lournal of
athematical
nequalities
Volume 19, Number 4 (2025), 1253-1261 doi:10.7153/jmi-2025-19-81

ON THE NORMS OF GEOMETRIC CIRCULANT
MATRICES WITH THE QUADRAPELL NUMBERS

ALEKSANDRA ERIC AND IVAN LAZAREVIC*

(Communicated by T. Buric)

Abstract. In this paper we give the some bounds of the spectral norm for r-geometric circu-
lant matrices with the Quadrapell numbers. In addition, there are some remarks on Quadrapell

. . D
numbers and a proof of the conjecture about lim, nil

stated by D. Tasci.

n

1. Introduction

Geometric circulant matrices and r-circulant matrices appear in various areas of
applied mathematics and engineering. Due to their structured form, they are particularly
useful in numerical linear algebra, signal and image processing, and the design of fast
algorithms. In addition, these matrices find applications in coding theory, cryptography,
and the modelling of cyclic systems in physics and biology.

In this paper we calculated the upper and lower bound for spectral norm for geo-
metric circulant matrices with the Quadrapell numbers.

Matrix norms are fundamental tools in numerical linear algebra, providing a means
to quantify the size of a matrix. They are crucial for analyzing the stability and con-
vergence of numerical algorithms, as well as for evaluating the sensitivity of solutions
to perturbations and estimating error bounds. Matrix norms are widely applied in areas
such as control theory, signal processing, optimization, and machine learning.

Many authors have studied matrix norms, with particular attention given to the
norms of circulant matrices, (see, [6], [8], [9]). For further discussion, it is especially
interesting to consider the computation of norms of circulant matrices whose entries are
taken from generalizations of Fibonacci numbers (see, [1], [3], [5]).

DEFINITION 1.1. A circulant matrix C is a matrix where each row is a right cyclic
shift of the previous one. If there exists vector ¢ = (co,c1,¢2,-...,¢,—1) than the fol-
lowing matrix is a circulant:

o C1 " Cp—1

Cn—1€o """ Cp—2
C:

Cl C2 e CO
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DEFINITION 1.2. A matrix with dimension n X n is called a geometric circulant
matrix if exists » # 0 and is given by:

o 1 T Cp—1
rtp—1 o o Cp=2
2
Cr* — r--Chp—2 r-Chp—1 '+ Cp-3
rn_l “Cn—1 rn_2.62 SRR}

These matrices are a generalization of r-circulant matrices, which are given as
follows:

€0 (& G |

rep—1 co o Cp2

C.= | Cn2T"Cpa1 " Cn-3
r-Chp—1 r-c2 -+ Co

For r =1 we get a circulant matrix.

The singular values o] > 0> > .... > 0, of matrix A are the square roots of
eigenvalues of A-A” . The Hadamar product of matrices A = [a;;]mxn and B = [b;j]mxn
is matrix C =AoB = [a;; - bij|mxn-

DEFINITION 1.3. Let A = [a;j]ux, be any matrix, we define norm with label
|| A1 on the following way:

n
1A 1= laij-

i,j=1

DEFINITION 1.4. Euclidean norm of matrix A = [a;jnxn is:

| Allg=

In the literature, this norm is often denoted as the Frobenius norm or the Hilbert-
Schmidt norm.

DEFINITION 1.5. For matrix A = [a; j]nxn, we define the spectral norm (operator
norm) || A ||2 in the following way:

| A fl2= sup |Ax].

[x|=1
Note that the spectral norm is equal to the largest singular value of the matrix:

||A H2= Oj.
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It is sometimes important to understand the relationship between different norms
of the same matrix. The following result provides an inequality between the spectral
norm and the Euclidean norm.

If A= [ajjlnxn matrix , then following inequalities holds, for spectral and Eu-
clidean norm of this matrix:

1
— A [g<||A 2K A
NG [Ale<[| A2/ AllE

[Al2<[Alle<VnlAl.

In paper [5], authors give the upper and lower bounds for the spectral norms of
the geometric circulant matrices and symmetric geometric circulant matrices with Tri-
bonacci numbers. In this paper we give the upper and lower bounds for the spectral
norms of the geometric circulant matrices with Quadrapell numbers.

The following lemma from paper [2] is also used by the authors of paper [5], as
well as in our main result.

LEMMA 1.1. Let A = [aij]mxn and B = [bijlmxn be two matrices. Thus:

|AoB|[2< r(A)-c(B)

— — 2
) = max 2 Sl )= max S

2. Preliminaries

where:

Recurrence relations have many interesting properties and applications in many
fields of science. The Fibonacci sequence is one of the most prominent examples of a
recurrence relation, with notable applications in the natural sciences, including physics,
chemistry, and biology. The Fibonacci sequence first appears in The Book of Calcu-
lation, 1202. years by Fibonacci (Leonardo Bonacci), where it is used to calculate the
growth of rabbit populations. The Fibonacci sequence, denote F;, is defined by recur-
rence relation:

Fn :Fn—1+Fn—2-
The explicit formula for the n-th terms of the Fibonacci sequence, without using recur-
sion is:
o — Bn
V5

=

whereoc—1+ —V5
2 2

The formula is called Binet’s formula.

5 1
and f =
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The next two identities provide the sum and the sum of the squares of the first n
Fibonacci numbers.

1.
n—1
N F=Fp—1
k=0

n—1
Y F=FyFoo
k=0

The previous two identities will be used in the chapter Main Results. Among
the most notable generalizations of the Fibonacci sequence (see, [4], [7], [11]) are the
Tribonacci sequence, the Lucas numbers, and the Quadrapell sequence. The Tribonacci
sequence, denote 7, is defined by recurrence relation:

=T 1+T2+T 3

DEFINITION 2.1. [10] The Quadrapell numbers D,, are defined by the recurrence
relation
Dy =Dy 2+2Dy 3+ Dy 4, n=> 4

WhereD():Dl:Dz:l,D3 =2.

The first few Quadrapell numbers D, are: 1, 1, 1, 2,4, 5,9, 15, 23, 38, 62, 99,
161, 261, 421,...
The characteristic equation of the Quadrapell recurrence relation is given by:

=X —2x—1=0.

1-V5
2

1 5
The real roots of this equation are given by: o = and f =
1—/3i

1 3i _
;\/_l and & =

We can observe that « is equal to the Golden ratio. Rations of consecutive Fi-
bonacci numbers and Lucas numbers converge to the Golden ratio. In paper [10] author
posed the conjecture that the rations of consecutive Quadrapell number converges to
the limit o, where o is Golden ratio, i.e the following equality is valid:

and

the imaginary roots are given by: y =

. D, 1+V5
lim =
n—e Dy g 2

The following lemma give a affirmative answer for this conjecture.

LEMMA 2.1. Let D,, be a recurrence sequences of Quadrapell numbers then:

. D, 1+5
lim = .
n—e Dy_q 2
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Proof. Let o, B,y and & are roots of characteristic equation of the Quadrapell
recurrence relation. The following equality is the result from paper [10]:
n+l ﬁnJrl 1 OC ﬁn 1 yn 6n

Dn = a—B 2 o-pB Ty y—3§8 '

1 . _ 2
In trlgonometry format of complex numbers:y = cos 2% 3 T 4 isin 2% 3 and § = cos 5 —

isin 2 . According to Moivres formula: y" = cos 22” + isin X 2”” and 6" = cos 2’;" +
isin 2’;”

From the previous equalities follows:

n+l ﬁnJrl _ %(an _ Bn) 1 sin 227‘[

D, = .
! V5 2 sm%”

Now, we calculate the limit value:

n+l Bn+l _( o Bn) o

sin £ 3
lim = lim V5 V3
n—ee Py 1 n—oeo Bn ( o1 Bn 1) sin 2(,,51)7-[
Vg V3
B n 1 l B n
a_B<5 272\« +sm2’§”
— lim Vs V3o
n~>ool ﬁ n 1 1 ﬁ n—1
“\a) 2a2a\a sin 20107
V5 V3ar
L ((x— 1) V5
_ V5 2 2 _ 1+\/§. 0
NG 2

1 1
S ) [
¢§< 2a> 1+/5
Consequently, the final result coincides with the value of the golden ratio, thereby

confirming the validity of the conjecture. The following lemma is the result from [10].

LEMMA 2.2. Let D, be a sequence of quadruples of numbers. Then, the follow-
ing equality hold:

< 1
ZDi = §(D11 +Dn+2 +Dn+3 - 4)
The following lemma gives a very interesting properties of Quadrapell number.

LEMMA 2.3. Let D, be a sequence of quadruples of numbers. Then, the follow-
ing equalities hold:
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1. D3t = D31+ D32
2. D3jy1 =Dz + D31 +1

3. D3py2 = D3+ D3y — 1.

Proof. Let us prove the first equality using mathematical induction.

Base case: For k = 1, the statement clearly holds: D3 =D;+Dy=1+1=2.

Induction hypothesis: Assume that the statement holds for some arbitrary k = n.

Inductive step: We now prove that the statement holds for k =n+1 (i.e D313 =
Dsii0 + D3g 1), assuming it holds for k =n.

We begin with the definition of Quadrapell numbers, followed by the use of the
induction hypothesis.

D3iy3 = D31 +2D3; + D3j—1 = D3y + D3+ D3+ D3y
= D3j41 + D3g+ D31 + D32+ D3y
= D3jy1 + D3k +2D3j_1 +D3g_2 = D31 + D3gpo.

This completes the proof of the first equality. The second and third equalities can be
proved analogous. [J

COROLLARY 1. The difference between the sequences D, and F, (n > 3) results
in a new sequence of numbers that can be interpreted as a variant of the Quadrapell
numbers (0, 1,0, 1,2, 2,4, 7,10, 17...) with different initial conditions.

The proof is straightforward and can be obtained using mathematical induction.

COROLLARY 2. Based on the previous lemma, it can be observed that the follow-
ing inequality holds for n > 1:

anDnan-&-L

3. Main results

In this chapter, we derive upper and lower bounds for the spectral norm of geo-
metric r-circulant matrices with Quadruple numbers.
Let us consider the sequence of numbers D,, with real roots of characteristic equa-

H—\/gandﬁ: 1_\/5.

tion o =
10n ) 3

THEOREM 3.1. Let us consider the given geometric r-circulant matrix Dy« with
Quadrapell numbers, and spectral norm || Dy ||2, then holds:
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1. If |r| <1 then:

m a2n _ r2n ﬁ2n _ r2n +2(_1)n _ r2n
V5 o2 —r? B2 —r2 1+ 72
1
<[ Dy o< g( -1+ Dps1+Dyio—4).

2n
[r"—1
2. If“r| > 1 then \/Fn'Fn_l gH Dr* HQS ﬂ\/Fn'Fn+l‘

Proof.

L. |r < 1:

Define the matrices A and B as follows

VDy VD -
VDt /Dy -
VDT D5
VDy VD
VDT VDo

B =

BB T

I Dy [la =[[ Ao B [2< r(A) - ¢(B) =

n—1
1
— 2 Dy = _(anl +Dn+1 +Dn+2 _4)
k=0 3

Lower bound:

1 lnl
I Dy 3= = I Dy 3=~ X (n—k)D + — Zk|r" “’D;
n nko
lnl

>n- _Z|rﬂ k|2D2 ZanTi

n—1 2 2 2n __ ,2n n 2n
F, (o2 B (=)"—r
2n k

= 5 062—}"2 ﬁz—rz 1+72

‘r| O( ﬁ2n 2n (_l)n _ r2n
k 2 .
|| D” H2 \/— Bz + 1_|_r2
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2. |r]>1:
Upper bound: Define the matrices A and B as follows:

Dy Dy - Dy
anl DO : Dn72
B= .
Dy D, --- Dy
}"2"—1 n—1
| Dy ll2=[[AoB [2< r(A)-c(B) =1 — N2
re—1 =
<
2n
[rt—1
||DI’* H2< r2_1 Fn'Fn+1~
Lower bound:
) 1 s Ll 0 S k2
| D 132 = | D lg= = | D, (n—k)Dg+ Y, k| *]°Dg
n n\ k=0 k=0

1 n—1 n—1 1 n—1
>—<Zm—m%+§ﬁm>:w—2Dﬁ
n\x=o k=0 " =0

n—1
> YR =FFy
k=0

HDr* ||2> Fy- by O

The following numerical example illustrates the result of the preceding theorem.

EXAMPLE 1. Let D+ geometric r-circulant matrix with Quadrapell numbers:

1. r=1,05 (r>1)
n =275 itis obtained that: 3,87 < 9,39 < 15
n =10 it is obtained that: 49 < 107,34 < 234
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2. r=0,9 (r<l)

[1]

[2]
[3]

[4]
[5]
[6]

[7]
[8]

[9]
[10]

[11]

n =75 itis obtained that: 3,3 < 7,49 <8
n = 10 it is obtained that: 33,05 < 86,25 <98
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