

A NEW p -NUMERICAL RADIUS

MOHAMMAD EL-HADDAD, OMAR HIRZALLAH AND FUAD KITTANEH

(Communicated by M. Krnić)

Abstract. The p -numerical radius of a Hilbert space operator A is defined as

$$w_p(A) = \sup_{\theta \in \mathbb{R}} \left\| \operatorname{Re} \left(e^{i\theta} A \right) \right\|_p$$

for $0 < p \leq \infty$, where $\operatorname{Re}(\cdot)$ is the real part and $\|\cdot\|_p$ is the Schatten p -norm (quasi-norm). In this paper, a more natural p -numerical radius is defined as

$$n_p(A) = \sup_{\{\phi_j\} \text{ o.n.s.}} \left(\sum_j |\langle A\phi_j, \phi_j \rangle|^p \right)^{1/p}$$

for $0 < p \leq \infty$. Properties and inequalities related to this new p -numerical radius are given.

1. Introduction

Let $\mathbb{B}(\mathbb{H})$ be the space of all bounded linear operators acting on a separable complex Hilbert space \mathbb{H} occupied with an inner product $\langle \cdot, \cdot \rangle$. The absolute value of an operator $A \in \mathbb{B}(\mathbb{H})$, denoted by $|A|$, is the positive square root of the positive operator A^*A , that is, $|A| = (A^*A)^{1/2}$. For an operator $A \in \mathbb{B}(\mathbb{H})$, let $\operatorname{Re}(A) = \frac{A+A^*}{2}$ and $\operatorname{Im}(A) = \frac{A-A^*}{2i}$ denote the real part and the imaginary part of A , respectively.

The usual operator norm, denoted by $\|\cdot\|$, is the norm on $\mathbb{B}(\mathbb{H})$ defined as

$$\|A\| = \sup \{ \|Ax\| : x \in \mathbb{H}, \|x\| = 1 \}.$$

Equivalently,

$$\|A\| = \sup \{ |\langle Ax, y \rangle| : x, y \in \mathbb{H}, \|x\| = \|y\| = 1 \}. \quad (1.1)$$

Moreover, if A is normal, then the usual operator norm of A becomes

$$\|A\| = \sup \{ |\langle Ax, x \rangle| : x \in \mathbb{H}, \|x\| = 1 \}. \quad (1.2)$$

The numerical radius of an operator $A \in \mathbb{B}(\mathbb{H})$ is denoted by $w(A)$ and is defined as

$$w(A) = \sup \{ |\langle Ax, x \rangle| : x \in \mathbb{H}, \|x\| = 1 \}. \quad (1.3)$$

Mathematics subject classification (2020): Primary 47A08, 47A12, 47A30, 47B10; Secondary 15A60, 47B15.

Keywords and phrases: p -numerical radius, numerical radius, usual operator norm, Schatten p -norm, inequality.

It is known that $w(\cdot)$ defines a norm on $\mathbb{B}(\mathbb{H})$, which is equivalent to the usual operator norm $\|\cdot\|$. In fact, if $A \in \mathbb{B}(\mathbb{H})$, then

$$\frac{\|A\|}{2} \leq w(A) \leq \|A\|. \quad (1.4)$$

Moreover, if $A^2 = 0$, then $w(A) = \frac{\|A\|}{2}$. Also, if A is normal, then $w(A) = \|A\|$.

One of the distinguishable characterizations of the numerical radius is the one introduced by Yamazaki [16], which asserts that if $A \in \mathbb{B}(\mathbb{H})$, then

$$w(A) = \sup_{\theta \in \mathbb{R}} \left\| \operatorname{Re} \left(e^{i\theta} A \right) \right\| = \sup_{\theta \in \mathbb{R}} \left\| \operatorname{Im} \left(e^{i\theta} A \right) \right\|. \quad (1.5)$$

Also, the numerical radius satisfies the weak unitary invariance property, that is, if $A \in \mathbb{B}(\mathbb{H})$, then

$$w(U^*AU) = w(A) \quad (1.6)$$

for every unitary operator U in $\mathbb{B}(\mathbb{H})$. Another useful property of the numerical radius is the self-adjointness property, that is,

$$w(A^*) = w(A)$$

for every $A \in \mathbb{B}(\mathbb{H})$. This property can be easily derived from the relations (1.5).

For a compact operator $A \in \mathbb{B}(\mathbb{H})$, the Schatten p -norm, denoted by $\|\cdot\|_p$, is defined on $\mathbb{B}(\mathbb{H})$ by

$$\|A\|_p = \sup_{\{\phi_j\}, \{\psi_j\} \text{ o.n.s.}} \left(\sum_j |\langle A\phi_j, \psi_j \rangle|^p \right)^{1/p} \quad (1.7)$$

for $1 \leq p < \infty$, where the the supremum is taken over all orthonormal sets (o.n.s.) $\{\phi_j\}, \{\psi_j\}$ in \mathbb{H} . In particular, when $A \in \mathbb{B}(\mathbb{H})$ is normal, we have

$$\|A\|_p = \sup_{\{\phi_j\} \text{ o.n.s.}} \left(\sum_j |\langle A\phi_j, \phi_j \rangle|^p \right)^{1/p}. \quad (1.8)$$

Note that for $0 < p < 1$, $\|\cdot\|_p$ is a quasi-norm (it does not satisfy the triangle inequality). Moreover, an important fact for the Schatten p -norms, when $2 \leq p < \infty$, is that

$$\|A\|_p = \sup_{\{\phi_j\} \text{ o.n.b.}} \left(\sum_j \|A\phi_j\|^p \right)^{1/p}, \quad (1.9)$$

where the the supremum is taken over all orthonormal bases (o.n.b.) $\{\phi_j\}$ for \mathbb{H} . Also, one of the useful properties of the Schatten p -norms (quasi-norms) is that

$$\left\| \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right\|_p = \left\| \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right\|_p = \left(\|A\|_p^p + \|B\|_p^p \right)^{1/p} \quad (1.10)$$

for $A, B \in \mathbb{B}(\mathbb{H})$ and for $0 < p < \infty$. We say that an operator $A \in \mathbb{B}(\mathbb{H})$ belongs to the Schatten p -class, which is denoted by $\mathbb{B}_p(\mathbb{H})$, if $\|A\|_p < \infty$. Indeed, $\lim_{p \rightarrow \infty} \|A\|_p = \|A\|$. For comprehensive accounts of the Schatten p -norms, we refer the reader to [8], [13], and [17].

The relations (1.5), inspired Abu-Omar and Kittaneh [1] to define generalized numerical radii of operators. Among these generalized numerical radii is the p -numerical radius (see, e.g., [2], [3], [4], [7], [10], [11], and [12]), which is defined as follows: For $0 < p < \infty$, define the p -numerical radius $w_p(\cdot)$ on $\mathbb{B}_p(\mathbb{H})$ as

$$w_p(A) = \sup_{\theta \in \mathbb{R}} \left\| \operatorname{Re} \left(e^{i\theta} A \right) \right\|_p \text{ for } A \in \mathbb{B}_p(\mathbb{H}). \quad (1.11)$$

Equivalently, we have

$$w_p(A) = \sup_{\theta \in \mathbb{R}} \left\| \operatorname{Im} \left(e^{i\theta} A \right) \right\|_p \text{ for } A \in \mathbb{B}_p(\mathbb{H}). \quad (1.12)$$

Some of the nice properties of the p -numerical radius are the following (see, e.g., [5] and [9]): For $A, B \in \mathbb{B}_p(\mathbb{H})$ and $0 < p < \infty$, we have

$$c_p \|A\|_p \leq w_p(A) \leq \|A\|_p, \quad (1.13)$$

where

$$c_p = \begin{cases} 2^{-1/p}, & 0 < p \leq 2 \\ 2^{-1+1/p}, & 2 \leq p \leq \infty. \end{cases} \quad (1.14)$$

In particular, we have

$$\frac{\|A\|_p}{2} \leq w_p(A) \leq \|A\|_p. \quad (1.15)$$

Moreover, we have

$$w_p \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right) \leq (w_p^p(A) + w_p^p(B))^{1/p} \quad (1.16)$$

and

$$w_p \left(\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix} \right) = 2^{1/p} w_p(A). \quad (1.17)$$

It can be seen (see, e.g., [14]) that

$$w_p \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) = 2^{-1+1/p} \sup_{\theta \in \mathbb{R}} \left\| A + e^{i\theta} B^* \right\|_p \quad (1.18)$$

for $0 < p \leq \infty$.

In this paper, we focus our attention on a new generalized numerical radius. In Section 2, inspired by the relations (1.1), (1.3), and (1.7), we introduce a more natural p -numerical radius and we study some properties of this new notion. In Section 3, we focus our attention on presenting some properties of our new p -numerical radii of the diagonal parts and the off-diagonal parts of 2×2 operator matrices. In Section 4, we introduce lower and upper bounds for the new p -numerical radii of the off-diagonal parts of 2×2 operator matrices.

2. The new p -numerical radius

In accordance with the relations (1.1), (1.3), and based on the relation (1.7), one might introduce the definition of the p -numerical radius of an operator as follows.

DEFINITION 2.1. The p -numerical radius of an operator, denoted by $\mathfrak{n}_p(\cdot)$, is defined on $\mathbb{B}_p(\mathbb{H})$ by

$$\mathfrak{n}_p(A) = \sup_{\{\phi_j\} \text{ o.n.s.}} \left(\sum_j |\langle A\phi_j, \phi_j \rangle|^p \right)^{1/p}$$

for $0 < p < \infty$.

REMARK 2.2. Each of the following statements can be easily verified.

$$(a) \lim_{p \rightarrow \infty} \mathfrak{n}_p(A) = w(A) \text{ for every } A \in \mathbb{B}_p(\mathbb{H}).$$

(b) For $0 < p \leq \infty$, the relations (1.3), (1.7), and Definition 2.1 imply that

$$w(A) \leq \mathfrak{n}_p(A) \leq \|A\|_p \quad (2.1)$$

for every $A \in \mathbb{B}_p(\mathbb{H})$.

(c) For $0 < p \leq \infty$, the new p -numerical radius $\mathfrak{n}_p(\cdot)$ is weakly unitarily invariant, that is,

$$\mathfrak{n}_p(U^*AU) = \mathfrak{n}_p(A) \quad (2.2)$$

for every $A \in \mathbb{B}_p(\mathbb{H})$ and for every unitary $U \in \mathbb{B}(\mathbb{H})$.

(d) For $1 \leq p \leq \infty$, the new p -numerical radius $\mathfrak{n}_p(\cdot)$ is a norm on $\mathbb{B}_p(\mathbb{H})$.

Based on Definition 2.1, a result that relates $\mathfrak{n}_p(\cdot)$ and $w_p(\cdot)$ can be seen in the following theorem.

THEOREM 2.3. *Let $A \in \mathbb{B}_p(\mathbb{H})$. Then*

$$w_p(A) \leq \mathfrak{n}_p(A) \leq \frac{w_p(A)}{c_p} \quad (2.3)$$

for $0 < p \leq \infty$, where c_p is defined in the relation (1.14).

Proof. For the first inequality of (2.3), let $\theta \in \mathbb{R}$. Since $\operatorname{Re}(e^{i\theta}A)$ is self-adjoint, we have

$$\begin{aligned}
 \left\| \operatorname{Re}(e^{i\theta}A) \right\|_p &= \sup_{\{\phi_j\} \text{ o.n.s.}} \left(\sum_j \left| \left\langle \operatorname{Re}(e^{i\theta}A) \phi_j, \phi_j \right\rangle \right|^p \right)^{1/p} \quad (\text{by the relation (1.8)}) \\
 &= \sup_{\{\phi_j\} \text{ o.n.s.}} \left(\sum_j \left| \operatorname{Re} \left\langle e^{i\theta}A\phi_j, \phi_j \right\rangle \right|^p \right)^{1/p} \\
 &\leq \sup_{\{\phi_j\} \text{ o.n.s.}} \left(\sum_j \left| \left\langle e^{i\theta}A\phi_j, \phi_j \right\rangle \right|^p \right)^{1/p} \\
 &= \sup_{\{\phi_j\} \text{ o.n.s.}} \left(\sum_j \left| \left\langle A\phi_j, \phi_j \right\rangle \right|^p \right)^{1/p} \\
 &= \mathfrak{n}_p(A) \quad (\text{by Definition 2.1}). \tag{2.4}
 \end{aligned}$$

By taking the supremum in both sides of the inequality (2.4) over all real numbers θ in \mathbb{R} , we have

$$\begin{aligned}
 w_p(A) &= \sup_{\theta \in \mathbb{R}} \left\| \operatorname{Re}(e^{i\theta}A) \right\|_p \\
 &\leq \mathfrak{n}_p(A) \quad (\text{by the inequality (2.4)}). \tag{2.5}
 \end{aligned}$$

For the second inequality of (2.3), we have

$$\begin{aligned}
 \mathfrak{n}_p(A) &\leq \|A\|_p \quad (\text{by the second inequality of (2.1)}) \\
 &\leq \frac{w_p(A)}{c_p} \quad (\text{by the first inequality of (1.13)}),
 \end{aligned}$$

as required. \square

In the following example, we compute the two p -numerical radii $w_p(\cdot)$ and $\mathfrak{n}_p(\cdot)$ for certain matrices. This example shows that the inequalities (2.3) are sharp.

EXAMPLE 2.4. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$, and let $0 < p \leq \infty$. Then

$$w_p(A) = 2^{-1+1/p} \quad (\text{by the relation (1.18)}).$$

Also, by direct computations, we have

$$\begin{aligned}
 \mathfrak{n}_p(A) &= \sup \left\{ \left(\sum_j \left| \left\langle A\phi_j, \phi_j \right\rangle \right|^p \right)^{1/p} : \{\phi_j\} \text{ is orthonormal set in } \mathbb{C}^2 \right\} \\
 &= 2^{-1+1/p}.
 \end{aligned}$$

On the other hand, we have

$$\begin{aligned} w_p(B) &= \sup_{\theta \in \mathbb{R}} \left\| \operatorname{Re} \left(e^{i\theta} B \right) \right\|_p \\ &= \sup_{\theta \in \mathbb{R}} (|\cos(\theta)|^p + |\sin(\theta)|^p)^{1/p}. \end{aligned}$$

In particular, letting $p = 2$, we have

$$w_2(B) = 1,$$

while the normality of B implies that

$$\mathfrak{n}_2(B) = \|B\|_2 = \sqrt{2}.$$

Consequently, $\mathfrak{n}_p(A) = w_p(A)$ and $\mathfrak{n}_2(B) = \frac{w_2(B)}{c_2}$. In this example, we see that the inequalities (2.3) are sharp. Also, in this example, we see that our new p -numerical radius $\mathfrak{n}_p(\cdot)$ and the old p -numerical radius $w_p(\cdot)$ are different concepts.

We need the following lemma for scalars. It follows from the convexity of the function $f(t) = t^p$ on $[0, \infty)$ for $1 \leq p < \infty$.

LEMMA 2.5. *Let a and b be positive real numbers. Then*

$$(a+b)^p \leq 2^{p-1} (a^p + b^p)$$

for $1 \leq p < \infty$, and

$$(a+b)^p \geq 2^{p-1} (a^p + b^p)$$

for $0 < p \leq 1$.

In the following theorem, we give some upper and lower bounds for our new p -numerical radii of operators.

THEOREM 2.6. *Let $A \in \mathbb{B}_p(\mathbb{H})$. Then*

$$\mathfrak{n}_p(A) \leq 2^{1/2-1/p} \left(\|\operatorname{Re}(A)\|_p^p + \|\operatorname{Im}(A)\|_p^p \right)^{1/p} \quad (2.6)$$

for $2 \leq p \leq \infty$, and

$$\mathfrak{n}_p(A) \geq 2^{1/2-1/p} \|\operatorname{Re}(A) + \operatorname{Im}(A)\|_p \quad (2.7)$$

for $0 < p \leq 1$.

Proof. Let $\{\phi_j\}$ be an orthonormal set in \mathbb{H} , and let $2 \leq p \leq \infty$. Then

$$\begin{aligned}
 \mathfrak{n}_p^p(A) &= \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j (|\langle A\phi_j, \phi_j \rangle|^p) \\
 &= \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j (|\langle (\operatorname{Re}(A) + i\operatorname{Im}(A))\phi_j, \phi_j \rangle|^p) \\
 &= \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j (|\operatorname{Re}(\langle A\phi_j, \phi_j \rangle) + i\operatorname{Im}(\langle A\phi_j, \phi_j \rangle)|^p) \\
 &= \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j \left((\operatorname{Re} \langle A\phi_j, \phi_j \rangle)^2 + (\operatorname{Im} \langle A\phi_j, \phi_j \rangle)^2 \right)^{p/2} \\
 &\leq 2^{p/2-1} \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j (|\operatorname{Re} \langle A\phi_j, \phi_j \rangle|^p + |\operatorname{Im} \langle A\phi_j, \phi_j \rangle|^p) \\
 &\quad \text{(by Lemma 2.5)} \\
 &= 2^{p/2-1} \sup_{\{\phi_j\} \text{ o.n.s.}} \left(\sum_j |\langle \operatorname{Re}(A)\phi_j, \phi_j \rangle|^p + \sum_j |\langle \operatorname{Im}(A)\phi_j, \phi_j \rangle|^p \right) \\
 &\leq 2^{p/2-1} \left(\|\operatorname{Re}(A)\|_p^p + \|\operatorname{Im}(A)\|_p^p \right).
 \end{aligned} \tag{2.8}$$

On the other hand, let $0 < p \leq 1$. Then

$$\begin{aligned}
 \mathfrak{n}_p^p(A) &= \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j \left((\operatorname{Re} \langle A\phi_j, \phi_j \rangle)^2 + (\operatorname{Im} \langle A\phi_j, \phi_j \rangle)^2 \right)^{p/2} \\
 &\quad \text{(by the relation (2.8))} \\
 &\geq 2^{p/2-1} \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j (|\operatorname{Re} \langle A\phi_j, \phi_j \rangle|^p + |\operatorname{Im} \langle A\phi_j, \phi_j \rangle|^p) \\
 &\quad \text{(by Lemma 2.5)} \\
 &\geq 2^{p/2-1} \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j (|\langle \operatorname{Re}(A)\phi_j, \phi_j \rangle| + |\langle \operatorname{Im}(A)\phi_j, \phi_j \rangle|)^p \\
 &\geq 2^{p/2-1} \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j |\langle \operatorname{Re}(A)\phi_j, \phi_j \rangle + \langle \operatorname{Im}(A)\phi_j, \phi_j \rangle|^p \\
 &= 2^{p/2-1} \sup_{\{\phi_j\} \text{ o.n.s.}} \sum_j |\langle (\operatorname{Re}(A) + \operatorname{Im}(A))\phi_j, \phi_j \rangle|^p \\
 &= 2^{p/2-1} \left(\|\operatorname{Re}(A) + \operatorname{Im}(A)\|_p^p \right),
 \end{aligned}$$

as required. \square

3. Properties of the new p -numerical radii of the diagonal parts and the off-diagonal parts of 2×2 operator matrices

In this section, we are interested in studying some properties of our new p -numerical radii of the diagonal parts and the off-diagonal parts of 2×2 operator matrices. First, we start with the following theorem that involves some of the these properties.

THEOREM 3.1. *Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $0 < p \leq \infty$. Then*

- (a) $\mathfrak{n}_p \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right) = \mathfrak{n}_p \left(\begin{bmatrix} B & 0 \\ 0 & A \end{bmatrix} \right)$.
- (b) $\mathfrak{n}_p \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) = \mathfrak{n}_p \left(\begin{bmatrix} 0 & B \\ A & 0 \end{bmatrix} \right)$.
- (c) $\mathfrak{n}_p \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right) = \mathfrak{n}_p \left(\begin{bmatrix} e^{i\alpha}A & 0 \\ 0 & e^{i\beta}B \end{bmatrix} \right)$ for every $\alpha, \beta \in \mathbb{R}$.
- (d) $\mathfrak{n}_p \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) = \mathfrak{n}_p \left(\begin{bmatrix} 0 & e^{i\alpha}A \\ e^{i\beta}B & 0 \end{bmatrix} \right)$ for every $\alpha, \beta \in \mathbb{R}$.

Proof.

Part (a): We have

$$\begin{aligned} \mathfrak{n}_p \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right) &= \mathfrak{n}_p \left(\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}^* \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \right) \\ &\quad (\text{by the identity (2.2)}) \\ &= \mathfrak{n}_p \left(\begin{bmatrix} B & 0 \\ 0 & A \end{bmatrix} \right), \end{aligned}$$

where I is the identity operator in $\mathbb{B}(\mathbb{H})$.

Part (b): We have

$$\begin{aligned} \mathfrak{n}_p \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) &= \mathfrak{n}_p \left(\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}^* \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \right) (\text{by the identity (2.2)}) \\ &= \mathfrak{n}_p \left(\begin{bmatrix} 0 & B \\ A & 0 \end{bmatrix} \right). \end{aligned}$$

Part (c): We have

$$\begin{aligned} \mathfrak{n}_p \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right) &= \mathfrak{n}_p \left(\begin{bmatrix} 0 & e^{i\alpha/2}I \\ e^{i\beta/2}I & 0 \end{bmatrix}^* \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} 0 & e^{i\alpha/2}I \\ e^{i\beta/2}I & 0 \end{bmatrix} \right) \\ &\quad (\text{by the identity (2.2)}) \\ &= \mathfrak{n}_p \left(\begin{bmatrix} e^{i(\beta-\alpha)/2}B & 0 \\ 0 & e^{i(\alpha-\beta)/2}A \end{bmatrix} \right) \\ &= \mathfrak{n}_p \left(e^{i(\alpha+\beta)/2} \begin{bmatrix} e^{i(\beta-\alpha)/2}B & 0 \\ 0 & e^{i(\alpha-\beta)/2}A \end{bmatrix} \right) \\ &= \mathfrak{n}_p \left(\begin{bmatrix} e^{i\beta}B & 0 \\ 0 & e^{i\alpha}A \end{bmatrix} \right) \\ &= \mathfrak{n}_p \left(\begin{bmatrix} e^{i\alpha}A & 0 \\ 0 & e^{i\beta}B \end{bmatrix} \right) (\text{by Part (a)}). \end{aligned}$$

Part (d): We have

$$\begin{aligned}
 \mathfrak{n}_p \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) &= \mathfrak{n}_p \left(\begin{bmatrix} e^{-i\alpha/2}I & 0 \\ 0 & e^{-i\beta/2}I \end{bmatrix}^* \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \begin{bmatrix} e^{-i\alpha/2}I & 0 \\ 0 & e^{-i\beta/2}I \end{bmatrix} \right) \\
 &\quad \text{(by the identity (2.2))} \\
 &= \mathfrak{n}_p \left(\begin{bmatrix} 0 & e^{i(\alpha-\beta)/2}A \\ e^{i(\beta-\alpha)/2}B & 0 \end{bmatrix} \right) \\
 &= \mathfrak{n}_p \left(e^{i(\alpha+\beta)/2} \begin{bmatrix} 0 & e^{i(\alpha-\beta)/2}A \\ e^{i(\beta-\alpha)/2}B & 0 \end{bmatrix} \right) \\
 &= \mathfrak{n}_p \left(\begin{bmatrix} 0 & e^{i\alpha}A \\ e^{i\beta}B & 0 \end{bmatrix} \right). \quad \square
 \end{aligned}$$

Other properties of the new p -numerical radii of the diagonal parts of 2×2 operator matrices can be seen in the following theorem.

THEOREM 3.2. *Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $T = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$. Then*

$$\mathfrak{n}_p(T) \geq \max \left(\mathfrak{n}_p(A), \mathfrak{n}_p(B), \frac{1}{2} \mathfrak{n}_p(A+B) \right) \quad (3.1)$$

and

$$\mathfrak{n}_p(T) \leq \left(\|A\|_p^p + \|B\|_p^p \right)^{1/p} \quad (3.2)$$

for $0 < p \leq \infty$.

Proof. Let $\{\phi_j\}$ be an orthonormal set in \mathbb{H} . Then the set $\{\eta_j\}$, where $\eta_j = \begin{bmatrix} \phi_j \\ 0 \end{bmatrix}$, is orthonormal in $\mathbb{H} \oplus \mathbb{H}$. It follows that

$$\begin{aligned}
 \left(\sum_j |\langle A\phi_j, \phi_j \rangle|^p \right)^{1/p} &= \left(\sum_j |\langle T\eta_j, \eta_j \rangle|^p \right)^{1/p} \\
 &\leq \sup_{\{\xi_j\} \text{ o.n.s.}} \left(\sum_j |\langle T\xi_j, \xi_j \rangle|^p \right)^{1/p} \\
 &= \mathfrak{n}_p(T).
 \end{aligned} \quad (3.3)$$

By taking the supremum in both sides of the inequality (3.3) over all orthonormal sets $\{\phi_j\}$ in \mathbb{H} , we have

$$\mathfrak{n}_p(A) \leq \mathfrak{n}_p(T). \quad (3.4)$$

Similarly, we have

$$\mathfrak{n}_p(B) \leq \mathfrak{n}_p(T). \quad (3.5)$$

Moreover, let $\zeta_j = \frac{1}{\sqrt{2}} \begin{bmatrix} \phi_j \\ \phi_j \end{bmatrix}$. Then $\{\zeta_j\}$ is an orthonormal set in $\mathbb{H} \oplus \mathbb{H}$. It follows that

$$\begin{aligned} \frac{1}{2} \left(\sum_j |\langle (A+B) \phi_j, \phi_j \rangle|^p \right)^{1/p} &= \left(\sum_j |\langle T \zeta_j, \zeta_j \rangle|^p \right)^{1/p} \\ &\leq \sup_{\{\xi_j\} \text{ o.n.s.}} \left(\sum_j |\langle T \xi_j, \xi_j \rangle|^p \right)^{1/p} \\ &= \mathbf{n}_p(T). \end{aligned} \quad (3.6)$$

By taking the supremum in both sides of the inequality (3.6) over all orthonormal sets $\{\phi_j\}$ in \mathbb{H} , we have

$$\frac{1}{2} \mathbf{n}_p(A+B) \leq \mathbf{n}_p(T). \quad (3.7)$$

Now, the inequality (3.1) follows from the inequalities (3.4), (3.5), and (3.7).

The inequality (3.2) follows from the second inequality of (2.1) and the fact that $\|T\|_p = (\|A\|_p^p + \|B\|_p^p)^{1/p}$. \square

A direct application of Theorem 3.2 can be seen in the following corollary.

COROLLARY 3.3. *Let $A \in \mathbb{B}_p(\mathbb{H})$, and let $S = \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$ and $T = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}$. Then*

$$\mathbf{n}_p(A) \leq \mathbf{n}_p(S) \leq 2^{1/p} \|A\|_p$$

and

$$\mathbf{n}_p(A) \leq \mathbf{n}_p(T) \leq \|A\|_p$$

for $0 < p \leq \infty$.

In the following theorem, we give properties of the new p -numerical radii of the off-diagonal parts of 2×2 operator matrices.

THEOREM 3.4. *Let $A \in \mathbb{B}_p(\mathbb{H})$, and let $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. Then*

$$\frac{1}{2} \mathbf{n}_p(A+B) \leq \mathbf{n}_p(T) \leq (\|A\|_p^p + \|B\|_p^p)^{1/p} \quad (3.8)$$

for $0 < p \leq \infty$.

Proof. Let $\{\phi_j\}$ be an orthonormal set in \mathbb{H} , and let $\zeta_j = \frac{1}{\sqrt{2}} \begin{bmatrix} \phi_j \\ \phi_j \end{bmatrix}$. Then $\{\zeta_j\}$ is an orthonormal set in $\mathbb{H} \oplus \mathbb{H}$. It follows that

$$\begin{aligned} \frac{1}{2} \left(\sum_j |\langle (A+B)\phi_j, \phi_j \rangle|^p \right)^{1/p} &= \left(\sum_j |\langle T\zeta_j, \zeta_j \rangle|^p \right)^{1/p} \\ &\leq \sup_{\{\xi_j\} \text{ o.n.s.}} \left(\sum_j |\langle T\xi_j, \xi_j \rangle|^p \right)^{1/p} \\ &= \mathfrak{n}_p(T). \end{aligned} \quad (3.9)$$

By taking the supremum in both sides of inequalities (3.9) over all orthonormal sets $\{\phi_j\}$ in \mathbb{H} , we have

$$\frac{1}{2} \mathfrak{n}_p(A+B) \leq \mathfrak{n}_p(T),$$

which proves the first inequality of (3.8). The second inequality of (3.8) follows from the second inequality of (2.1) and the fact that $\|T\|_p = (\|A\|_p^p + \|B\|_p^p)^{1/p}$. \square

A direct application of Theorem 3.4 can be seen in the following corollary.

COROLLARY 3.5. *Let $A \in \mathbb{B}_p(\mathbb{H})$, and let $S = \begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ and $T = \begin{bmatrix} 0 & A \\ 0 & 0 \end{bmatrix}$. Then*

$$\mathfrak{n}_p(A) \leq \mathfrak{n}_p(S) \leq 2^{1/p} \|A\|_p$$

and

$$\frac{1}{2} \mathfrak{n}_p(A) \leq \mathfrak{n}_p(T) \leq \|A\|_p$$

for $0 < p \leq \infty$.

4. Inequalities for the new p -numerical radii of the off-diagonal parts of 2×2 operator matrices

In this section, we introduce further properties concerning our new p -numerical radii of the off-diagonal parts of 2×2 operator matrices. We start with the following Clarkson type lemma.

LEMMA 4.1. *Let a and b be complex numbers, and let $2 \leq p < \infty$. Then*

$$2(|a|^p + |b|^p) \leq |a+b|^p + |a-b|^p \leq 2^{p-1} (|a|^p + |b|^p).$$

These inequalities can be reversed for $0 < p \leq 2$.

Now, we have the following result.

THEOREM 4.2. Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $R = \begin{bmatrix} 0 & A+B^* \\ 0 & 0 \end{bmatrix}$, $S = \begin{bmatrix} 0 & A-B^* \\ 0 & 0 \end{bmatrix}$,

and $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. Then

(a) $\mathfrak{n}_p(T) \geq \max \left(c_p \left(\|A\|_p^p + \|B\|_p^p \right)^{1/p}, 2^{-1+1/p} \|A+B^*\|_p, 2^{-1+1/p} \|A-B^*\|_p \right)$ for $0 < p \leq \infty$, where c_p is defined in the relation (1.14).

(b) $\mathfrak{n}_p(T) \leq 2^{1-2/p} (\mathfrak{n}_p^p(R) + \mathfrak{n}_p^p(S))^{1/p}$ for $2 \leq p \leq \infty$.

Proof.

Part (a): We have

$$\begin{aligned} \mathfrak{n}_p(T) &\geq c_p \|T\|_p \text{ (by the first inequalities of (1.13) and (2.3))} \\ &= c_p \left(\|A\|_p^p + \|B\|_p^p \right)^{1/p}. \end{aligned} \quad (4.1)$$

On the other hand, we have

$$\begin{aligned} \mathfrak{n}_p(T) &\geq w_p(T) \text{ (by the first inequality of (2.3))} \\ &= \sup_{\theta \in \mathbb{R}} \left\| \operatorname{Re} \left(e^{i\theta} T \right) \right\|_p \\ &= \frac{1}{2} \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & e^{i\theta} A + e^{-i\theta} B^* \\ e^{-i\theta} A^* + e^{i\theta} B & 0 \end{bmatrix} \right\|_p \\ &= 2^{-1+1/p} \sup_{\theta \in \mathbb{R}} \left\| e^{i\theta} A + e^{-i\theta} B^* \right\|_p \\ &\geq 2^{-1+1/p} \max \left(\|A+B^*\|_p, \|A-B^*\|_p \right). \end{aligned} \quad (4.2)$$

Now, Part (a) follows from inequalities (4.1) and (4.2).

Part (b): Let $T_1 = \begin{bmatrix} 0 & A \\ -B & 0 \end{bmatrix}$, and let $\{\xi_j\} = \left\{ \begin{bmatrix} \phi_j \\ \psi_j \end{bmatrix} \right\}$ be an orthonormal set in $\mathbb{H} \oplus \mathbb{H}$. Then

$$\begin{aligned} &|\langle T\xi_j, \xi_j \rangle|^p + |\langle T_1\xi_j, \xi_j \rangle|^p \\ &= |\langle A\psi_j, \phi_j \rangle + \langle B\phi_j, \psi_j \rangle|^p + |\langle A\psi_j, \phi_j \rangle - \langle B\phi_j, \psi_j \rangle|^p \\ &\leq 2^{p-1} (|\langle A\psi_j, \phi_j \rangle|^p + |\langle B\phi_j, \psi_j \rangle|^p) \\ &\quad \text{(by the second inequality of Lemma 4.1)} \\ &= 2^{p-1} (|\langle A\psi_j, \phi_j \rangle|^p + |\langle B^*\psi_j, \phi_j \rangle|^p) \\ &\leq 2^{p-2} (|\langle (A+B^*)\psi_j, \phi_j \rangle|^p + |\langle (A-B^*)\psi_j, \phi_j \rangle|^p) \\ &\quad \text{(by the first inequality of Lemma 4.1)} \\ &= 2^{p-2} (|\langle R\xi_j, \xi_j \rangle|^p + |\langle S\xi_j, \xi_j \rangle|^p). \end{aligned} \quad (4.3)$$

Consequently,

$$\sum_j |\langle T\xi_j, \xi_j \rangle|^p \leq 2^{p-2} \left(\sum_j |\langle R\xi_j, \xi_j \rangle|^p + \sum_j |\langle S\xi_j, \xi_j \rangle|^p \right). \quad (4.4)$$

By taking the supremum in both sides of the inequality (4.4) over all orthonormal sets $\{\xi_j\}$ in $\mathbb{H} \oplus \mathbb{H}$, we have

$$\mathfrak{n}_p^p(T) \leq 2^{p-2} (\mathfrak{n}_p^p(R) + \mathfrak{n}_p^p(S)),$$

as required. \square

A direct application of Part (b) of Theorem 4.2 can be stated as follows.

COROLLARY 4.3. *Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. Then*

$$\mathfrak{n}_p(T) \leq 2^{1-2/p} \left(\|A + B^*\|_p^p + \|A - B^*\|_p^p \right)^{1/p} \quad (4.5)$$

for $2 \leq p \leq \infty$.

Proof. We have

$$\begin{aligned} \mathfrak{n}_p(T) &\leq 2^{1-2/p} (\mathfrak{n}_p^p(R) + \mathfrak{n}_p^p(S))^{1/p} \quad (\text{by Theorem 4.2 (b)}) \\ &\leq 2^{1-2/p} \left(\|R\|_p^p + \|S\|_p^p \right)^{1/p} \quad (\text{by the second inequality of (2.1)}) \\ &= 2^{1-2/p} \left(\|A + B^*\|_p^p + \|A - B^*\|_p^p \right)^{1/p}, \end{aligned}$$

as required. \square

REMARK 4.4. Another formulation of the inequality (4.5) can be stated as follows: Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. Then

$$\mathfrak{n}_p(T) \leq 2^{2-3/p} \left(\|\operatorname{Re}(T)\|_p^p + \|\operatorname{Im}(T)\|_p^p \right)^{1/p} \quad (4.6)$$

for $2 \leq p \leq \infty$. In particular, taking $B = A$, we have

$$\mathfrak{n}_p(A) \leq 2^{2-2/p} \left(\|\operatorname{Re}(A)\|_p^p + \|\operatorname{Im}(A)\|_p^p \right)^{1/p}. \quad (4.7)$$

In fact, the inequality (4.6) follows from the inequality (4.5), by observing that

$$\|A + B^*\|_p^p = 2^{p-1} \|\operatorname{Re}(T)\|_p^p \text{ and } \|A - B^*\|_p^p = 2^{p-1} \|\operatorname{Im}(T)\|_p^p,$$

while the inequality (4.7) follows from the inequality (4.6) by letting $B = A$ and using the first inequality of (3.8).

An application of Theorem 4.2 and Corollary 4.3 can be seen in the following corollary.

COROLLARY 4.5. *Let $A \in \mathbb{B}_p(\mathbb{H})$, and let $S = \begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ and $T = \begin{bmatrix} 0 & A \\ 0 & 0 \end{bmatrix}$. Then*

$$2^{-1+2/p} \|A\|_p \leq \mathbf{n}_p(S) \leq 2^{2-2/p} \|A\|_p \quad (4.8)$$

$$2^{-1+1/p} \|A\|_p \leq \mathbf{n}_p(T) \leq 2^{1-1/p} \|A\|_p \quad (4.9)$$

for $2 \leq p \leq \infty$.

Proof. The first inequality of (4.8) follows by applying Part (a) of Theorem 4.2 for $2 \leq p \leq \infty$ and taking $B = A$, while the second inequality of (4.8) follows from Corollary 4.3 by taking $B = A$ and the facts that $\|\operatorname{Re}(A)\|_p \leq \|A\|_p$ and $\|\operatorname{Im}(A)\|_p \leq \|A\|_p$.

The inequalities of (4.9) follow by applying Part (a) of Theorem 4.2 for $2 \leq p \leq \infty$ and Corollary 4.3 by taking $B = 0$. \square

Another result can be stated as follows.

THEOREM 4.6. *Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. Then*

$$\mathbf{n}_p^2(T) \leq 2 \left\| |A|^2 + |B^*|^2 \right\|_{p/2} \quad (4.10)$$

for $0 < p \leq \infty$.

Proof. Let $\{\xi_j\} = \left\{ \begin{bmatrix} \phi_j \\ \psi_j \end{bmatrix} \right\}$ be an orthonormal set of $\mathbb{H} \oplus \mathbb{H}$. Then

$$\begin{aligned} & |\langle T\xi_j, \xi_j \rangle|^2 + |\langle T_1\xi_j, \xi_j \rangle|^2 \\ & \leq |\langle (A + B^*)\psi_j, \phi_j \rangle|^2 + |\langle (A - B^*)\psi_j, \phi_j \rangle|^2 \quad (\text{by the inequality (4.3)}) \\ & \leq \left(\|(A + B^*)\psi_j\|^2 + \|(A - B^*)\psi_j\|^2 \right) \|\phi_j\|^2 \\ & \leq \|(A + B^*)\psi_j\|^2 + \|(A - B^*)\psi_j\|^2 \\ & = 2 \left\langle \left(|A|^2 + |B^*|^2 \right) \psi_j, \psi_j \right\rangle \\ & = 2 \left\langle \begin{bmatrix} 0 & 0 \\ 0 & |A|^2 + |B^*|^2 \end{bmatrix} \xi_j, \xi_j \right\rangle, \end{aligned}$$

and so

$$\sum_j |\langle T\xi_j, \xi_j \rangle|^p \leq 2^{p/2} \sum_j \left| \left\langle \begin{bmatrix} 0 & 0 \\ 0 & |A|^2 + |B^*|^2 \end{bmatrix} \xi_j, \xi_j \right\rangle \right|^{p/2}. \quad (4.11)$$

By taking the supremum in both sides of the inequality (4.11) over all orthonormal sets $\{\xi_j\}$ in $\mathbb{H} \oplus \mathbb{H}$, we have

$$\mathfrak{n}_p^2(T) \leq 2 \left\| |A|^2 + |B^*|^2 \right\|_{p/2},$$

as required. \square

Now, we have the following three corollaries.

COROLLARY 4.7. *Let $A \in \mathbb{B}_p(\mathbb{H})$. Then*

$$2^{-1+1/p} \|A\|_p \leq \mathfrak{n}_p \left(\begin{bmatrix} 0 & \operatorname{Re}(A) \\ \operatorname{Im}(A) & 0 \end{bmatrix} \right) \leq 2^{1/p} w_p(A) \quad (4.12)$$

for $0 < p \leq \infty$.

Proof. We have

$$\begin{aligned} 2^{-1+1/p} \|A\|_p &= 2^{-1+1/p} \|\operatorname{Re}(A) + i\operatorname{Im}(A)\|_p \\ &= 2^{-1+1/p} \|\operatorname{Re}(A) + (-i\operatorname{Im}(A))^*\|_p \\ &\leq \mathfrak{n}_p \left(\begin{bmatrix} 0 & \operatorname{Re}(A) \\ -i\operatorname{Im}(A) & 0 \end{bmatrix} \right) \text{ (by Theorem 4.2 (a))} \\ &= \mathfrak{n}_p \left(\begin{bmatrix} 0 & \operatorname{Re}(A) \\ \operatorname{Im}(A) & 0 \end{bmatrix} \right) \text{ (by Theorem 3.1 (d))}, \end{aligned}$$

which proves the first inequality of (4.12). For the second inequality of (4.12), we have

$$\begin{aligned} \mathfrak{n}_p \left(\begin{bmatrix} 0 & \operatorname{Re}(A) \\ \operatorname{Im}(A) & 0 \end{bmatrix} \right) &\leq \left\| \begin{bmatrix} 0 & \operatorname{Re}(A) \\ \operatorname{Im}(A) & 0 \end{bmatrix} \right\|_p \\ &\quad \text{(by the second inequality of (2.1))} \\ &= \left(\|\operatorname{Re}(A)\|_p^p + \|\operatorname{Im}(A)\|_p^p \right)^{1/p} \\ &\leq 2^{1/p} w_p(A) \text{ (by the relations (1.11) and (1.12))}, \end{aligned}$$

as required. \square

COROLLARY 4.8. *Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. Then*

$$\mathfrak{n}_p^2(T) \geq \frac{c_p^2}{2} \max \left(\|A^2 + B^2\|_p, \|A^2 - B^2\|_p \right) + \left| \|A\|_p^2 - \|B\|_p^2 \right| \quad (4.13)$$

for $1 \leq p \leq \infty$, and

$$\mathfrak{n}_p^2(T) \geq \frac{c_p^2}{2} \left(\left\| |A|^2 + |B|^2 \right\|_{p/2} + \left| \|A\|_p^2 - \|B\|_p^2 \right| \right) \quad (4.14)$$

for $2 \leq p \leq \infty$, where c_p is defined in the relation (1.14).

Proof. Let $1 \leq p \leq \infty$. Then

$$\mathfrak{n}_p^2(T) \geq c_p^2 \max \left(\|A\|_p^2, \|B\|_p^2 \right) \text{ (by Theorem 4.2 (a))} \quad (4.15)$$

$$= \frac{c_p^2}{2} \left(\|A\|_p^2 + \|B\|_p^2 + \left| \|A\|_p^2 - \|B\|_p^2 \right| \right) \quad (4.15)$$

$$\geq \frac{c_p^2}{2} \left(\|A^2\|_p + \|B^2\|_p + \left| \|A\|_p^2 - \|B\|_p^2 \right| \right)$$

$$\geq \frac{c_p^2}{2} \left(\|A^2 \pm B^2\|_p + \left| \|A\|_p^2 - \|B\|_p^2 \right| \right), \quad (4.16)$$

which proves the inequality (4.13). For the inequality (4.14), let $2 \leq p \leq \infty$ and by using the facts that

$$\|A\|_p^2 = \left\| |A|^2 \right\|_{p/2} \quad \text{and} \quad \|B\|_p^2 = \left\| |B|^2 \right\|_{p/2},$$

the inequality (4.15) implies that

$$\begin{aligned} \mathfrak{n}_p^2 \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) &\geq \frac{c_p^2}{2} \left(\left\| |A|^2 \right\|_{p/2} + \left\| |B|^2 \right\|_{p/2} + \left| \|A\|_p^2 - \|B\|_p^2 \right| \right) \\ &\geq \frac{c_p^2}{2} \left(\left\| |A|^2 + |B|^2 \right\|_{p/2} + \left| \|A\|_p^2 - \|B\|_p^2 \right| \right), \end{aligned} \quad (4.17)$$

which proves the inequality (4.14). \square

COROLLARY 4.9. *Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. Then*

$$\begin{aligned} \mathfrak{n}_p^2(T) &\geq 2^{-2+2/p} \max \left(\|A^2 + B^{*2}\|_p, \|AB^* + B^*A\|_p \right) \\ &\quad + 2^{-3+2/p} \left| \|A + B^*\|_p^2 - \|A - B^*\|_p^2 \right| \end{aligned} \quad (4.18)$$

for $1 \leq p \leq \infty$, and

$$\begin{aligned} \mathfrak{n}_p^2(T) &\geq 2^{-2+2/p} \max \left(\left\| |A|^2 + |B^*|^2 \right\|_{p/2}, \|A^*B^* + BA\|_{p/2} \right) \\ &\quad + 2^{-3+2/p} \left| \|A + B^*\|_p^2 - \|A - B^*\|_p^2 \right| \end{aligned} \quad (4.19)$$

for $2 \leq p \leq \infty$.

Proof. Let $1 \leq p \leq \infty$. Then

$$\mathfrak{n}_p^2(T) \geq 2^{-2+2/p} \max \left(\|A + B^*\|_p^2, \|A - B^*\|_p^2 \right) \text{ (by Theorem 4.2 (a))}$$

$$\geq 2^{-3+2/p} \left(\left\| (A + B^*)^2 \right\|_p + \left\| (A - B^*)^2 \right\|_p + \left| \|A + B^*\|_p^2 - \|A - B^*\|_p^2 \right| \right)$$

$$\geq 2^{-3+2/p} \left(\left\| (A + B^*)^2 \pm (A - B^*)^2 \right\|_p + \left| \|A + B^*\|_p^2 - \|A - B^*\|_p^2 \right| \right).$$

It follows that

$$\begin{aligned}\mathfrak{n}_p^2(T) &\geq 2^{-2+2/p} \max \left(\|A^2 + B^{*2}\|_p, \|AB^* + B^*A\|_p \right) \\ &\quad + 2^{-3+2/p} \left| \|A + B^*\|_p^2 - \|A - B^*\|_p^2 \right|,\end{aligned}$$

which proves the inequality (4.18). For the inequality (4.19), let $2 \leq p \leq \infty$ and by using the facts that

$$\|A + B^*\|_p^2 = \left\| |A + B^*|^2 \right\|_{p/2} \text{ and } \|A - B^*\|_p^2 = \left\| |A - B^*|^2 \right\|_{p/2}, \quad (4.20)$$

we have

$$\begin{aligned}\mathfrak{n}_p^2(T) &\geq 2^{-2+2/p} \max \left(\|A + B^*\|_p^2, \|A - B^*\|_p^2 \right) \text{ (by Theorem 4.2 (a))} \\ &= 2^{-3+2/p} \left(\left\| |A + B^*|^2 \right\|_{p/2} + \left\| |A - B^*|^2 \right\|_{p/2} + \left| \|A + B^*\|_p^2 - \|A - B^*\|_p^2 \right| \right) \\ &\quad \text{(by the relations (4.20))} \\ &\geq 2^{-3+2/p} \left(\left\| |A + B^*|^2 \pm |A - B^*|^2 \right\|_{p/2} + \left| \|A + B^*\|_p^2 - \|A - B^*\|_p^2 \right| \right).\end{aligned}$$

It follows that

$$\begin{aligned}\mathfrak{n}_p^2(T) &\geq 2^{-2+2/p} \max \left(\left\| |A|^2 + |B^*|^2 \right\|_{p/2}, \|A^*B^* + BA\|_{p/2} \right) \\ &\quad + 2^{-3+2/p} \left| \|A + B^*\|_p^2 - \|A - B^*\|_p^2 \right|,\end{aligned}$$

as required. \square

REMARK 4.10. The inequalities (4.10) and (4.19) imply that if $A, B \in \mathbb{B}_p(\mathbb{H})$ and $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$, then

$$2^{-2+2/p} \left\| |A|^2 + |B^*|^2 \right\|_{p/2} \leq \mathfrak{n}_p^2(T) \leq 2 \left\| |A|^2 + |B^*|^2 \right\|_{p/2} \quad (4.21)$$

for $2 \leq p \leq \infty$.

An application of Corollary 4.9 can be stated as follows. This application relates the new p -numerical radius $\mathfrak{n}_p(\cdot)$ of an off-diagonal part of a 2×2 operator matrix with the old p -numerical radius $w_p(\cdot)$ of the products of the off-diagonal parts.

COROLLARY 4.11. *Let $A, B \in \mathbb{B}_p(\mathbb{H})$, and let $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. Then*

$$\mathfrak{n}_p^2(T) \geq 2^{-1+2/p} \max(w_p(AB), w_p(BA)).$$

for $2 \leq p \leq \infty$.

Proof. Let $\theta \in \mathbb{R}$. Then we have

$$\begin{aligned} \mathfrak{n}_p^2(T) &= \mathfrak{n}_p^2\left(\begin{bmatrix} 0 & e^{i\theta}A \\ B & 0 \end{bmatrix}\right) \text{ (by Theorem 3.1 (d))} \\ &\geq 2^{-2+2/p} \left\| e^{-i\theta}A^*B^* + e^{i\theta}BA \right\|_p \text{ (by the inequality (4.19))} \\ &= 2^{-1+2/p} \left\| \operatorname{Re}\left(e^{i\theta}BA\right) \right\|_p. \end{aligned} \quad (4.22)$$

By taking the supremum in both sides of the inequality (4.22) over all real numbers θ , we have

$$\mathfrak{n}_p^2(T) \geq 2^{-1+2/p} w_p(BA). \quad (4.23)$$

Also, interchanging A and B and observing that

$$\mathfrak{n}_p^2(T) = \mathfrak{n}_p^2\left(\begin{bmatrix} 0 & B \\ A & 0 \end{bmatrix}\right) \text{ (by Theorem 3.1 (b))}$$

imply that

$$\mathfrak{n}_p^2(T) \geq 2^{-1+2/p} w_p(AB) \text{ (by the inequality (4.23))}. \quad (4.24)$$

Now, the result follows from the inequalities (4.23) and (4.24). \square

We end this section with the following remark.

REMARK 4.12. It is natural to ask for explicit formulas for $\mathfrak{n}_p\left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\right)$ and $\mathfrak{n}_p\left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}\right)$ for $0 < p < \infty$.

Conflict of interest. The authors declare that they have no conflict of interest.

Data availability. Not applicable.

Funding. Not applicable.

Authors' contributions. All authors contributed to each part of this work, and they all read and approved the final manuscript.

REFERENCES

- [1] A. ABU-OMAR AND F. KITTANEH, *A generalization of the numerical radius*, Linear Algebra Appl. **569** (2019), 323–334.
- [2] S. AICI, A. FARKIS, AND F. KITTANEH, *Further p -numerical radius inequalities*, J. Anal. **33** (2025), 1471–1489.
- [3] S. AICI, A. FARKIS, AND F. KITTANEH, *On p -numerical radius inequalities for sums and products of operators*, J. Anal. **33** (2025), 673–689.

- [4] A. BENMAKHOUF, A. FRAKIS, F. KITTANEH, AND A. MENNOUNI, *Novel p -numerical radius inequalities for Hilbert space operators*, Ann. Univ. Ferrara (2025) **71**: 42, <https://doi.org/10.1007/s11565-025-00598-w>.
- [5] A. BENMAKHOUF, O. HIRZALLAH, AND F. KITTANEH, *On the p -numerical radii of Hilbert space operators*, Linear Multilinear Algebra **69** (2021), 2813–2829.
- [6] R. BHATIA AND F. KITTANEH, *Norm inequalities for positive operators*, Lett. Math. Phys. **43** (1998), 225–231.
- [7] P. BHUNIA AND S. SAHOO, *Schatten p -norm and numerical radius inequalities with applications*, Results Math. (2024) **80**: 15, <https://doi.org/10.1007/s00025-024-02314-0>.
- [8] A. M. BIKCHENTAEV, F. KITTANEH, M. S. MOSLEHIAN, Y. SEO, *Trace inequalities for matrices and Hilbert space operators*, in: Forum for Interdisciplinary Mathematics, Springer, ISBN 978-981-97-6519-5, 2024, 332+xiii pp.
- [9] T. BOTTazzi AND C. CONDE, *Generalized numerical radius and related inequalities*, Oper. Matrices **15** (2021), 1289–1308.
- [10] A. FRAKIS AND F. KITTANEH, *On p -numerical radius inequalities for commutators of operators*, Quaest. Math. **48** (2025), 417–428.
- [11] A. FRAKIS, F. KITTANEH, AND S. SOLTANI, *On the p -numerical radii of 2×2 operator matrices*, J. Appl. Math. Comput. **70** (2024), 335–350.
- [12] A. FARKIS, F. KITTANEH, AND S. SOLTANI, *Upper and lower bounds for the p -numerical radii of operators*, Results Math. (2024) **79**: 59, <https://doi.org/10.1007/s00025-023-02090-3>.
- [13] I. C. GOHBERG AND M. G. KREIN, *Introduction to the Theory of Linear Nonselfadjoint Operators*, Transl. Math. Monographs, **18**, Amer. Math. Soc., Providence, RI, 1969, MR 39 #7447, Zbl 0181.13504.
- [14] J. HAMZA AND H. ISSA, *Generalized numerical radius inequalities for the Schatten p -norms*, arXiv:2204.0269.
- [15] O. HIRZALLAH, F. KITTANEH, AND K. SHEBRAWI, *Numerical radius inequalities for certain 2×2 operator matrices*, Integr. Equ. Oper. Theory **71** (2011), 129–147.
- [16] T. YAMAZAKI, *On upper and lower bounds of the numerical radius and an equality condition*, Studia Math. **178** (2007), 83–89.
- [17] B. SIMON, *Trace Ideals and Their Applications*, Cambridge University Press, Cambridge, 1979.

(Received August 7, 2025)

Mohammad El-Haddad

Amman, Jordan

e-mail: m_el_haddad@yahoo.com

Omar Hirzallah

Department of mathematics

Faculty of Science, The Hashemite University

Zarqa, Jordan

e-mail: o.hirzal@hu.edu.jo

Fuad Kittaneh

Department of mathematics

The University of Jordan

Amman, Jordan

e-mail: fkitt@ju.edu.jo

and

Department of mathematics

Korea University

Seoul 02841, South Korea