+2)!
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where we used the series representation (4). Let

_2j+2n+3 |Baj+2n+2] 22

Pl = "7 Rjtan+ o)
and 2j+2n+5 |B |
. J+2n+ 2j+omtdl i)
= 22 (j+1
wl) == jaamtan’ WD
for j,n € Ng. Then
anj) _ Jj+1 (j+n+1)(2j+2n+5) 'B2j+2n+4
pn(j)  2(2j+2n+3) (j+n+2)3(2j+2n+3)|Brjionta
and . . .
PaU+1) _ 20 +n+1)(2j+20+5) |Bajionia
pn(j) (]+n+2)2(2]+2n+3)2 B2j+2n+2
an(J) pa(+1)

for j,n € Ny. Making use of Lemma 1, we see that the sequences onll) and NOR
for n € Ny are increasing in j € Ny. Employing Lemma 2, we conclude that '

1dInTy[@()]  (n+1)(2n+5)

8t dr 2(n+2)2(2n+3)?2

Boyis
Boyi2

+ Y k()Y
j=1

1 dInTy, 1 [®(1)]

such that k,(j) > 0 for j € N and n € Ny. This means that the function ; i

is absolutely monotonicin 7 € (0,7) and

dinT,1[®(2)]  4(n+1)(2n+5)
dr ~ (n+2)%(2n+3)?

By
By

148 ka(j)eH !
=1

for n € Ny is absolutely monotonic in 7 € (0,7). Hence, the normalized remainder
Top+1[®(¢)] for n € Ny is logarithmically absolutely monotonic in ¢ € (0, 7).

Since the normalized remainder T, [®(¢)] and the function %dln%m are
even, they are logarithmically completely monotonic function and completely mono-
tonic function in ¢ € (—mx,0), respectively.

By [25, p. 146, Theorem 3a], we see that the normalized remainder T, [®(7)]
and the function 1 dln%m can be extended analytically into the complex z-plane
and they are analytic in the disc |z| < 7. The proof of Theorem 1 is complete. [

Proof of Theorem 2. It is easy to see that

_2l’l+2(2l’l—|—2)! - 2j+2n+3 |B2j+2n+2|
2n+3 [Boua| 52j+2n+2(2j+2n+2)

T [@(1)]

! (2t)%

for n € Ny and |t| < . Then

o 2j4+2n+5 |B2jionidl 2j
Ton3[@()] _ [(2n+3)(2n+4) |Bansa| Zi-0 27525 iz (2

T [ @]~ @n+2)@nt5) [Bureal 7 22203 Bl )’
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Let )
2j+2n+5 |Byjton+al

Din = S  2n+4(2j+2n+4)!

and )
2j+2n+3 |Bajioni2]

2j+2n+2(2j+2n+2)!

Pjn=
for j,n € Ny. The ratios

Pitin _ _(2j+2n42)(2j+20+5) |Bajionsal _ qjm
Pin  [(2j+2n+3)(2j+2n+4)] |Bojionial  Pja

and ’1/ n

for j,n € Ny. By virtue of Lemma 1, we see that the ratios

b ;?“ n is increasing

J.n
in j € Ny for fixed n € Ny. In view of Lemma 2, we see that the serles expansmn

Dony3[@(1)] _ 2[(2n+3)(n+2)) [Bowsa|
Dna[@(1)]  (n+1)(2n+5)  [Bapsal =

Zk,,,zt t| <m

satisfies k;,, > 0 for j € N and n € Ny. Itis clear that

Ton3[®@()]  limy g Ty3[®(1)]

ko, = lim = — =1
01 IHO T2n+1 [q)(l‘)} hmt_>0 T2n+1 [q)(l‘)}
Accordingly, the ratio %’ﬁig% for n € Ny is absolutely monotonic in ¢ € (0, 7).

By [25, p. 145, Definition 2c], it is completely monotonic in 7 € (—m,0). By [25,

p. 146, Theorem 3a], it can be extended analytically into the complex z-plane and the
Tong3[P()]

ratio 7 g ]

is analytic in the disc |z| < . The proof of Theorem 2 is complete. [J

Proof of Theorem 3. In [6, p. 17, Theorem 1.3], [7, p. 347], [20, Section 2], and
the old book [26] in 1881, we find the following proposition.

If ap #0 and P(x) = ap+ a1x + axx®+ --- is a formal series, then the
coefficients of the reciprocal series ﬁ = by +byx+box> + - are given

by by = % and

a a 0 O 00O
a a a O 000
.| as an aq a 00O
(—1) .
bj= i : : : : oot JeN (6)
a
0 ajoajzajg4ajs---aay 0

aj-1dj-2daj-3dajq4 - dda
aj aj-1daj-pd;-3---dazdd

We call the determinantal formula (6) the Wronski formula. It was cited and applied
in[13, Lemma 1], [16, Lemma 2.1], and [17, Lemma 2.1].
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From the series expansion (2), it follows that

2 oo

t 1 i
oo 2j43 22jt1 2 J

) 57T GrlBaisalt™ 0

1|B2j+2| for j € Ny in the determinantal formula (6) yields the

2j+3 22/+l

Taking a; = ST
determinantal formula (5) for j € N. Then we obtain

1 1 &
___22

(1)
L
j=1
2 1 1, 101 , 109 15979
== ————1 - " — °— 10—
29 270 510300 9185400 21218274000

for 0 < |t| < m.
From Theorem 2, we immediately deduce that the function tzz — % is absolutely
Consequently, the se-

monotonic on (0,7) and completely monotonic on (—,0)
quence b; for j € N is negative. The proof of Theorem 3 is complete. [l

4. Guesses and more remarks

4.1. Guesses on Ty, [tan’x]
In the paper [3, p. 798], we find the Maclaurin power series expansion
oo 22j+2(22j+2_1)(2j+1) )
2 2
tan” x = Boiia|x™!
Z’l (2j+2)! B2l
17x°  62x% 138210 N 21844x!?
14175 467775

(N

- +2x+ n
R RV TR T

for |x| < 5, where the Bernoulli numbers B; are generated by (3). Making use of the
tan“x in (1) lead to the normalized remainder

series expansion (7) and taking f(x) =

Ty [tan’x] =
n—1 22j+2 22j+2_1 (2]+1) )
(2n+42)! |tan®x — ,—2‘1 ( o 2))! |Bajia|x?
- 0o &
22n+2(22n+2 _ 1)(2n + 1)|an+2|x2n X 7&
x=0

L,
for n € N and |x| < Z. For more information on normalized remainders T, [tan® x| and

tan?x tanx 2 5
=Tns || —— =Tou—1[sec’x], n>2,

T [tan2 x| =Ty {
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please refer to [14, 27, 31] and closely related references.

Theorem 1 in [31] reads that the normalized remainder T5,,_| [tan x] for n € N is
a logarithmically convex function in x € ( s 2) In [31, Theorem 2], the logarithm
InTy, [tan x] for n € N was expanded into a Maclaurin power series. In [12, The-
Dt [tan2 B
Ty, [tan? x|
and decreasing in x € (0,%).

In [12, Remark 4.1], the authors proposed the following guess.

orem 1.1], the ratio for n € N was proved to be increasing in x € (—%,O)

GUESS 1. ([12, Remark 4.1]) The ratio % for n € N is concave in x €
T T
(-%.%)-

We now propose one more stronger guess as follows.

T2n7 1 [tan? x]

GUESS 2. For ne€N, the ratio 5
+1[tan? x]

is completely monotonicin x € (— z, O)

and is absolutely monotonic in x € (0 7)

REMARK 2. The normalized remainder 73, [tan?x| defined by (8) for n € N
has a series representation

(2n+2)!
(2n+1)(2212 —1)|Bap 2|
y i (2n+2j+1)(2% 22 1)
= (2n+2j+2)!

Doy [tan2 x| =

|Boni2j+2|(20)* (9)

for |x| < 7. From the series representation (9), it follows that

Tgn_l[tanzx] . 1 24 Boyta
Topyiftan?x]  2(2n+1)(n+2) 2242 — 1| By
oo (2n+2]+ 1)(22n+2j+2_ 1)

> (2n 21 2)! |Bant2j12l(2%)%
L0 '

= (2n12j13)20 1) .
2 (2n+2j+4)! e

forneNand |x| <%

Let (2242742 _ 1)
(2n+2j+ 1) (2242742 _
N Byyia:
an(J) (2n+2j+2)! [Bani2j2
and p,(j) =¢qu(j+1) for n € N and j € Ny. Then

pali+1) _ 1 220 — 1| Bonsajivs
Pu(J) 202n+2j+3)(n+j+3) 2224 ]

Bopi2jia
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and .

qn(J) . 2222 1 Boyiaiis

=~ =22n+2j+1)(n+j+2 _

pn(J) ( JH Dt )22"+2/+4—1 Bontojta

for n € N and j € Ny. Since the sequence
1 22772 —1|Byji2
2j—1(j+1) 22i—1 By;

is decreasing in j € N, see [12, Lemma 2.1], we conclude that the sequence %&))

for fixed n € N is decreasing in j € Ny and that the sequence Z: Ejzg for fixed n € N is

increasing in j € Np. This means that we cannot use Lemma 2 to confirm Guess 2.

4.2. Guesses on T;[e"]

In the papers [1, 11, 15, 29] and [18, Section 1.7], the normalized remainder
T,[e"] was investigated systematically. The normalized remainder 7,[e*] for n € Ny
was proved to be logarithmically convex and absolutely monotonic in x € R and the ra-
tio T"T:['e[ff | for n e Ny was verified to be decreasing in x € R. We propose the following
guess.

GUESS 3. For n € Ny, the normalized remainder T,[e"] is a logarithmically ab-

X
solutely monotonic function in x € R. For n € Ny, the ratio hofe’]

is an absolutely

Tpr1eY]
monotonic function in x € R.
REMARK 3. Itis clear that, for n € Ny,
- 1 X
Tyle'] = Z ——, x€eR.
+n+1y 41’
= Ui
Standard computation gives
dinT,[e*]  T,[e"]
dx T, [e"]
) 1 X1
R GV
=— T
=0 T 7
oo 1 X
AT
oy LW
0N 7
for n € Ny and x € R.
et 1 1 1 1
)= 77 ad @)= 755
() 7! () 7
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for j,n € Ny. Then

pa(j+1) 1 1 <j+n+l)j'
pn(J) (I G+ nk1 )7
1
 j+tn+2

is decreasing in j € Ny and

w) 1 1<j+n+1>ﬂ

p)) O I\ nt

o J+1
j+n+2

is increasing in j € Ny for fixed j € Ny. This means that we cannot employ Lemma 2
to confirm Guess 3.
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