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Abstract. The p -numerical radius of a Hilbert space operator A is defined as

wp (A) = sup
∈R

∥∥∥Re
(
eiA

)∥∥∥
p

for 0 < p �  , where Re (·) is the real part and ‖·‖p is the Schatten p -norm (quasi-norm). In
this paper, a more natural p -numerical radius is defined as

np (A) = sup
{ j} o.n.s.

(

j

∣∣〈A j, j
〉∣∣p)1/p

for 0 < p �  . Properties and inequalities related to this new p -numerical radius are given.

1. Introduction

Let B(H) be the space of all bounded linear operators acting on a separable com-
plex Hilbert space H occupied with an inner product 〈·, ·〉 . The absolute value of an
operator A ∈ B(H) , denoted by |A| , is the positive square root of the positive opera-
tor A∗A , that is, |A| = (A∗A)1/2. For an operator A ∈ B(H) , let Re(A) = A+A∗

2 and
Im(A) = A−A∗

2i denote the real part and the imaginary part of A , respectively.
The usual operator norm, denoted by ‖·‖ , is the norm on B(H) defined as

‖A‖ = sup{‖Ax‖ : x ∈ H, ‖x‖ = 1} .

Equivalently,
‖A‖ = sup{|〈Ax,y〉| : x,y ∈ H, ‖x‖ = ‖y‖ = 1} . (1.1)

Moreover, if A is normal, then the usual operator norm of A becomes

‖A‖ = sup{|〈Ax,x〉| : x ∈ H, ‖x‖ = 1} . (1.2)

The numerical radius of an operator A ∈ B(H) is denoted by w(A) and is defined
as

w(A) = sup{|〈Ax,x〉| : x ∈ H, ‖x‖ = 1}. (1.3)
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It is known that w(·) defines a norm on B(H) , which is equivalent to the usual operator
norm ‖·‖ . In fact, if A ∈ B(H) , then

‖A‖
2

� w(A) � ‖A‖ . (1.4)

Moreover, if A2 = 0, then w(A) = ‖A‖
2 . Also, if A is normal, then w(A) = ‖A‖ .

One of the distinguishable characterizations of the numerical radius is the one
introduced by Yamazaki [16], which asserts that if A ∈ B(H) , then

w(A) = sup
∈R

∥∥∥Re
(
eiA

)∥∥∥= sup
∈R

∥∥∥Im(eiA
)∥∥∥ . (1.5)

Also, the numerical radius satisfies the weak unitary invariance property, that is, if
A ∈ B(H) , then

w(U∗AU) = w(A) (1.6)

for every unitary operator U in B(H) . Another useful property of the numerical radius
is the self-adjointness property, that is,

w(A∗) = w(A)

for every A ∈ B(H) . This property can be easily derived from the relations (1.5).
For a compact operator A ∈ B(H) , the Schatten p -norm, denoted by ‖·‖p , is

defined on B(H) by

‖A‖p = sup
{ j},{ j} o.n.s.

(

j

∣∣〈A j, j
〉∣∣p)1/p

(1.7)

for 1 � p <  , where the the supremum is taken over all orthonormal sets (o.n.s.){
 j
}

,
{
 j
}

in H . In particular, when A ∈ B(H) is normal, we have

‖A‖p = sup
{ j} o.n.s.

(

j

∣∣〈A j, j
〉∣∣p)1/p

. (1.8)

Note that for 0< p < 1, ‖·‖p is a quasi-norm (it does not satisfy the triangle inequality).
Moreover, an important fact for the Schatten p -norms, when 2 � p < , is that

‖A‖p = sup
{ j} o.n.b.

(

j

∥∥A j
∥∥p

)1/p

, (1.9)

where the the supremum is taken over all orthonormal bases (o.n.b.)
{
 j
}

for H . Also,
one of the useful properties of the Schatten p -norms (quasi-norms) is that∥∥∥∥

[
A 0
0 B

]∥∥∥∥
p
=
∥∥∥∥
[

0 A
B 0

]∥∥∥∥
p
=
(
‖A‖p

p +‖B‖p
p

)1/p
(1.10)
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for A,B ∈ B(H) and for 0 < p < . We say that an operator A ∈ B(H) belongs to the
Schatten p -class, which is denoted by Bp (H) , if ‖A‖p < . Indeed, lim

p→
‖A‖p = ‖A‖ .

For comprehensive accounts of the Schatten p -norms, we refer the reader to [8], [13],
and [17].

The relations (1.5), inspired Abu-Omar and Kittaneh [1] to define generalized nu-
merical radii of operators. Among these generalized numerical radii is the p -numerical
radius (see, e.g., [2], [3], [4], [7], [10], [11], and [12]), which is defined as follows: For
0 < p <  , define the p -numerical radius wp (·) on Bp (H) as

wp (A) = sup
∈R

∥∥∥Re
(
eiA

)∥∥∥
p

for A ∈ Bp (H) . (1.11)

Equivalently, we have

wp (A) = sup
∈R

∥∥∥Im(eiA
)∥∥∥

p
for A ∈ Bp (H) . (1.12)

Some of the nice properties of the p -numerical radius are the following (see, e.g., [5]
and [9]): For A,B ∈ Bp (H) and 0 < p <  , we have

cp‖A‖p � wp (A) � ‖A‖p , (1.13)

where

cp =
{

2−1/p, 0 < p � 2
2−1+1/p, 2 � p � .

(1.14)

In particular, we have
‖A‖p

2
� wp (A) � ‖A‖p . (1.15)

Moreover, we have

wp

([
A 0
0 B

])
�
(
wp

p (A)+wp
p (B)

)1/p (1.16)

and

wp

([
0 A
A 0

])
= 21/pwp (A) . (1.17)

It can be seen (see, e.g., [14]) that

wp

([
0 A
B 0

])
= 2−1+1/psup

∈R

∥∥∥A+ eiB∗
∥∥∥

p
(1.18)

for 0 < p �  .
In this paper, we focus our attention on a new generalized numerical radius. In

Section 2, inspired by the relations (1.1), (1.3), and (1.7), we introduce a more natural
p -numerical radius and we study some properties of this new notion. In Section 3, we
focus our attention on presenting some properties of our new p -numerical radii of the
diagonal parts and the off-diagonal parts of 2× 2 operator matrices. In Section 4, we
introduce lower and upper bounds for the new p -numerical radii of the off-diagonal
parts of 2×2 operator matrices.
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2. The new p -numerical radius

In accordance with the relations (1.1), (1.3), and based on the relation (1.7), one
might introduce the definition of the p -numerical radius of an operator as follows.

DEFINITION 2.1. The p -numerical radius of an operator, denoted by np (·) , is
defined on Bp (H) by

np (A) = sup
{ j} o.n.s.

(

j

∣∣〈A j, j
〉∣∣p)1/p

for 0 < p <  .

REMARK 2.2. Each of the following statements can be easily verified.

(a) lim
p→

np (A) = w(A) for every A ∈ Bp (H) .

(b) For 0 < p �  , the relations (1.3), (1.7), and Definition 2.1 imply that

w(A) � np (A) � ‖A‖p (2.1)

for every A ∈ Bp (H) .

(c) For 0 < p �  , the new p -numerical radius np (·) is weakly unitarily invariant,
that is,

np (U∗AU) = np (A) (2.2)

for every A ∈ Bp (H) and for every unitary U ∈ B(H) .

(d) For 1 � p �  , the new p -numerical radius np (·) is a norm on Bp (H) .

Based on Definition 2.1, a result that relates np (·) and wp (·) can be seen in the
following theorem.

THEOREM 2.3. Let A ∈ Bp (H) . Then

wp (A) � np (A) � wp (A)
cp

(2.3)

for 0 < p �  , where cp is defined in the relation (1.14) .
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Proof. For the first inequality of (2.3), let  ∈ R . Since Re
(
eiA

)
is self-adjoint,

we have

∥∥∥Re
(
eiA

)∥∥∥
p

= sup
{ j} o.n.s.

(

j

∣∣∣〈Re
(
eiA

)
 j, j

〉∣∣∣p
)1/p

(by the relation (1.8))

= sup
{ j} o.n.s.

(

j

∣∣∣Re
〈
eiA j, j

〉∣∣∣p
)1/p

� sup
{ j} o.n.s.

(

j

∣∣∣〈eiA j, j

〉∣∣∣p
)1/p

= sup
{ j} o.n.s.

(

j

∣∣〈A j, j
〉∣∣p)1/p

= np (A) (by Definition 2.1). (2.4)

By taking the supremum in both sides of the inequality (2.4) over all real numbers  in
R , we have

wp (A) = sup
∈R

∥∥∥Re
(
eiA

)∥∥∥
p

� np (A) (by the inequality (2.4)). (2.5)

For the second inequality of (2.3), we have

np (A) � ‖A‖p (by the second inequality of (2.1))

� wp (A)
cp

(by the first inequality of (1.13)),

as required. �
In the following example, we compute the two p -numerical radii wp (·) and np (·)

for certain matrices. This example shows that the inequalities (2.3) are sharp.

EXAMPLE 2.4. Let A =
[

0 1
0 0

]
, B =

[
1 0
0 i

]
, and let 0 < p �  . Then

wp (A) = 2−1+1/p (by the relation (1.18)).

Also, by direct computations, we have

np (A) = sup

⎧⎨
⎩
(

j

∣∣〈A j, j
〉∣∣p)1/p

:
{
 j
}

is orthonormal set in C
2

⎫⎬
⎭

= 2−1+1/p.



1268 M. EL-HADDAD, O. HIRZALLAH AND F. KITTANEH

On the other hand, we have

wp (B) = sup
∈R

∥∥∥Re
(
eiA

)∥∥∥
p

= sup
∈R

(|cos( )|p + |sin( )|p)1/p .

In particular, letting p = 2, we have

w2 (B) = 1,

while the normality of B implies that

n2 (B) = ‖B‖2 =
√

2.

Consequently, np (A) = wp (A) and n2 (B) = w2(B)
c2

. In this example, we see that the
inequalities (2.3) are sharp. Also, in this example, we see that our new p -numerical
radius np (·) and the old p -numerical radius wp (·) are different concepts.

We need the following lemma for scalars. It follows from the convexity of the
function f (t) = t p on [0,) for 1 � p <  .

LEMMA 2.5. Let a and b be positive real numbers. Then

(a+b)p � 2p−1 (ap +bp)

for 1 � p <  , and

(a+b)p � 2p−1 (ap +bp)

for 0 < p � 1 .

In the following theorem, we give some upper and lower bounds for our new p -
numerical radii of operators.

THEOREM 2.6. Let A ∈ Bp (H) . Then

np (A) � 21/2−1/p
(
‖Re (A)‖p

p +‖Im(A)‖p
p

)1/p
(2.6)

for 2 � p �  , and

np (A) � 21/2−1/p‖Re (A)+ Im(A)‖p (2.7)

for 0 < p � 1 .
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Proof. Let
{
 j
}

be an orthonormal set in H , and let 2 � p �  . Then

np
p (A) = sup

{ j} o.n.s.

j

(∣∣〈A j, j
〉∣∣p)

= sup
{ j} o.n.s.


j

(∣∣〈(Re(A)+ iIm(A)) j, j
〉∣∣p)

= sup
{ j} o.n.s.


j

(∣∣Re
(〈

A j, j
〉)

+ iIm
(〈

A j, j
〉)∣∣p)

= sup
{ j} o.n.s.


j

(((
Re
〈
A j, j

〉)2 +
(
Im
〈
A j, j

〉)2)p/2
)

(2.8)

� 2p/2−1 sup
{ j} o.n.s.


j

(∣∣Re
〈
A j, j

〉∣∣p +
∣∣Im〈A j, j

〉∣∣p)
(by Lemma 2.5)

= 2p/2−1 sup
{ j} o.n.s.

(

j

∣∣〈Re(A) j, j
〉∣∣p +

j

∣∣〈Im(A) j, j
〉∣∣p)

� 2p/2−1
(
‖Re(A)‖p

p +‖Im(A)‖p
p

)
.

On the other hand, let 0 < p � 1. Then

np
p (A) = sup

{ j} o.n.s.

j

(((
Re
〈
A j, j

〉)2 +
(
Im
〈
A j, j

〉)2)p/2
)

(by the relation (2.8))

� 2p/2−1 sup
{ j} o.n.s.


j

(∣∣Re
〈
A j, j

〉∣∣p +
∣∣Im〈A j, j

〉∣∣p)
(by Lemma 2.5)

� 2p/2−1 sup
{ j} o.n.s.


j

(∣∣〈Re(A) j, j
〉∣∣+ ∣∣〈Im(A) j, j

〉∣∣)p

� 2p/2−1 sup
{ j} o.n.s.


j

∣∣〈Re(A) j, j
〉
+
〈
Im(A) j, j

〉∣∣p
= 2p/2−1 sup

{ j} o.n.s.

j

∣∣〈(Re (A)+ Im(A)) j, j
〉∣∣p

= 2p/2−1
(
‖Re (A)+ Im(A)‖p

p

)
,

as required. �

3. Properties of the new p -numerical radii of the diagonal parts and the
off-diagonal parts of 2×2 operator matrices

In this section, we are interested in studying some properties of our new p -nume-
rical radii of the diagonal parts and the off-diagonal parts of 2× 2 operator matrices.
First, we start with the following theorem that involves some of the these properties.



1270 M. EL-HADDAD, O. HIRZALLAH AND F. KITTANEH

THEOREM 3.1. Let A,B ∈ Bp (H) , and let 0 < p �  . Then

(a) np

([
A 0
0 B

])
= np

([
B 0
0 A

])
.

(b) np

([
0 A
B 0

])
= np

([
0 B
A 0

])
.

(c) np

([
A 0
0 B

])
= np

([
eiA 0

0 eiB

])
for every , ∈ R .

(d) np

([
0 A
B 0

])
= np

([
0 eiA

eiB 0

])
for every , ∈ R .

Proof.
Part (a): We have

np

([
A 0
0 B

])
= np

([
0 I
I 0

]∗ [
A 0
0 B

][
0 I
I 0

])
(by the identity (2.2))

= np

([
B 0
0 A

])
,

where I is the identity operator in B(H) .
Part (b): We have

np

([
0 A
B 0

])
= np

([
0 I
I 0

]∗ [ 0 A
B 0

][
0 I
I 0

])
(by the identity (2.2))

= np

([
0 B
A 0

])
.

Part (c): We have

np

([
A 0
0 B

])
= np

([
0 ei/2I

ei/2I 0

]∗ [
A 0
0 B

][
0 ei/2I

ei/2I 0

])

(by the identity (2.2))

= np

([
ei(−)/2B 0

0 ei(− )/2A

])

= np

(
ei(+ )/2

[
ei(−)/2B 0

0 ei(− )/2A

])

= np

([
eiB 0
0 eiA

])

= np

([
eiA 0

0 eiB

])
(by Part (a)).
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Part (d): We have

np

([
0 A
B 0

])
= np

([
e−i/2I 0

0 e−i/2I

]∗ [
0 A
B 0

][
e−i/2I 0

0 e−i/2I

])

(by the identity (2.2))

= np

([
0 ei(− )/2A

ei(−)/2B 0

])

= np

(
ei(+ )/2

[
0 ei(− )/2A

ei(−)/2B 0

])

= np

([
0 eiA

eiB 0

])
. �

Other properties of the new p -numerical radii of the diagonal parts of 2×2 oper-
ator matrices can be seen in the following theorem.

THEOREM 3.2. Let A,B ∈ Bp (H) , and let T =
[

A 0
0 B

]
. Then

np (T ) � max

(
np (A) ,np (B) ,

1
2
np (A+B)

)
(3.1)

and

np (T ) �
(
‖A‖p

p +‖B‖p
p

)1/p
(3.2)

for 0 < p �  .

Proof. Let { j} be an orthonormal set in H . Then the set { j} , where  j =[
 j

0

]
, is orthonormal in H⊕H . It follows that

(

j

∣∣〈A j, j
〉∣∣p)1/p

=

(

j

∣∣〈T j, j
〉∣∣p)1/p

� sup
{ j} o.n.s.

(

j

∣∣〈T j, j
〉∣∣p)1/p

= np (T ) . (3.3)

By taking the supremum in both sides of the inequality (3.3) over all orthonormal sets
{ j} in H , we have

np (A) � np (T ) . (3.4)

Similarly, we have
np (B) � np (T ) . (3.5)
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Moreover, let  j = 1√
2

[
 j

 j

]
. Then { j} is an orthonormal set in H⊕H . It

follows that

1
2

(

j

∣∣〈(A+B) j, j
〉∣∣p)1/p

=

(

j

∣∣〈T j, j
〉∣∣p)1/p

� sup
{ j} o.n.s.

(

j

∣∣〈T j, j
〉∣∣p)1/p

= np (T ) . (3.6)

By taking the supremum in both sides of the inequality (3.6) over all orthonormal sets
{ j} in H , we have

1
2
np (A+B) � np (T ) . (3.7)

Now, the inequality (3.1) follows from the inequalities (3.4), (3.5), and (3.7).
The inequality (3.2) follows from the second inequality of (2.1) and the fact that

‖T‖p =
(
‖A‖p

p +‖B‖p
p

)1/p
. �

A direct application of Theorem 3.2 can be seen in the following corollary.

COROLLARY 3.3. Let A ∈ Bp (H) , and let S =
[

A 0
0 A

]
and T =

[
A 0
0 0

]
. Then

np (A) � np (S) � 21/p‖A‖p

and

np (A) � np (T ) � ‖A‖p

for 0 < p �  .

In the following theorem, we give properties of the new p -numerical radii of the
off-diagonal parts of 2×2 operator matrices.

THEOREM 3.4. Let A ∈ Bp (H) , and let T =
[

0 A
B 0

]
. Then

1
2
np (A+B) � np (T ) �

(
‖A‖p

p +‖B‖p
p

)1/p
(3.8)

for 0 < p �  .
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Proof. Let { j} be an orthonormal set in H , and let  j = 1√
2

[
 j

 j

]
. Then { j}

is an orthonormal set in H⊕H . It follows that

1
2

(

j

∣∣〈(A+B) j, j
〉∣∣p)1/p

=

(

j

∣∣〈T j, j
〉∣∣p)1/p

� sup
{ j} o.n.s.

(

j

∣∣〈T j, j
〉∣∣p)1/p

= np (T ) . (3.9)

By taking the supremum in both sides of inequalities (3.9) over all orthonormal sets
{ j} in H , we have

1
2
np (A+B) � np (T ) ,

which proves the first inequality of (3.8). The second inequality of (3.8) follows from

the second inequality of (2.1) and the fact that ‖T‖p =
(
‖A‖p

p +‖B‖p
p

)1/p
. �

A direct application of Theorem 3.4 can be seen in the following corollary.

COROLLARY 3.5. Let A ∈ Bp (H) , and let S =
[

0 A
A 0

]
and T =

[
0 A
0 0

]
. Then

np (A) � np (S) � 21/p‖A‖p

and
1
2
np (A) � np (T ) � ‖A‖p

for 0 < p �  .

4. Inequalities for the new p -numerical radii of the off-diagonal parts
of 2×2 operator matrices

In this section, we introduce further properties concerning our new p -numerical
radii of the off-diagonal parts of 2× 2 operator matrices. We start with the following
Clarkson type lemma.

LEMMA 4.1. Let a and b be complex numbers, and let 2 � p <  . Then

2(|a|p + |b|p) � |a+b|p + |a−b|p � 2p−1 (|a|p + |b|p) .

These inequalities can be reversed for 0 < p � 2 .

Now, we have the following result.
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THEOREM 4.2. Let A,B ∈ Bp (H) , and let R =
[

0 A+B∗
0 0

]
, S =

[
0 A−B∗
0 0

]
,

and T =
[

0 A
B 0

]
. Then

(a) np (T ) � max

⎛
⎝ cp

(
‖A‖p

p +‖B‖p
p

)1/p
,

2−1+1/p‖A+B∗‖p ,2−1+1/p‖A−B∗‖p

⎞
⎠ for 0 < p � , where

cp is defined in the relation (1.14).

(b) np (T ) � 21−2/p
(
n

p
p (R)+n

p
p (S)

)1/p for 2 � p �  .

Proof.
Part (a): We have

np (T ) � cp‖T‖p (by the first inequalities of (1.13) and (2.3))

= cp

(
‖A‖p

p +‖B‖p
p

)1/p
. (4.1)

On the other hand, we have

np (T ) � wp (T ) (by the first inequality of (2.3))

= sup
∈R

∥∥∥Re
(
eiT

)∥∥∥
p

=
1
2

sup
∈R

∥∥∥∥
[

0 eiA+ e−iB∗
e−iA∗ + eiB 0

]∥∥∥∥
p

= 2−1+1/psup
∈R

∥∥∥eiA+ e−iB∗
∥∥∥

p

� 2−1+1/pmax
(
‖A+B∗‖p ,‖A−B∗‖p

)
. (4.2)

Now, Part (a) follows from inequalities (4.1) and (4.2).

Part (b): Let T1 =
[

0 A
−B 0

]
, and let

{
 j
}

=
{[

 j

 j

]}
be an orthonormal set in

H⊕H . Then∣∣〈T j, j
〉∣∣p +

∣∣〈T1 j, j
〉∣∣p

=
∣∣〈A j, j

〉
+
〈
B j, j

〉∣∣p +
∣∣〈A j, j

〉− 〈B j, j
〉∣∣p

� 2p−1 (∣∣〈A j, j
〉∣∣p +

∣∣〈B j, j
〉∣∣p)

(by the second inequality of Lemma 4.1)

= 2p−1 (∣∣〈A j, j
〉∣∣p +

∣∣〈B∗ j, j
〉∣∣p)

� 2p−2 (∣∣〈(A+B∗) j, j
〉∣∣p +

∣∣〈(A−B∗) j, j
〉∣∣p) (4.3)

(by the first inequality of Lemma 4.1)

= 2p−2 (∣∣〈R j, j
〉∣∣p +

∣∣〈S j, j
〉∣∣p) .
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Consequently,


j

∣∣〈T j, j
〉∣∣p � 2p−2

(

j

∣∣〈R j, j
〉∣∣p +

j

∣∣〈S j, j
〉∣∣p) . (4.4)

By taking the supremum in both sides of the inequality (4.4) over all orthonormal sets{
 j
}

in H⊕H , we have

np
p (T ) � 2p−2 (np

p (R)+np
p (S)

)
,

as required. �
A direct application of Part (b) of Theorem 4.2 can be stated as follows.

COROLLARY 4.3. Let A,B ∈ Bp (H) , and let T =
[

0 A
B 0

]
. Then

np (T ) � 21−2/p
(
‖A+B∗‖p

p +‖A−B∗‖p
p

)1/p
(4.5)

for 2 � p �  .

Proof. We have

np (T ) � 21−2/p(np
p (R)+np

p (S)
)1/p

(by Theorem 4.2 (b))

� 21−2/p
(
‖R‖p

p +‖S‖p
p

)1/p
(by the second inequality of (2.1))

= 21−2/p
(
‖A+B∗‖p

p +‖A−B∗‖p
p

)1/p
,

as required. �

REMARK 4.4. Another formulation of the inequality (4.5) can be stated as fol-

lows: Let A,B ∈ Bp (H) , and let T =
[

0 A
B 0

]
. Then

np (T ) � 22−3/p
(
‖Re(T )‖p

p +‖Im(T )‖p
p

)1/p
(4.6)

for 2 � p �  . In particular, taking B = A , we have

np (A) � 22−2/p
(
‖Re(A)‖p

p +‖Im(A)‖p
p

)1/p
. (4.7)

In fact, the inequality (4.6) follows from the inequality (4.5), by observing that

‖A+B∗‖p
p = 2p−1‖Re (T )‖p

p and ‖A−B∗‖p
p = 2p−1‖Im(T )‖p

p ,

while the inequality (4.7) follows from the inequality (4.6) by letting B = A and using
the first inequality of (3.8).
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An application of Theorem 4.2 and Corollary 4.3 can be seen in the following
corollary.

COROLLARY 4.5. Let A ∈ Bp (H) , and let S =
[

0 A
A 0

]
and T =

[
0 A
0 0

]
. Then

2−1+2/p‖A‖p � np (S) � 22−2/p‖A‖p (4.8)

2−1+1/p‖A‖p � np (T ) � 21−1/p‖A‖p (4.9)

for 2 � p �  .

Proof. The first inequality of (4.8) follows by applying Part (a) of Theorem 4.2
for 2 � p �  and taking B = A , while the second inequality of (4.8) follows from
Corollary 4.3 by taking B = A and the facts that ‖Re (A)‖p � ‖A‖p and ‖Im(A)‖p �
‖A‖p .

The inequalities of (4.9) follow by applying Part (a) of Theorem 4.2 for 2 � p �
and Corollary 4.3 by taking B = 0. �

Another result can be stated as follows.

THEOREM 4.6. Let A,B ∈ Bp (H) , and let T =
[

0 A
B 0

]
. Then

n2
p (T ) � 2

∥∥∥ |A|2 + |B∗|2
∥∥∥

p/2
(4.10)

for 0 < p �  .

Proof. Let
{
 j
}

=
{[

 j

 j

]}
be an orthonormal set of H⊕H . Then

∣∣〈T j, j
〉∣∣2 +

∣∣〈T1 j, j
〉∣∣2

�
∣∣〈(A+B∗) j, j

〉∣∣2 +
∣∣〈(A−B∗) j, j

〉∣∣2 (by the inequality (4.3))

�
(∥∥(A+B∗) j

∥∥2 +
∥∥(A−B∗) j

∥∥2
)∥∥ j

∥∥2

�
∥∥(A+B∗) j

∥∥2 +
∥∥(A−B∗) j

∥∥2

= 2
〈(

|A|2 + |B∗|2
)
 j, j

〉
= 2

〈[
0 0
0 |A|2 + |B∗|2

]
 j, j

〉
,

and so


j

∣∣〈T j, j
〉∣∣p � 2p/2

j

∣∣∣∣
〈[

0 0
0 |A|2 + |B∗|2

]
 j, j

〉∣∣∣∣
p/2

. (4.11)
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By taking the supremum in both sides of the inequality (4.11) over all orthonormal sets{
 j
}

in H⊕H , we have

n2
p (T ) � 2

∥∥∥ |A|2 + |B∗|2
∥∥∥

p/2
,

as required. �
Now, we have the following three corollaries.

COROLLARY 4.7. Let A ∈ Bp (H) . Then

2−1+1/p‖A‖p � np

([
0 Re (A)

Im(A) 0

])
� 21/pwp (A) (4.12)

for 0 < p �  .

Proof. We have

2−1+1/p‖A‖p = 2−1+1/p‖Re(A)+ iIm(A)‖p

= 2−1+1/p
∥∥Re (A)+ (−iIm(A))∗

∥∥
p

� np

([
0 Re (A)

−iIm(A) 0

])
(by Theorem 4.2 (a))

= np

([
0 Re(A)

Im(A) 0

])
(by Theorem 3.1 (d)),

which proves the first inequality of (4.12). For the second inequality of (4.12), we have

np

([
0 Re(A)

Im(A) 0

])
�
∥∥∥∥
[

0 Re(A)
Im(A) 0

]∥∥∥∥
p

(by the second inequality of (2.1))

=
(
‖Re (A)‖p

p +‖Im(A)‖p
p

)1/p

� 21/pwp (A) (by the relations (1.11) and (1.12)),

as required. �

COROLLARY 4.8. Let A,B ∈ Bp (H) , and let T =
[

0 A
B 0

]
. Then

n2
p (T ) �

c2
p

2
max

(∥∥A2 +B2
∥∥

p ,
∥∥A2−B2

∥∥
p

)
+
∣∣∣ ‖A‖2

p−‖B‖2
p

∣∣∣ (4.13)

for 1 � p �  , and

n2
p (T ) �

c2
p

2

(∥∥∥ |A|2 + |B|2
∥∥∥

p/2
+
∣∣∣ ‖A‖2

p−‖B‖2
p

∣∣∣) (4.14)

for 2 � p �  , where cp is defined in the relation (1.14).
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Proof. Let 1 � p �  . Then

n2
p (T ) � c2

pmax
(
‖A‖2

p ,‖B‖2
p

)
(by Theorem 4.2 (a))

=
c2

p

2

(
‖A‖2

p +‖B‖2
p +
∣∣∣ ‖A‖2

p−‖B‖2
p

∣∣∣) (4.15)

�
c2

p

2

(∥∥A2
∥∥

p +
∥∥B2

∥∥
p +
∣∣∣ ‖A‖2

p−‖B‖2
p

∣∣∣)

�
c2

p

2

(∥∥A2±B2
∥∥

p +
∣∣∣ ‖A‖2

p−‖B‖2
p

∣∣∣) , (4.16)

which proves the inequality (4.13). For the inequality (4.14), let 2 � p �  and by
using the facts that

‖A‖2
p =

∥∥∥ |A|2∥∥∥
p/2

and ‖B‖2
p =

∥∥∥ |B|2∥∥∥
p/2

,

the inequality (4.15) implies that

n2
p

([
0 A
B 0

])
�

c2
p

2

(∥∥∥ |A|2∥∥∥
p/2

+
∥∥∥ |B|2∥∥∥

p/2
+
∣∣∣ ‖A‖2

p−‖B‖2
p

∣∣∣)

�
c2

p

2

(∥∥∥ |A|2 + |B|2
∥∥∥

p/2
+
∣∣∣ ‖A‖2

p−‖B‖2
p

∣∣∣) , (4.17)

which proves the inequality (4.14). �

COROLLARY 4.9. Let A,B ∈ Bp (H) , and let T =
[

0 A
B 0

]
. Then

n2
p (T ) � 2−2+2/pmax

(∥∥A2 +B∗2∥∥
p ,‖AB∗ +B∗A‖p

)
+2−3+2/p

∣∣∣ ‖A+B∗‖2
p−‖A−B∗‖2

p

∣∣∣ (4.18)

for 1 � p �  , and

n2
p (T ) � 2−2+2/pmax

(∥∥∥ |A|2 + |B∗|2
∥∥∥

p/2
,‖A∗B∗ +BA‖p/2

)

+2−3+2/p
∣∣∣ ‖A+B∗‖2

p−‖A−B∗‖2
p

∣∣∣ (4.19)

for 2 � p �  .

Proof. Let 1 � p �  . Then

n2
p (T ) � 2−2+2/pmax

(
‖A+B∗‖2

p ,‖A−B∗‖2
p

)
(by Theorem 4.2 (a))

� 2−3+2/p
(∥∥∥(A+B∗)2

∥∥∥
p
+
∥∥∥(A−B∗)2

∥∥∥
p
+
∣∣∣ ‖A+B∗‖2

p−‖A−B∗‖2
p

∣∣∣)

� 2−3+2/p
(∥∥∥(A+B∗)2± (A−B∗)2

∥∥∥
p
+
∣∣∣ ‖A+B∗‖2

p−‖A−B∗‖2
p

∣∣∣) .
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It follows that

n2
p (T ) � 2−2+2/pmax

(∥∥A2 +B∗2∥∥
p ,‖AB∗ +B∗A‖p

)
+2−3+2/p

∣∣∣ ‖A+B∗‖2
p−‖A−B∗‖2

p

∣∣∣ ,
which proves the inequality (4.18). For the inequality (4.19), let 2 � p �  and by
using the facts that

‖A+B∗‖2
p =

∥∥∥ |A+B∗|2
∥∥∥

p/2
and ‖A−B∗‖2

p =
∥∥∥ |A−B∗|2

∥∥∥
p/2

, (4.20)

we have

n2
p (T ) � 2−2+2/pmax

(
‖A+B∗‖2

p ,‖A−B∗‖2
p

)
(by Theorem 4.2 (a))

= 2−3+2/p
(∥∥∥ |A+B∗|2

∥∥∥
p/2

+
∥∥∥ |A−B∗|2

∥∥∥
p/2

+
∣∣∣ ‖A+B∗‖2

p−‖A−B∗‖2
p

∣∣∣)
(by the relations (4.20))

� 2−3+2/p
(∥∥∥ |A+B∗|2±|A−B∗|2

∥∥∥
p/2

+
∣∣∣ ‖A+B∗‖2

p−‖A−B∗‖2
p

∣∣∣) .

It follows that

n2
p (T ) � 2−2+2/pmax

(∥∥∥ |A|2 + |B∗|2
∥∥∥

p/2
,‖A∗B∗ +BA‖p/2

)

+2−3+2/p
∣∣∣ ‖A+B∗‖2

p−‖A−B∗‖2
p

∣∣∣ ,
as required. �

REMARK 4.10. The inequalities (4.10) and (4.19) imply that if A,B∈Bp (H) and

T =
[

0 A
B 0

]
, then

2−2+2/p
∥∥∥ |A|2 + |B∗|2

∥∥∥
p/2

� n2
p (T ) � 2

∥∥∥ |A|2 + |B∗|2
∥∥∥

p/2
(4.21)

for 2 � p �  .

An application of Corollary 4.9 can be stated as follows. This application relates
the new p -numerical radius np (·) of an off-diagonal part of a 2× 2 operator matrix
with the old p -numerical radius wp (·) of the products of the off-diagonal parts.

COROLLARY 4.11. Let A,B ∈ Bp (H) , and let T =
[

0 A
B 0

]
. Then

n2
p (T ) � 2−1+2/pmax(wp (AB) ,wp (BA)) .

for 2 � p �  .
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Proof. Let  ∈ R . Then we have

n2
p (T ) = n2

p

([
0 eiA
B 0

])
(by Theorem 3.1 (d))

� 2−2+2/p
∥∥∥e−iA∗B∗ + eiBA

∥∥∥
p

(by the inequality (4.19))

= 2−1+2/p
∥∥∥Re

(
eiBA

)∥∥∥
p
. (4.22)

By taking the supremum in both sides of the inequality (4.22) over all real numbers  ,
we have

n2
p (T ) � 2−1+2/pwp (BA) . (4.23)

Also, interchanging A and B and observing that

n2
p (T ) = n2

p

([
0 B
A 0

])
(by Theorem 3.1 (b))

imply that
n2

p (T ) � 2−1+2/pwp (AB) (by the inequality (4.23)). (4.24)

Now, the result follows from the inequalities (4.23) and (4.24). �

We end this section with the following remark.

REMARK 4.12. It is natural to ask for explicit formulas for np

([
A 0
0 B

])
and

np

([
0 A
B 0

])
for 0 < p <  .
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